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Abstract— This paper presents Location-Centric Storage
(LCS), a novel distributed data storage protocol for sensor
networks. In the protocol, each event detected by sensors is
associated with an intensity value (σ)(by sensors), where σ is
a parameter that depends on the characteristics of the event and
the application context. When event information is broadcast,
a sensor decides whether to store the record of an event by
checking its distance to the event location and the σ. In general,
the higher the intensity of an event, the further its information
can propagate geographically in the sensor network. Besides, the
closer to the event location, the denser the sensors are that store
the event information, and thus the quicker and better a user
can know about the event (by reading from surrounding sensors).
The protocol utilizes network resource efficiently. In particular,
the storage load of sensors is independent of the network size,
and is evenly distributed across the network. Moreover, the
communication distance for getting event information is small.
Therefore, the protocol has great scalability. We provide detailed
theoretical analysis and simulation study to support the claims.
We also ran simulations to show the advantage of our protocol
over some previous work. LCS can be used for applications such
as context-dependent information mining in pervasive computing
and on-demand warning in surveillance sensor networks.

Keywords: sensor networks, location-centric storage, on-
demand warning, context-dependent information mining

I. INTRODUCTION

Sensor networks consist of micro sensors for monitoring and
interacting with the physical world. There exist many exciting
sensor network applications, including smart learning [27],
battlefields [8], [9], environmental monitoring and control [3],
[13], [17], [19], target detection and tracking [4], [18], [20],
roadway safety warning [25], [26], etc. These applications are
expected to have strong economic influence in the near future.

Nevertheless, sensor networks pose many new challenges
[28], [29]. One of the challenges is how to store data efficiently
to facilitate user query and on-demand warning1 across the
entire sensor network. The challenge is significant due to the
per sensor resource constraints (limited battery, memory, band-
width, etc). It is made harder by multi-hop communication
and the overwhelming amount of sensor readings at any time
over a wide geographic area. In this paper, we will propose a
novel data storage method, termed as location-centric storage

(LCS), to efficiently disseminate aggregated data based on the
intensity (explained later in this section) of the data. We will
show that LCS can be easily applied to pervasive computing

1It is called “on-demand warning” since these warnings will be generated
only when some mobile objects are approaching.

for context-dependent information query and to surveillance
networks for on-demand warning.

There exists three canonical data storage methods proposed
in the context of sensor networks. In Local Storage (LS), short-
lived data is stored locally at the home sensor. In External

Storage (ES), data is sent to an outside access point where it
can be further processed as needed. In Data-Centric Storage

(DCS), data is stored according to name/location. A data
centric storage scheme [15] based on geographic hash tables
[16] maps the data of the same type (name) to a fixed
location in the sensor network. The performance of these three
methods has been extensively studied [5], [15], [16], [21],
[22]. These studies indicate that no one outperforms the other
two in all situations. In fact, none of these methods targets
the application scenarios considered in our LCS design. For
example, on-demand warning requires zero delay and high
reliability. However, the query-response delay involved in LS,
ES, and DCS may not be tolerable, and the possibility of single
point of failure renders them unreliable. Further, ES and DCS
incur bottlenecks at certain storage locations. In contrast, in
LCS, the sensor sending out warning signals are always local
to users, resulting in negligible delay. Like LS, LCS well
balances sensor storage load in the network, as long as the
event occurrence rate in the network is uniformly distributed.

The basic idea of LCS is sketched as follows: A record is
generated by a sensor (the home sensor) when detecting the
occurrence of some event (e.g. adversaries, chemical spills,
etc.). The record is stored in the database of the home sensor
and sensors that are some distance away. Sensors decide
whether to store an event record based on the distance to
the home sensor and the intensity of the event. The intensity
of an event is a function of the significance of the event,
the application scenario, the physical environment, etc. For
example, the intensity of a motor vehicle crash event is related
to the time needed to clear the road. The intensity of the event
indicating the availability of a printer in a building can be a
function of the printer’s capability and the owner’s intention.
Generally speaking, the closer to the event location, the higher
the density of the sensors storing the corresponding record.

The paper has the following major contributions:

1) We propose a novel information dissemination method
called LCS for sensor networks. LCS is purely localized,
thus scales well to large networks. Furthermore, LCS can
complement existing data storage methods. It has abun-
dant applications such as context-dependent information
mining in pervasive computing and on-demand warning
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in surveillance sensor networks.
2) We identify example applications of LCS in pervasive

computing and surveillance sensor networks.
3) We study the performance of LCS through detailed

theoretic analysis, which indicates that LCS is efficient
in communication and storage overheads.

4) We conduct extensive simulations to verify the efficiency
and effectiveness of LCS. To be specific, we assess
the storage overhead caused by LCS at the worst and
average cases.

5) We compare the message overheads of LS, ES, and
LCS through simulations. The results indicate that LCS
outperforms LS and ES given varying query number,
fixed event number and growing network size.

Our simulation results are consistent with what we obtain from
the theoretical performance analysis. Both studies indicate that
LCS can effectively disseminate event records. If events occur
uniformly randomly in the whole network, the storage spaces
needed are fair to all sensors.

In the rest of the paper, we will first briefly summarize re-
lated research. After that, we will present our location-centric
storage protocol for sensor networks in Section III. Possible
example applications of LCS are identified in Section IV.
The theoretical performance analysis is given in Section V,
followed by the simulation report in Section VI. We conclude
this paper by Section VII.

