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Abstract—Though destructive to network functions, insider
attackers are not detectable with only the classic cryptography-
based techniques. Many mission-critic sensor network applica-
tions demand an effective, light, flexible algorithm for internal
adversary identification with only localized information available.
The insider attacker detection scheme proposed in this paper
meets all the requirements by exploring the spatial correlation
existent among the networking behaviors of sensors in close prox-
imity. Our work is exploratory in that the proposed algorithm
considers multiple attributes simultaneously in node behavior
evaluation, with no requirement on a prior knowledge about
normal/malicious sensor activities. Moreover, it is application-
friendly, which employs original measurements from sensors and
can be employed to monitor many aspects of sensor networking
behaviors. Our algorithm is purely localized, fitting well to
the large-scale sensor networks. Simulation results indicate that
internal adversaries can be identified with a high accuracy and
a low false alarm rate when as many as 25% sensors are
misbehaving.

I. INTRODUCTION

Security provisioning is a critical requirement for many sen-
sor network applications (battlefield reconnaissance, homeland
security monitoring, etc.). Nevertheless, the constrained capa-
bilities of smart sensors (battery supply, CPU, memory, etc.)
and the harsh deployment environment of a sensor network
(infrastructureless, unattended, wireless, ad hoc, etc.) make
this problem very challenging [15]. Many researchers have
been working towards securing sensor networks in the fields of
pairwise key establishment [13][14][16], authentication [23],
access control [26], defense against attacks [29], etc.
Most of the existent works rely on the traditional cryptog-

raphy and authentication techniques to establish a trustworthy
relationship among the collaborative sensors. However, the
unreliable wireless channels and unattended operation make it
very easy to compromise/capture sensors and break the trust
relationship established beforehand. Sensors are envisioned to
be low-cost and lack of tamper resistance. The compromise
or capture of a sensor releases all the security information to
the adversary. Then, the adversary can easily launch internal
attacks with data alteration, message negligence, selective
forwarding, jamming, etc [10][20]. The insider attackers are
severely destructive to the functioning of a network. For
example, an insider attacker can easily fabricate a false event

report to mislead the decision makers, or keep injecting bogus
data to cause network outage, etc.
Unfortunately, internal attacks cannot be solved by the clas-

sic cryptographic techniques solely [10][11][19]. Conventional
methods such as encryption, authentication, etc., have the
ability to verify the correctness and integrity of an operation,
but could not eliminate all attacks, especially the insider
attacks. An internal adversary can easily modify and forward
with access to the valid cryptographic keys. An insider attacker
detection scheme must be designed to ensure many of the
mission-critic applications.
However, detection of internal adversaries is not trivial at

all. The major difficulty comes from the resource-constrained
sensors and the infrastructureless network, which render it
impossible to copy from the intrusion detection techniques
developed for a fixed wired network. A typical low-cost sensor
has limited memory budget and restricted computational capa-
bility, thus is not capable of creating and studying a detection
log file to identify an internal attack. It is also impossible for
a base station to collect audit data from the entire network
and label malicious sensors in a centralized fashion, due to
the large network size and infrastructureless architecture. An
in-situ detection scheme must be designed to be localized
and computationally efficient, so as to reduce bandwidth and
battery consumption. Moreover, the only available resources
for the detection algorithm are the communication activities
occurring within a limited range, which constitutes another
challenge for internal adversary identification. The algorithm
design must consider how to obtain satisfactory accurate
results based on the partial and localized information. Finally,
the unattended operation and harsh environment make the
problem even more challenging. Sensors may malfunction due
to hardware crash, security attack, environment disturbance,
etc. A solid malicious sensor detection algorithm must be
robust and fault-tolerant.
Despite the many difficulties, detection of insider attackers

may be accomplished by exploring the correlation among
neighboring sensors. In a typical sensor network with col-
laborative in-network processing (e.g. data aggregation, etc.),
sensors are expected to be burdened with similar communi-
cation and computation workloads in close proximity. On the
other hand, an internal adversary usually misbehaves in some
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aspects with respect to normal sensors, such as broadcasting or
dropping excessive packets, generating “abnormal readings”
that deviated remarkably from a typical application-specific
range, etc. Intuitively, when a significant change takes place in
the networking behavior of a single sensor, this sensor should
be faulty or malicious with a big chance.
Inspired from the spatial correlation existent in the neigh-