II. RELATED WORK

There exist three canonical data dissemination methods in
sensor networks: External Storage (ES), Local Storage (LS),
and Data-Centric Storage (DCS). Comparison studies of ES,
LS, and DCS in the overheads of storage, query, and update2

have been conducted in [15], [16]. In this section, we will give
a brief literature survey on these methods. It is interesting to
observe that our LCS protocol is a complement to ES, LS,
and DCS. There also exist methods [11], [12] for reliably
disseminating data from the source to the destination in harsh
environments. This topic is out of the scope of our study.

In ES, all detected events are directed to a central process-
ing server such as a base station. Therefore the user query
overhead is negligible while the information update overhead
is a function of the network diameter. In LS, events are stored
locally. User queries must be flooded to the whole network
but the information update overhead is negligible. In DCS,
data is stored by name/location. A geographic hash table [16]
based data centric storage [15] maps the data of the same type
(name) to a fixed location in the sensor network. DCS induces
moderate amount of query and update overheads. In the worst
case, both overheads of DCS are functions of the network
diameter. For a sensor network with significant number of
queries and relatively infrequent updates, ES is preferred; on
the other hand, if the number of updates is far more than that

2When we talk about the “overheads of query and update”, we actually
refer to the communication overheads induced by user query and information
update. This is reasonable since in a resource-constrained sensor network
communication is the most aggressive energy consumer, which strongly
impacts the network lifetime.

of queries, LS is a better choice. DCS is applicable when the
numbers of queries and updates are comparative [15].

A great amount of research effort [5], [15], [16], [21], [22]
has been put to DCS since it was first introduced in the year
2002 [15]. Compared to LCS, DCS is based on a different
view of routing data, in which a type or a name instead of
an IP address should be attached to identify the data. This
observation holds true for many sensor network applications.
For example, the measurement summary or the occurrences
of some abnormal events, collaboratively computed by many
sensors, should be reported to the users in a sensor network
deployed for monitoring and control. The concept of data-
centric binds the type with the data, since in reality users care
about “what has happened” instead of “which sensor observes
this occurrence”. In DCS, a named data is directed to a fixed
location determined by the Geographic Hash Table (GHT)
[16]. All data with the same names are hashed to the same
position (actually to the sensors close to that position). GHT
relies on a geographic routing protocol such as GPSR [7] for
data dissemination, and exploits two operations, Put(k, v) and
Get(k, v), for data update and query, where k is the name of
the data whose value is v.

DCS suffers from the problem of single-point-of-failure,
since each type of data is mapped (hashed) to exactly one
location, and stored by the sensor that is geographically the
nearest to the hashed location. To improve the resilience to
node failures, Ratnasamy et al. [16] propose to replicate the
stored data locally through the periodic refresh messages; They
also extend DCS to obtain Structured Replication in DCS (SR-
DCS) for load-balancing and better scalability. In the Resilient
DCS (R-DCS) [5], the coordinate space is partitioned into
Z zones, with each containing sensors operating at different
modes. An event is stored in its home zone if there exists
a sensor working at the Replica Mode for that event type;
Otherwise, the data is forwarded to the closest replica node
for that event type in nearby zones. It is obvious that this two-
level replication strategy improves both the resilience of DCS
against node failures and its scalability. A different hierarchical
architecture for DCS based on Rendezvous regions (RR) is
reported in [21], in which all data with the same name are
mapped to a RR region instead of a single point. The storage
of the data within one region is controlled by a few elected
nodes within the region. This approach can tolerate dynamics
such as node mobility and has better scalability compared with
the basic DCS, but it suffers from clustered node failures. To
further improve resilience, Tamishetty, Ngoh, and Keng [22]
propose to employ multiple hashing such that one type of event
can be replicated at multiple locations computed by different
hash functions.

The Location-Centric Storage (LCS) scheme proposed in
this paper utilizes a completely different concept. LCS is
relatively more context-aware. In LCS, events are replicated at
multiple positions based on the associated parameter intensity.
The intensity of an event is a function of the event type,
the significance and the location of the event, the application
scenario, etc. The higher the intensity, the more number of
replications the event will have, and the farther away from
the home location the event will be stored. Thus LCS has



better scalability and stronger resilience against node failures
compared with DCS. Note that LCS and DCS can coexist
in a sensor network since they target different application
scenarios. DCS is designed for large-area data dissemination.
The designated storage location for a type of events in DCS
decreases query overhead since no flooding is involved. On
the other hand, LCS is designed for scenarios when the event
information is needed only when the user is approaching the
event location. Query a specific event in LCS requires global
flooding.

LCS is different from LS too. In LCS, a group of sensors
store an event generated roughly at the geometric center of the
group, while in LS a sensor stores its local observations. LCS
has better resilience against node failures, and is suitable for
summary data dissemination. Overall, LCS is a novel storage
method that is a complement to DCS, LS, and ES, and fits in
well with the various sensor network applications.

The basic concept of location centric storage has been
applied to an one-dimensional sensor network mimicking a
unidirectional highway for safety warning [25]. The general-
ization of this model to roadways with intersections has been
reported in [26]. Note that these works focus on the philosophy
of roadway safety warning based on sensor networks. In this
paper, we will formally propose LCS in the context of typical
sensor networks and conduct extensive analysis to verify its
performance.

III. LOCATION-CENTRIC STORAGE

As a prerequisite of our protocol, we assume that sensors
can obtain their own geometric coordinates (Sx, Sy) using
GPS or other techniques, such as those proposed in [2], [10],
[23]. We also assume that a robust broadcasting protocol is in
place such that event records can be properly disseminated.

When detecting an event, the home sensor3 creates a record
with the following five fields:

• The time indicating when the event occurs.
• The location (i.e. the coordinates (Sx, Sy)) of the event.

For simplicity, we assume an event collocates with its
home sensor. Note that the time and location fields
together uniquely identifies an event record.

• An integral intensity value (σ) that characterizes the
event. Intensity values are application-specific. If the
event is a car crash in roadway sensor networks [25], the
intensity value characterizes the time needed to clear the
road in highway safety warning. In pervasive computing,
the intensity value of the event indicating the availability
of a gas station may be proportional to the price the owner
would like to pay. Generally speaking, the higher the
intensity, the wider area the record should be dispatched;
The closer the sensor to the event location, the higher the
probability of storing the record within the sensor.

• A Time-To-Live (TTL) as the expiration time (relative
to the current moment) of the record. The TTL value

3An event is usually detected by multiple sensors simultaneously but one
sensor will be designated for reporting the event [1], [3]. We term this sensor
the “home sensor” of the event.

tells the sensor storing this record when to purge the
corresponding entry from its database.

• The event type bearing other information of the event.

Event records will be distributed and stored following our
LCS protocol. In LCS, a sensor when receiving an event
record computes its distance ∆ to the event location and check
whether ∆ is “close enough”4. Thus each sensor is able to
locally and independently determine whether it should drop or
store the received event record. To free space for new events,
records are purged from the database when their TTL values
reach 0. When a user query is received, a response can be
generated based on the information stored in its database. This
procedure can be summarized as follows.

1) When detecting an event, the home sensor S creates,
stores and broadcasts an event record.

2) When receiving an event record, a sensor stores the
record if (a) its X coordinate ∈ {x + 21 − 1, x +
22 − 1, · · · , x + 2σ − 1}, and (b) its Y coordinate
∈ {y + 21 − 1, y + 22 − 1, · · · , y + 2σ − 1}, where σ
and (x, y) are the intensity value and the event location
drawn from the received record. Otherwise, the record is
dropped. In both cases, the sensor broadcasts the record
if its distance to the event location is less than 2σ in
both X dimension and in Y dimension.

3) After a record is inserted into the database of some
sensor, its TTL value starts to decrease as its local clock
ticks, and the entry containing the record will be purged
out of the database immediately when TTL reaches 0.

4) When receiving a user query, a response to the user
based on the information stored in the database will be
generated.

It should be noticed that for any particular pair of (i, j),
where i, j ∈ {1, 2, ...,σ}, there is probably no sensor on the
exact point of (x± 2i − 1, y± 2j − 1). In this case, the sensor
that is the closest to the point in the neighborhood takes the
place and keeps a copy of the record.

From the algorithm above, it is easily seen that records are
stored in exponentially expanding frames, where the distance
between the i-th and i+1-th frame is 2i. Besides, the larger the
intensity value, the more expanding frames that will contain
the information, and thus the further the information can reach.

As an example, Fig. 1 shows a sensor network with two
events. The event detected at the solid dot has the intensity of
3. Therefore, its record is stored in a sensor whose horizontal
and vertical distances to the dark dot are members of the
set {1, 3, 7} (corresponding to 21 − 1, 22 − 1 and 23 − 1
respectively). Similarly, the other event detected at the solid
square has the intensity of 2. In this case, fewer sensors in a
smaller area store the record.

IV. EXAMPLE APPLICATIONS

The design of our LCS location-centric storage protocol is
triggered by real-world applications. In this section, we study
several example scenarios to which LCS can be applied.

4Here “close enough” means that this sensor is the closest among its
neighboring sensors to one of the ideal locations where the record should
be stored.



Fig. 1. An Example Location-Centric Storage Scenario. All circles store the
event record for the event at the solid dot, whose intensity value is 3; And
all squares keep a copy of the event record for the event at the solid square,
whose intensity value is 2.

A. Context-Dependent Information Dissemination for Perva-

sive Computing

Mark Weiser devised a background computing paradigm in
his 1991 seminar paper “The Computer for the 21st Century”
[24], in which technologies “weave themselves into the fabric
of everyday life until they are indistinguishable from it”. Ever
since then, the research on pervasive (ubiquitous) computing
has been flourishing. A very important topic in this area is
data dissemination [6], [14], which should be able to facilitate
the query of timely and context-aware data. LCS as a data
dissemination method can do the job well. In this context,
sensors with moderate amount of storage supplies can be
deployed along roadways, within buildings, campuses, etc.
Each sensor works as a mini-sized database. Therefore the
availability and location information of a gas station can be
disseminated based on the LCS protocol, where the intensity
can be determined by jointly considering the distance to other
gas stations, the amount of money the manager would like to
pay, and the environment (food stores, lodging facilities, etc.,
in the neighborhood). Thus a driver in a foreign area can easily
identify the nearest gas station that is in good condition and
best fits her need. Similarly the availability of public printers in
a building can be announced based on LCS. Thus a conference
attendant can modify and then print out her handouts from the
nearest printer just before her talk starts.