borhood activities, we propose a localized algorithm for insider
attacker detection for wireless sensor networks in this paper.
Each sensor monitors the networking behaviors of immediate
neighbors, with the inspection conducted regarding multiple
aspects of node behaviors. In a sparse network, each sensor
may also use for reference the monitoring results of neigh-
boring nodes, with the data source selected by a trust-based
node evaluation scheme. Then a neighbor is suspected to be
an internal adversary if its behavior is “extreme” compared
with those from the same neighborhood. The comparison is
conducted by considering all the features simultaneously. The
final decision is adjusted based on the detection results from
the neighborhood through the majority vote. Compared to the
existent works for intrusion/misbehavior detection in wireless
networks [7][10][11][18], our algorithm has the following
characteristics and advantages:
• Our algorithm explores the spatial correlation in neigh-
borhood activities, and requires no prior knowledge about
normal or malicious sensors. This property is important
since the requirement of a priori knowledge not only
incurs extra training overhead, but also introduces a
serious concern in that attack behaviors may change
dynamically and no fixed a priori knowledge can properly
reflect this dynamism.

• Our algorithm is generic, which can monitor many as-
pects of sensor networking behaviors. Compared with
those using a 0/1 decision predicate [6][21] by compar-
ing the measurements with a predetermined threshold, our
algorithm should be more precise and more robust since
the original measurements are used without any second
round approximation.

• Our algorithm is localized, with the information exchange
restricted in a limited neighborhood. A high detection
accuracy can be obtained with a low false alarm rate, even
when as many as 25% misbehaving sensors are present
in the network.

The paper is organized as follows. Section II summarizes the
related works. We present the network model and assumptions
in Section III. The localized algorithm for insider attacker
detection is proposed in Section IV and analyzed in Section V.
Simulation results are reported in Section VI. We conclude the
paper with a discussion in Section VII.

II. RELATED WORKS

In this section, we summarize the most related works along
three major lines: detection of faulty sensor readings, detection
of routing misbehavior, and detection of intrusion in wireless
networks.

Detection of event region or faulty sensors is explored
for 0/1 decision predicate computation in [6][12][21]. The
motivation comes from the observation that a remarkable
change in sensor readings usually indicates a faulty sensor or a
real event. The related algorithms require only the most recent
readings (within a sliding window) of individual sensors. No
collaboration among neighboring sensors are exploited. In [6],
the “change point” of the time series are statistically computed.
The result is used to answer questions such as “when does the
front line of the contamination reach a location?” The detector
proposed in [12] computes a running average and compares
it with a threshold, which can be adjusted by a false alarm
rate. In [21], kernel density estimators are designed to check
whether the number of “abnormal” readings are beyond an
application-specific threshold. The research on faulty sensor
identification has been improved significantly in [9][27] by
allowing any kind of scalar values as inputs instead of only
0/1 decision predicates. The detection algorithms in [9][27]
can also infer faulty sensors from event sensors and compute
the boundary of the event region. Similarly, our misbehaving
sensor detection algorithm accepts any inputs expressed by
real numbers. Further, our algorithm advances one more step
in identifying misbehaving sensors by considering multiple
attributes simultaneously.
For detection of failed or routing misbehaving sensors,

one solution is to leverage the route discovery and update.
Common routing protocols evade failed nodes through the re-
establishment of route discovery [2][22]. Base stations can
also help identify routing misbehaviors [24][25]. Staddon et
al. [24] propose to trace failed nodes in sensor networks
at a base station, assuming all sensor measurements will be
directed to the base station along a routing tree. In this work,
the base station has a global view of the network topology,
and can identify failed nodes through route update messages.
In [25], base stations launch marked packets to probe sensors
and rely on the responses to identify and isolate insecure
locations. Our algorithm can also be employed for secure
routing. However, no routing or global topology information
is required, which provides better scalability and flexibility.
Furthermore, our algorithm can be combined with any routing
protocol to route the detected information to base stations for
further instructions.
A second solution for detecting routing misbehaviors is

to let sensors monitor the neighborhood activities through
watchdog-like techniques [4][8][10][18][19]. The watchdog
method is first proposed by Marti et al. [18], which is used to
detect packet dropping attacks by letting nodes listen promis-
cuously to the next-hop node’s broadcasting transmission. The
monitoring result is used by the pathrater, which maintains
a rating for the other nodes and selects a reliable route for
data delivery. In [8], multiple watchdogs work collaboratively
in decision making. In [4][10][19], a reputation system is
constructed to provide a quality rating of participants. The
monitoring result should go through the reputation system
that will notify the path manager to delete the path from the
path cache [4], or inform the provider to deny the execution
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of the requested operation [10][19], if the rating of a node
turns out to be intolerable. Though multiple misbehaviors or
attacks are monitored in [4][10][19], they are not evaluated
simultaneously, which is different from our work. Further,
our algorithm works on the original measurement results that
retain the correlation among the attributes, thus should be more
precise and more robust.
Zhang et al. [30] are the first to work on intrusion detection