B. On-Demand Warning in Surveillance Sensor Networks

If sensors have the ability to generate warning messages
for the stored events, LCS can be exploited for on-demand
warning5 in surveillance networks. To realize this, users must
be equipped with a device, which could be a very simple
sensor, that is able to communicate with the sensors in the
network. In this scenario, sensors can detect the approaching
of the mobile objects (people or enemy trucks, etc.). In the
following, we identify several simple applications of LCS for
on-demand warning.

In military, it is not hard to sprinkle a large amount of micro
sensors on the battle field during a war. These sensors can

5It is called “on-demand warning” since these warnings will be generated
only when some mobile objects are approaching.

be used to detect land mines, enemy tanks [4], etc. LCS can
be employed for on-demand warning. A scout can be alerted
early when he is walking toward a land mine. With very low
probability he will miss the second or the third warning signal
for the same land mine if the first one has been missed. And
he can choose a better route toward his target based on the
number of received warnings. Similarly, if a sensor network is
deployed for protecting an ammunition depot, LCS can help
to detect enemies that are approaching. The closer the enemy,
the more number of warning messages the depot will receive,
based on LCS.

Even for sensor networks installed for civilian usage, LCS
can get a foot in. For example, in a sensor network deployed
for monitoring the activities of an active volcano, LCS can
be used to warn pedestrians, travellers, and scientists that
are doing in-situ research. The transport of chemical spills
[3], pollutants, and other harmful materials can be observed
through a sensor network. With LCS, human beings when
approaching these poisoned areas can be alerted. LCS guar-
antees that the closer to the event location, the more number
of warning messages, and the less chance that a victim misses
all warnings.

C. Roadway Safety Warning

The “Zero Fatality, Zero Delay”highway safety philosophy
has been proposed at the World Congress on ITS (Intelligent
Transportation Systems and Services) in Madrid, Spain in the
year 2003. This indicates that future transportation systems
should be able to minimize avoidable delays, injuries and
fatalities by integrating various advanced technologies. We
have proposed our exploratory work toward safety warning
based on roadway sensor networks in [25]. In this research,
we consider an one-dimensional network that mimics a single
direction of a highway with sensors uniformly deployed.
Event records for car crashes, fogs, slippery roads, etc., are
constructed and propagated toward the against traffic direction.
Warning messages are generated by a device inside the vehicle
that can obtain information from roadway sensors when drivers
passing by. This idea is similar to the placement of exit signs
along the highway, in which a driver can observe more number
of signs when he is approaching the exit. In this work [25],
we have employed a simplified version of LCS, in which the
sensor network is modelled as an one-dimensional line graph.

V. PERFORMANCE ANALYSIS

Owing to the simple structure, our protocol has several well-
defined properties that leads to promising performance. The
following theorems provide the analysis.

Theorem 5.1: Given two records A and B produced by two
nodes at different locations (Ax, Ay) and (Bx, By) respec-
tively,

1) If Ax #= Bx and Ay #= By , at most 16 nodes store both
records.

2) If Ax = Bx or Ay = By , at most 4(2σ + 1) nodes
store both records, where σ is the smaller intensity value
among the two.
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Proof: We assume that both records are alive at the
same time (since otherwise no nodes will store both of them).
Let the intensities of the corresponding events be σ1 and
σ2 respectively. The storage locations for record A are then
{(Ax±(2i−1), Ay±(2j−1))|i, j ∈ {1, 2, . . . ,σ1}}. Similarly,
we can determine the storage locations for B.

Case 1: Ax #= Bx and Ay #= By .
Without loss of generality, we assume Ax < Bx. Consider

the X coordinate only. Ax and Bx partition the X axis
into three intervals: (−∞, Ax], [Ax, Bx], [Bx,∞). Using the
reduction to absurdity approach, we will prove that there exists
at most one X coordinate in the right (left) interval such that
nodes with this X coordinate will store both records of A and
B.

Given two nodes at (x1, y1) and (x2, y2) with x1, x2 ∈
[Bx,∞). For contradiction we assume that both nodes store
both records. Without loss of generality, we further assume
x2 > x1. Let ax1, bx1, ax2, bx2 (Fig. 2) be the values such
that

x1 = Ax + 2ax1 − 1 = Bx + 2bx1 − 1 (1)

x2 = Ax + 2ax2 − 1 = Bx + 2bx2 − 1 (2)

It is easily seen that ax2 > ax1 and bx2 > bx1 since x2 >
x1. Further, Ax < Bx induces ax1 > bx1 and ax2 > bx2.
From Eq. (1) and (2), we obtain

2ax1 − 2bx1 = 2ax2 − 2bx2 ⇒
(2ax1−bx1 − 1) = 2bx2−bx1(2ax2−bx2 − 1) (3)

In Eq. (3), the left side value is odd while the right side
value is even, which is impossible. Therefore, the assumption
that there exist two nodes storing both records can not be held
true. Thus we have proved that at most one x in [Bx,∞) such
that the node at (x, y) stores both records.

With a very similar derivation, the same conclusion holds
for the interval (−∞, Ax]. In the following, we will prove that

for those nodes whose X coordinates are in [Ax, Bx], at most
two of them may store both records of A and B, again using
reduction to absurdity.

For contradiction we assume three such nodes at different
locations (x1, y1), (x2, y2) and (x3, y3) store both records.
Let axi, bxi(i ∈ {1, 2, 3}) (Fig. 3) be the values such that

x1 = Ax + 2ax1 − 1 = Bx − 2bx1 + 1 (4)

x2 = Ax + 2ax2 − 1 = Bx − 2bx2 + 1 (5)

x3 = Ax + 2ax3 − 1 = Bx − 2bx3 + 1 (6)

Without loss of generality, we assume x1 < x2 < x3.
Hence we have bx1 > bx2 > bx3. Also, from the above
equations, we obtain

2bx1−bx2(2ax2−bx1 − 1) = (2ax1−bx2 − 1) (7)

2bx1−bx3(2ax3−bx1 − 1) = (2ax1−bx3 − 1) (8)

2bx2−bx3(2ax3−bx2 − 1) = (2ax2−bx3 − 1) (9)

Eq. (7) is true if and only if ax2 = bx1 and ax1 = bx2

(otherwise the parity of the two sides would be different).
Similarly Eq. (8) and Eq. (9) are true if and only if ax3 = bx1,
ax1 = bx3, ax3 = bx2, ax2 = bx3. Therefore ax1 = ax2 =
ax3 = bx1 = bx2 = bx3, and thus x1 = x2 = x3, which
contradicts the assumption.

From the above analysis, we conclude that there are at most
four different X coordinates such that the nodes with these
coordinates will store both records. The same argument holds
true for the Y coordinate. Therefore there are at most 16 pairs
of coordinates at which the nodes store both records.

Case 2: Ax = Bx or Ay = By .
Consider the case of Ax = Bx and Ay #= By . From the

above analysis, we know that at most 4 different Y coordinates
whose nodes store records for both events. Further, there are at
most 2σ + 1 different X coordinates whose nodes store both
records, where σ is the smaller intensity value in the event
records. Therefore at most 4(2σ+1) nodes store both records
of A and B. A Similar discussion holds for the case when
Ax #= Bx and Ay = By.

The proof completes.

Corollary 5.1: Assume all event records have the same
intensity value σ. Given two nodes at (Ax, Ay) and (Bx, By)
respectively,

1) If Ax #= Bx and Ay #= By , they store at most 16 records
in common.

2) If Ax = Bx or Ay = By, they store at most 4(2σ + 1)
records in common.

Proof: Consider a node at (Sx, Sy). According to our
algorithm, the node can only store event records generated by
nodes at (Sx± (2i−1), Sy ± (2j −1))(i, j ∈ {0, 1, 2, . . . ,σ}).
Therefore, we can reverse the roles of records and nodes in
the proof of the Theorem 5.1, which leads to the corollary.

Remark: Theorem 5.1 indicate that no matter how big the
intensity value of a record is, there will be a fixed number
of sensors that store the same pair of records in the network,



as long as the two event locations are not colinear in X and
Y directions. However, when these two locations are colinear
in either X or Y direction, the intensity value does matter.
Intensity values determine how many copies of the records can
be stored and what distance the records can be propagated.
Therefore they affect the storage space at each sensor, as
indicated by Theorem 5.2. Corollary 5.1 shows that records
are distributed among all nodes instead of converging onto
some of them. Therefore, no hot spots will be created.

Theorem 5.2: Assume broadcast is instantaneous. Denote
the average intensity value of records as σ, the average TTL
value as T (assumed as an integer). Also assume that at any
node, the number of events detected during the unit time,
N , follows a Poisson distribution with the mean λ. If N is
independent node-wise and time-wise, the average number of
records stored at each node is λ(4σ2 + 4σ + 1)T .

Proof: Given a node at (Sx, Sy), it is easily seen
that at any time t, the node stores the records generated at
(x, y) (where x = Sx ± (2i − 1) and y = Sy ± (2j − 1)
for i, j ∈ {0, 1, . . . ,σ}) during the time interval [t − T, t].
Let Nx,y

k be the number of events for which the node at
(x, y) generate records during the kth unit time interval
[t − T + k − 1, t − T + k] (k ∈ {1, 2, . . . , T}). The average
number of records generated by this node during the time
interval [t − T, t] is thus Wx,y =

∑T
k=1 Nx,y

k . Consequently,
at any time t, the number of records stored in the node at
(Sx, Sy) is W =

∑

x,y Wx,y =
∑

x,y

∑T
k=1 Nx,y

k . Since

Nx,y
k ’s are Poisson distributed and independent from each

other, W follows the Poisson distribution with the mean as
λ(2σ + 1)2T = λ(4σ2 + 4σ + 1)T .

Remark: Note from Theorem 5.2 that the average number
of records stored in each node at any instant time is inde-
pendent of the network size. This independency also implies
the bounded broadcast of records. Therefore, our protocol is
efficient in terms of storage requirement, power consumption,
and bandwidth utilization, and is thus highly scalable.

Theorem 5.3: Let σ be the intensity value in an event
record. Assume the radio range of each sensor is set to be one
unit, then the record will be broadcasted at most (2σ+1 − 3)2

times. With a careful broadcast scheduling, this upper bound
can be reduced to (2σ + 2) × (2σ+1 − 4) + 1.

Proof: According to our protocol, an record with the
intensity σ generated at (x, y) is propagated within the area
of [x − 2σ + 1, x + 2σ − 1] and [y − 2σ + 1, y + 2σ − 1].
Imagine a grid laid on the area centered at (x, y), and each
grid cell is sized 1 × 1. Since the radio range of each sensor
is one unit of distance, only the nodes on (or closest to) the
crossings of the virtual grid lines need to participate in the
broadcast. Also note that the broadcast stops on the boundary
of the area. Therefore, the total number of intermediate nodes
participating in the broadcast is at most (2σ+1 − 3)2.