in wireless ad hoc networks. A new architecture is investigated
for collaborative statistical anomaly detection, which provides
protection from attacks on ad-hoc routing, on wireless MAC
protocols, or on wireless applications and services. In [3], in-
network outlier detection is studied, where each sensor first
identifies outliers in the neighborhood based on some detection
function, then keeps exchanging the decisions with neighbors
to obtain the global set of outliers. The update process is
expensive, yet not necessary considering the fact that the
collaboration among sensors is often restricted in a limited
neighborhood. In [7], messages are collected in a promiscuous
mode, and pre-selected rules are applied to determine if a
failure happens. An intrusion alarm is raised if the number of
failures exceeds a predefined threshold. In this work, multiple
rules are defined, and a decision is made based on a simple
summation of the rule application results. In [11], a learning-
based approach is proposed for anomaly detection. Cross-
feature analysis is conducted by computing classifiers from
a training set composed of normal nodes. An intrusion is
alarmed if the correlation between the features does not match
those of the classifiers. The learning procedure assumes a large
number of features being monitored from sensor behaviors,
and the availability of normal sensors as the training data set,
both of which are difficult to obtain considering the restrained
sensor resources and dynamic networking behaviors. Our
algorithm is more versatile. It works well with any number of
features, and requires no prior knowledge on normal/malicious
sensor activities.

III. NETWORK MODEL AND ASSUMPTIONS
We consider a homogeneous sensor network with N sensors

uniformly distributed in the network area. The network region
is a b × b squared field located in the two dimensional Eu-
clidean plane R2. All sensors have the same capabilities, and
communicate through bidirectional links. We assume sensors
in the proximity are burdened with similar workloads, thus
nearby sensors are expected to behave similarly under normal
conditions. An insider attacker is a sensor under the control
of an adversary. It has the same network resource as a normal
sensor, but its behavior is different compared to others. For
example, an insider attacker may drop or broadcast excessive
packets, report false readings that deviate significantly from
other readings of neighboring sensors, etc. Throughout this
paper, insider attackers are also called outliers or outlying
sensors, while sensors working properly are called normal
sensors.
We assume each sensor works in promiscuous mode in-

termittently and listens on the channel for activities of direct

neighbors. That is to say, sensor x can overhear the message
to and from the immediate neighbor xi no matter whether
or not x is involved in the communication. The monitor-
ing is conducted intermittently, and xi’s networking behav-
ior is modeled by a q-component attribute vector f(xi) =
(f1(xi), f2(xi), ..., fq(xi))

T with each component describing
xi’s activity in one aspect. For each fixed j (1 ≤ j ≤ q),
the component fj(xi) represents the actual monitoring result,
such as the number of packets being dropped or broadcasted
in one unit time, the actual reading of temperature/light/sound,
the number of occurrences of some phenomenon, and so
on. Therefore, fj(xi) can be continuous or discrete. For
convenience, we assume that in any local area of the sensor
field, all f(xi), where xi’s are normal sensors, follow the
same multivariate normal distribution. (See details on this
assumption in Subsection IV-C.)
After an internal adversary is detected, a report should be

generated to the base station. Each sensor should exclude
the outlying sensors in selecting the next-hop forwarder to
realize the secure routing. In this paper we focus on the
detection of insider attackers, thus report generation/delivery
to the base station and outliers isolation will not be considered.
In addition, we assume there exists a MAC layer protocol to
coordinate neighboring broadcastings such that no collision
occurs.

IV. LOCALIZED INSIDER ATTACKER DETECTION
In this section, we present our algorithm for detecting

insider attackers whose behaviors are “abnormal” with respect
to normal sensors. The algorithm consists of the following
four phases: collecting local information, filtering the collected
data, identifying initial outliers using Mahalanobis distances,
and applying the majority vote to obtain a final list of outlying
sensors.