This upper bound can be improved if the record is propa-
gated horizontally first. 2σ + 1 nodes on the horizontal line
then store the record. After that, each of these nodes broadcasts
the record vertically. The number of horizontal broadcasts is
2σ+1−3, and that of vertical broadcasts is (2σ+1)×(2σ+1−3).

In fact, 2σ+1 horizontal broadcasts (from those nodes storing
records) can also serve as vertical broadcasts. The total number
of broadcasts is thus

2σ+1 − 3 + (2σ + 1) × (2σ+1 − 3) − (2σ + 1)

= (2σ + 1) × (2σ+1 − 4) + 2σ+1 − 3

= (2σ + 2) × (2σ+1 − 4) + 1

Remark: From Theorems 5.2 and 5.3, we observe that LCS
is efficient in network resource (power, bandwidth, memory)
utilization. Further, LCS is fair to all nodes in storage space, as
long as the records are uniformly and independently generated.
This is an intrinsic difference compared with DCS [16], [22],
which creates storage hot spot even when the number of events
in the network is low.
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Fig. 4. For a user at (x, y) in the shaded area, the record of the event at
(Sx, Sy) will be provided by the node at (Pa1, Pb1). The query distance
is thus the distance from (x, y) to (Pa1, Pb1). When the user is closer to
(Pa1, Pb2), (Pa2, Pb1) or (Pa2, Pb2), the calculation is similar.

Theorem 5.4: Suppose (x, y) is the location of a user and
(Sx, Sy) is the location of an event whose record has an
intensity value of σ. Let dx = |x − Sx|, and dy = |y − Sy|.
If the user is in the broadcast region of this event, i.e. x ∈
[Sx −2σ +1, Sx +2σ −1] and y ∈ [Sy −2σ +1, Sy +2σ −1],
the average query distance dq is:















√
a2+b2

3 +
a2 ln(

√
a2+b2+b

a )
6b

+
b2 ln(

√
a2+b2+a

b )
6a

if x #= Sx and y #= Sy√
a2+b2

2 otherwise

where
{

a = (2#log2 dx$ − 2%log2 dx&)/2
b = (2#log2 dy$ − 2%log2 dy&)/2

Proof:
We denote

Pa1 = Sx + 2%log2 dx& − 1, Pa2 = Sx + 2#log2 dx$ − 1

Pb1 = Sy + 2%log2 dy& − 1, Pb2 = Sy + 2#log2 dy$ − 1
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Therefore, a = (Pa2 − Pa1)/2, b = (Pb2 − Pb1)/2. There
are four different cases:

Case 1: a #= 0, b #= 0.

In this case, the user at (x, y) chooses the closest point from
(Pai, Pbj) (i, j = 1, 2), and send the query to the node at that
point. Whichever point he chooses, the situation is similar.
Therefore, we will only consider the situation when (Pa1, Pb1)
is the closest to the user, as shown in Fig. 4.

Since (x, y) can be any point in the shaded square with the
same probability, the average query distance dq is

dq =

∫ a

0

∫ b

0

√

x2 + y2dxdy

ab

=

√
a2 + b2

3
+

a2 ln(
√

a2+b2+b
a

)

6b

+
b2 ln(

√
a2+b2+a

b
)

6a

Case 2: a #= 0, b = 0.

In this case, (x, y) is on the line between (Pa1, Pb1)
and (Pa2, Pb1). The user will choose the closer point from
(Pa1, Pb1) and (Pa2, Pb1) for the query. Therefore, the average
query distance is

a

2
=

√
a2

2
=

√
a2 + b2

2
(∵ b = 0)

Case 3: a = 0, b #= 0.

The derivation is similar to case 2.

Case 4: a = 0, b = 0.

In this case, the user is at (Pa1, Pb1). Therefore, the query

distance is 0 =
√

a2+b2

2 .

Proof completes.

Remark: Theorems 5.4 and its proof reveal that when the user
resides in the broadcast region of an event, the query distance
is no more than the distance between the user and the home
location of this event. In fact, in most cases, the former is
much smaller than the latter, resulting in low query delay.

It is obvious that using our protocol, the information of
an event can only be propagated to the furthest distance of
2σ − 1, where σ is the intensity value of the record corre-
sponding to the event. Therefore, a user can only be notified
of the events that occur within certain distance from the user.
Usually, a user can communicate with any nodes within the
neighborhood area, called by us the user communication area.
If the information of an event can be obtained by the user, we
say that the information is covered by the user communication

area, and we call an area with covered information a covered

area.
Theorem 5.5: Assume all events have the same intensity

value σ, and the sensor density is very high (such that any
event can be recorded by a sensor at the same location).
Suppose a user at (x, y) can only communicate with any
node within the area (H) of l × l centered at (x, y). Let
β = min(σ, (log2(l + 1))). If an event occurs at (Sx, Sy),

1) If |Sx −x| ≤ 2σ − 1+ l/2 and |Sy − y| ≤ 2σ − 1+ l/2,
the probability that the user is notified of the event is

{

1 if β = σ
(

2β+1+2l(σ−β)+l−2
2σ+1+l−2

)2
if β < σ

2) Otherwise, the user cannot be notified of the event.
Proof:

Let dx = |Sx −x|, and dy = |Sy −y|. There are four cases:

Case 1: dx ≤ 2β − 1 + l/2 and dy ≤ 2β − 1 + l/2.
The area that consists of all (Sx, Sy) satisfying this condition
is a square centered at (x, y) (Fig. 5 case 1). The side of the
square is 2 × (2β − 1 + l/2) = 2β+1 + l − 2, and the size is
thus (2β+1 + l−2)2. Denote the square as A. From any point
in A to H, the shortest distance (either horizontal or vertical)
is no more than 2σ − 1. Since the user can communicate with
any node in H, he can get the information of any event in A.

Note that when β = σ, the area of A contains all events
of which the user can be notified. Therefore, in this case, the
probability of notification is 1.

Case 2: dx ≤ 2β−1+l/2 and 2β−1+l/2 < dy ≤ 2σ−1+l/2,
or 2β − 1 + l/2 < dx ≤ 2σ − 1 + l/2 and dy ≤ 2β − 1 + l/2.
Not all information of events at such (Sx, Sy) are covered.
For example, if an event occurs at x + l/2 + 2β − 1 + ε, y
(where ε is a small fractional value), the user won’t receive
the information about the event. The covered area B under
this condition is composed of the following non-contiguous
rectangles, as shown in Fig. 5 case 2:

• Sx ∈ [x − l/2 ± 2β+i ∓ 1, x + l/2 ± 2β+i ∓ 1],
Sy ∈ [y − l/2 − 2β + 1, y + l/2 + 2β − 1];
or,

• Sx ∈ [x − l/2 − 2β + 1, x + l/2 + 2β − 1],
Sy ∈ [y − l/2 ± 2β+i ∓ 1, y + l/2 ± 2β+i ∓ 1].

where i = 1, 2, . . . ,σ − β. Each rectangle is of the size
l×(2β+1+l−2), and there are totally 4(σ−β) such rectangles.
The totally size of B is thus 4l(σ − β)(2β+1 + l − 2).

Case 3: 2β −1+ l/2 < dx, dy ≤ 2σ −1+ l/2. Similar to case
2, the covered area C under this condition is composed of the
following non-contiguous squares, as shown in Fig. 5 case 3:



• Sx ∈ [x − l/2 ± 2β+i ∓ 1, x + l/2 ± 2β+i ∓ 1],
Sx ∈ [y − l/2 + 2β+j − 1, y + l/2 + 2β+j − 1];
or,

• Sy ∈ [x − l/2 ± 2β+i ∓ 1, x + l/2 ± 2β+i ∓ 1],
Sy ∈ [y − l/2 − 2β+j + 1, y + l/2 − 2β+j + 1].

where i, j = 1, 2, . . . ,σ − β. Each square is of the size l2,
and there are totally 4(σ−β)2 of them. The total size of C is
thus 4l2(σ − β)2

Case 4: For all other values of dx and dy , the user won’t
be able to receiver the event information, since no sensor in
the user communication area will have the information. In
particular, if dx, dy > 2σ − 1 + l/2, even the sensor farthest
from the event location cannot reach the user communication
area.

In summary, if dx, dy ≤ 2σ − 1 + l/2, from the discussion
above, we know that the areas covered by the user communi-
cation area H include A, B and C. The total size of them is
(2β+1 + l − 2)2 + 4l(σ − β)(2β+1 + l − 2) + 4l2(σ − β)2 =
(2β+1 + 2l(σ − β) + l − 2)2. On the other hand, the area
corresponding to dx, dy ≤ 2σ − 1 + l/2 has the size of
(2σ+1 + l − 2)2. Therefore, given an event in this area, this
probability that the user can be notified of it is

2β+1 + 2l(σ − β) + l − 2)2

(2σ+1 + l − 2)2
=

(

2β+1 + 2l(σ − β) + l − 2

2σ+1 + l − 2

)2

VI. SIMULATION

We have run simulations to evaluate our protocol. In these
simulations we have considered the two-dimensional grid
topology and the topology with nodes uniformly distributed
(referred to as random topology henceforth)6. These simu-
lations assume that message delivery is instantaneous and
reliable. Besides, whenever a node generates a record, the
record is propagated in the network immediately.

A. LCS Performance Evaluation

For the grid topology, we used a 64 × 64 grid. One node
is placed in the middle of each grid cell. For the random
topology, nodes are uniformly randomly deployed in a 64×64
area. In either case, the total number of nodes is 4096. We
assume that the number of records generated by each node
during one second (i.e. the record generating rate) follows the
Poisson distribution with the mean as λ. The simulation setup
is as follows:

• The total simulation time is 200 seconds.
• λ = 2i × 10−3, where i is one of 0, 1, · · · , 8 for various

simulations.
• The intensity σ is randomly chosen from [0, 6].
• The TTL value is randomly chosen from [1, 100] in

seconds.

6Although we have only tested on two types of networks, based on the
properties aforementioned, we believe that the simulation results can be
extended to more general topologies where nodes are deployed at random
with arbitrary distributions.

• The TTL value decreases by 1 every second after the
record is inserted into the database.

• A record is removed from the database immediately when
its TTL value reaches zero.

During the simulation, the number of records stored in
each node are tracked every second. All the simulation results
shown in the following are averaged over 5 runs.