A. Information Collection
Let N1(x) denote a bounded closed set of R2 that can be

directly monitored by sensor x. Specifically, N1(x) can be
x’s one-hop neighborhood in watchdog-like techniques [18].
Let N (x)(⊇ N1(x)) denote another closed set of R2 that
contains the sensor x and additional n − 1 nearest sensors.
The set N (x) represents another neighborhood of x, whose
selection is determined by the node density in the network.
For a dense network, we can simply choose N (x) = N1(x),
while for a sparse network, N (x) may include x’s two-hop
neighbors. As stated in Section III, sensor x should monitor
the activities of sensors in N1(x) and express the results using
q-component attribute vectors. Then, the observed results are
broadcasted within the neighborhood N (x), so that sensor
x obtains a set F(x) of attribute vectors, where F(x) =
{f(xi) = (f1(xi), f2(xi), ..., fq(xi))T |xi ∈ N (x)}.
For example, during the process of neighborhood monitor-

ing, sensor x can evaluate its immediate neighbor xi in terms
of the following metrics. In this example, q = 4.
• Packet dropping rate. After sensor x forwards a packet
M to the neighbor xi, x should check whether xi
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forwardsM by promiscuously listening. As implemented
in watchdog [18], sensor x should retain a buffer for the
recently sent packets, and check if there is a match for
each overheard packet. The buffer will be updated over
time, and xi is considered to have dropped the packet M
if no match is found beforeM is deleted from the buffer.

• Packet sending rate. Among all the overheard packets,
sensor x counts the number of packets that xi has sent
out in one unit time.

• Forwarding delay time. This can be measured together
with the packet dropping rate. x measures the difference
between the time x sends the packet M to xi and the
time xi forwards M .

• Sensor readings. Each node broadcasts its sensor reading
to the direct neighbors once after a specified period of
time. Sensor x updates its record after receiving xi’s
reading.

B. False Information Filtering
After the information collection phase, sensor x obtains

the data set F(x). This set is expected to describe the true
activities about the neighborhood N (x). However, this may
not be the real case when N1(x) ⊂ N (x) and F(x) contains
indirect monitoring results. An internal adversary may exist in
N1(x) and forward to x a false attribute vector f(xi) about
a two-hop neighbor xi ∈ N (x) − N1(x). For an accurate
detection result, such false information must be filtered as
much as possible1, which can be accomplished through the
following Trust-Based False Information Filtering Protocol.
Based on the direct neighborhood monitoring, sensor x

assigns a trust value to each neighbor xi ∈ N1(x). The trust
value T (xi) is in the range [0, 1], where a value closer to
1 indicates a higher probability that xi is a normal sensor.
In our consideration, sensors should behave similarly in the
close proximity. Thus, T (xi) can be computed according to
the degree of xi’s deviation from the neighborhood activities.
Let F1(x) denote the attribute vectors of N1(x), i.e.,

F1(x) = {f(xi) = (f1(xi), f2(xi), ..., fq(xi))T |xi ∈ N1(x)}.
Let µ̂j , σ̂j denote the sample mean and sample standard devi-
ation of F1(x)’s j-th component set F1,j(x) = {fj(xi)|xi ∈
N1(x)}, respectively, i.e.,

µ̂j =
1

n1

n1X
i=1

fj(xi), (1)

σ̂j =

vuut 1

n1 − 1
n1X
i=1

(fj(xi)− µ̂j)2, (2)

where n1 is the number of nodes in N1(x). Sensor x first
standardizes each data set F1,j(x) (1 ≤ j ≤ q) and computes
the absolute values to obtain F 01,j(x) = {f 0j(xi)|xi ∈ N1(x)},
where

f 0j(xi) = |
fj(xi)− µ̂j

σ̂j
|. (3)

1There is no need to filter F(x) if N (x) = N1(x).

x

x1: 

x3

T(x1)=1

x2: T(x2)=0.8

Fig. 1. After receiving two attribute vectors about x3, sensor x selects the
one from x1 since it is more “believable” based on the trust values.

For each xi ∈ N1(x), sensor x computes the maximum
attribute component f 0M (xi) = max{f 0j(xi)|1 ≤ j ≤ q},
which indicates the “extremeness” of xi’s deviation from the
neighborhood activities. Then, the trust value is computed as

T (xi) = fmM/f 0M (xi), (4)

where fmM = min{f 0M (xi)|xi ∈ N1(x)}.
As illustrated in Fig. 1, sensor x may have received t differ-

ent attribute vectors regarding a neighbor xj ∈ N (x)−N1(x)
from t direct neighbors xj1 , ..., xjt ∈ N1(x) residing between
x and xj . A node xjT (1 ≤ T ≤ t) is said to be the reliable
relay node for xj if