To measure the performance, we use the max-vs-average
storage ratio ρ(t). Let Ni(t) be the number of records stored
by node i (i = 1, 2, · · · , 4096) at time t. For t = 1, 2, · · · , 200,
we define

M(t) = max
i

{Ni(t)}

A(t) =

∑

i

Ni(t)

4096

ρ(t) =
M(t)

A(t)

Among them, for a particular time t, M(t) indicates the
worst node storage consumption in the network, while A(t)
indicates the best case when all records are prefectly evenly
distributed among all nodes in the network. Therefore, the ratio
measures the fairness of node storage of our location-centric
storage protocol.
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Fig. 6. The Max-vs-average Storage Ratio vs. Simulation Time for λ =
0.002, 0.008, 0.032, 0.128.
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Fig. 6 shows the relationship between the ratio and simu-
lation time for λ = 0.016, 0.032 and 0.064. The simulations
for both topologies have very similar results:

• The ratio drops quickly after the simulation starts and
soon becomes stable.

• The smaller the λ, the slower the ratio becomes stable.
• The smaller the λ, the larger the ratio.
• For different λ’s, the ratios are not the same but fairly

close to each other.

In the grid topology, the ratio becomes stable after t = 40s.
In the random topology, the ratio takes a little bit more time
to stabilize. It owes to the randomness that makes the worst
case of storage consumption (i.e. M(t)) volatile.

Fig. 7 shows the max-vs-average ratio versus λ, the event
generating rate for the two network topologies. It is interesting
to observer that when λ increases, the ratio drops below 2
quickly. It indicates that the worst case is close to the best
case with higher λ. Fig. 8 shows how M(t) and A(t) change
with time for three different λ values. We observe that both
M(t) and A(t) become stable after t = 100s. We also notice
that larger λ results in larger M(t) and A(t). It is expected
because larger λ means more records generated per unit time.

B. Comparative Study

In this section, we compare the performance of LCS with
that of LS and ES in message overhead. Note that we did not
compare LCS with DCS because these two storage methods
target different application scenarios and they employ a totally
different set of input parameters. For example, the message
overhead in DCS depends on the number of event types, the
harsh function exploited, etc. But in LCS, events are stored and
disseminated based on its home location and its characteristics
(seriousness, price, intention, etc.). (For more information, we
refer the readers to the related work section (Section II).)
Therefore, we found that it is almost impossible to design
a simulation study for fairly comparing LCS and DCS.

For readers’ convenience, we elaborate the ES and LS
protocols in detail as follows:

• External Storage (ES): Upon events occur, the relevant
data are sent to the base station. This incurs communi-
cation cost to report the data. The query cost is only the

communication between the user and the base station,
which is negligible.

• Local Storage (LS): Upon events occur, the relevant data
are stored locally at the detected nodes. This incurs no
communication cost. Queries are flooded to the whole
network at a cost of O(N), where N is the network size.
Then responses including the data are sent back to the
user, which incurs a unicast communication cost between
the user and the nodes that store the data.

The packet generation and forward behavior of ES and LS
are faithfully followed. In the simulation, we assume nodes are
uniformly distributed in a rectangle area, the packet delivery
is instantaneous and error-free, and all the nodes are static.
The relevant parameters used in the simulation are as follows
and all other factors are held fixed during simulation:

• N, the number of nodes in the network.
• Q, the number of queries during simulation.
• E, the number of records during simulation. It is obvious

that the number of records E generated in the simulation
is proportioned to the network size N when the record
generation rate at each sensor follows the same Poisson
distribution.

In this simulation, we put 4 base stations in the four corners
of the simulated area when testing ES. Each node sends its
data to the nearest base station. In LCS, σ is set to ∞ for fair
comparison since otherwise, event records may not be able to
reach the boundary nodes.

First, we hold N fixed (N = 40000) and vary Q. Then we
set Q=50, hold the network density fixed and vary N . In each
test, we report the total number of messages generated by ES,
LS and LCS. In the following, we report the results that is
first averaged over 5000 runs for each network topology and
then averaged over 5 different network topologies.
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Fig. 9. Performance Comparison of Location-Centric Storage, Local Storage
and External Storage

The results from varying Q are shown in Fig. 9(a). We
observe that the lower the value of Q, the smaller the number
of messages generated in the LS mechanism, namely the lower
communication overhead. However, the communication load
of LS increases linearly with Q, which leads LS to a poor
performance with larger quantity of queries. For larger Q, the



total number of messages generated in LCS is lower than that
in EX, since the main overhead of LCS is produced by local
communication, which is dependent on the intensity value σ
and is fairly low. The communication load of ES and LCS are
both relatively independent of Q.

The results from varying N are shown in Fig. 9(b). Obvi-
ously as the network size increases, the total number of records
generated during simulation increases when nodes generating
records follow the same Poisson distribution. As shown in
Fig. 9(b), ES starts off (at low N ) with the lowest value, and
ends up (at high N ) with the highest value. The total number
of messages generated by ES is only related to the number of
generated records and the distance to the base station, which is
a function of the network size. In Fig. 9(b), we notice that the
total number of messages generated by LS increases linearly
as the network size increases, since the query flooding distance
is a function of the network size. Also we observe that LCS
performs better than ES and LS. This is because LCS restricts
the local flooding, and the user only needs to sample certain
areas to obtain the data.

VII. CONCLUSION

In this paper we present a novel distributed location-centric
data storage protocol called LCS for sensor networks. This
protocol has many nice features, as indicated by our theoretical
performance analysis and simulation study. We have identified
several simple application scenarios of LCS, including safety
warning in highway sensor networks, on-demand warning
in surveillance networks, and context-dependent information
mining in pervasive computing. We believe that the application
of LCS is unlimited, and target this as our future research.
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