T (xjT ) = max{T (xjs)|1 ≤ s ≤ t}, (5)
T (xjT ) ≥ Tmin, (6)

where
Tmin = fmM/2. (7)

Tmin may be treated as the minimum acceptable trust value.2
Sensor x will dismiss the information about xj ∈ N (x) −
N1(x) if no reliable relay node for xj can be found in
N1(x). Thus after filtering F(x) by Eqs. (5)(6), sensor x
will only consider information carried by sensors from the
set Ñ (x), where Ñ (x) ⊆ N (x) and Ñ (x) contains x’s
direct neighbors in N1(x) and x’s two-hop neighbors that
have a trustworthy relay node in N1(x). Then the new
data set to be assessed by sensor x is F̃(x) = {f(xi) =
(f1(xi), f2(xi), ..., fq(xi))T |xi ∈ Ñ (x)}.
C. Outlier Detection
Sensor x detects if any outliers exist by studying the

data set F̃(x). The detection is conducted by computing the
distance between each sensor xi ∈ Ñ (x) to the “center” of
the data set F̃(x). Sensor xi is determined as an outlier if
the distance is larger than a predefined threshold θ0. Before
going into the details of the method, we first present the
following observation. First, by Section III, we assume that
all f(xi) (xi ∈ Ñ (x)) form a sample of a multivariate
normal distribution. If f(xi) is distributed as Nq(µ,Σ), i.e., q-
dimensional vector f(xi) follows a multivariate normal distri-
bution with mean vector µ and variance-covariance matrix Σ,
the Mahalanobis squared distance (f(xi)−µ)TΣ−1(f(xi)−µ)
is distributed as χ2q, where χ2q is the chi-square distribution

2Assuming the behavior of a component can be modeled by the standard
normal distribution N(0, 1), then with a probability of 95.45%, the behavior
of the component should fall into the range [−2, 2].
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with q degrees of freedom. Therefore the probability that
f(xi) satisfies (f(xi) − µ)TΣ−1(f(xi) − µ) > χ2q(α) is α,
where χ2q(α) is the upper (100α)-th percentile of a chi-square
distribution with q degrees of freedom. Hence, for a sensor xi,
if (f(xi)−µ)TΣ−1(f(xi)−µ) is sufficiently large, xi should
be treated as an insider attacker.
Now for the data set F̃(x) = {f(xi)|xi ∈ Ñ (x)}, sensor

x estimates the location µ and variance-covariance matrix Σ.
Let µ̂ and Σ̂ be the estimate of µ and Σ, respectively. Then the
probability of f(xi) satisfying (f(xi)−µ̂)T Σ̂−1(f(xi)−µ̂) >
χ2q(α) is expected to be roughly α. Let d(xi) = (f(xi) −
µ̂)T Σ̂−1(f(xi)− µ̂)1/2. Sensor xi will be treated as an outlier
if d(xi) or d2(xi) is unusually large. In our scheme, sensor x
declares xi as an outlier if d2(xi) > θ0. Bellow we discuss
estimation of µ and Σ, as well as determination of θ0.

1) Computation of µ̂ and Σ̂: Clearly, a simple solution is
to estimate µ and Σ by the sample mean and sample variance-
covariance matrix of F̃(x), i.e.,

µ̂ =
1

ñ

ñX
i=1

f(xi), (8)

Σ̂ =
1

ñ− 1
ñX
i=1

[f(xi)− µ̂][f(xi)− µ̂]T , (9)

where ñ is the number of nodes in Ñ (x). However, it is well
known that the sample mean and sample variance-covariance
matrix in Eq. (8)(9) may not be reliable, since they are
sensitive to the presence of outliers. The values from outlying
sensors can easily distort the estimates of µ and Σ, and the
detection via Mahalanobis distances will fail to identify true
outlying sensors. Therefore, robust estimators µ̂ and Σ̂ are
required, which are expected to be less influenced by outliers
and thus generate estimates close to the true values of µ
and Σ. Throughout this paper, we employ the Orthogonalized
Gnanadesikan-Kettenring (OGK) estimators µ̂ and Σ̂ [17], as
described below.
We begin with the univariate case. Let Y = {y1, y2, ...., yn}

be a single-variate sample set coming from a distribution
with mean µ and variance σ2. Let µ0 and σ0 be the median
and MAD3 of Y , respectively. Define a weight function
W (x) = (1− (x/c1)2)2I(|x| ≤ c1) and a ρ-function ρ(x) =
min(x2, c22), where c1 = 4.5 and c2 = 3. Then µ, σ2 can be
estimated by [28]:

µ̂ =

Pn
i=1 yiW (vi)Pn
i=1W (vi)

for vi =
yi − µ0
σ0

, (10)

σ̂2 =
σ20
n

nX
i=1

ρ(
yi − µ̂

σ0
), (11)

respectively.
Now we describe the OGK estimates µ̂ and Σ̂ based

on the multivariate data set F̃(x) = {f(xi) =
(f1(xi), f2(xi), ..., fq(xi))

T |xi ∈ Ñ (x)}. Let µ̂(·) and σ̂(·)
3MAD(Y ) = median(|Y −median(Y )|).

denote the univariate statistics, as described in Eq (10)(11).
The OGK estimates can be computed as follows:
1) Compute G(x) = {g(xi)|xi ∈ Ñ (x)} from
F̃(x), where g(xi) = P−1f(xi) for P =
diag(σ̂(F̃1(x)), σ̂(F̃2(x)), ..., σ̂(F̃q(x))). Here F̃j(x) is
the j-th component set of F̃(x), with F̃j(x) =
{fj(xi)|xi ∈ Ñ (x)}, 1 ≤ j ≤ q.

2) Calculate a q × q matrix R, with Rj,k, the element at
the jth-row and k-th column defined as

Rj,k =

½
1
4 [σ̂

2(Gj + Gk)− σ̂2(Gj − Gk)] if j 6= k,
1 if j = k.

(12)
3) Apply the spectral decomposition to obtain R = QΛQT ,
whereQ is the q×q matrix whose columns are the eigen-
vectors of R, and Λ is the diagonal matrix composed of
R’s eigenvalues.

4) Compute H(x) = {h(xi)|xi ∈ Ñ (x)} from
G(x), where h(xi) = QT g(xi). Then calcu-
late ∆ = (µ̂(H1(x)), µ̂(H2(x)), ..., µ̂(Hq(x)))T , and
Γ = diag(σ̂2(H1(x)), σ̂2(H2(x)), ..., σ̂2(Hq(x))). Here
Hj(x) denotes the j-th component set of H(x).

5) Let V = PQ. The robust estimates of multivariate
location and dispersion are µ̂ = V∆ and Σ̂ = V ΓV T ,
respectively.

Different solutions have been proposed in the literature to
generate robust estimates, which are used to help calculate
reliable Mahalanobis distances in the presence of outliers.
However, the application of most of these estimates is re-
stricted either by a low breakdown point4 (e.g. M-estimates),
or by high computational overheads (e.g. MCD, MVD, SDE,
P-estimates etc.) [17]. We choose OGK since it ensures
a high breakdown point at the expense of a much lower
computational cost. OGK computes the multivariate dispersion
estimates based on pairwise robust correlation or covariance
estimation, which reduces the computation complexity in the
data dimension q from exponential (2q) to quadratic (q2) [1].

2) Determination of the threshold θ0: After calculating the
Mahalanobis distance for each neighbor in Ñ (x), sensor x
should produce a list of suspicious neighbors, which is denoted
by D(x). For this purpose, one option is to simply select k
nodes with the largest k Mahalanobis distances from Ñ (x),
where k = ñ×po with po denoting the sensor outlying proba-
bility. The estimation of po can be studied using empirical data,
which is often difficult to obtain. Another selection method
focuses on checking whether or not d2(xi) > θ0. We note
that robust estimates introduced above are less influenced by
the values of outlying sensors, and can provide more accurate
assessment of the mean and covariance of the population based
on the normally working sensors. For this reason, we will
use χ2q(α), the percentile of the chi-square distribution with
q degrees of freedom as the threshold θ0. Thus, xi will be
selected as an outlier if and only if d2(xi) > χ2q(α). This
approach will be adopted in our simulation studies.
4A breakdown point is defined to be the maximal proportion of outliers

that the estimator can tolerate.
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ID1 Status1 ID Status... ...

: the number of sensors in

Statusi: x's decision about whether or not xi is an outlier (1/0)

IDi: the ID of the sensor xi

~
N(x)n~

n~ n~n~

Fig. 2. The message format of the outlier announcement from sensor x.

D. Majority Vote
Now sensor x obtains a set of suspicious nodes D(x) from

Phase IV-C. These sets can be combined through the majority
vote to reach the final decision regarding whether or not a
sensor is outlying.
To begin, each sensor x will announce all identified outlying

neighbors D(x) to a neighborhood N ∗(x), where N (x) ⊆
N ∗(x). Using a larger set N ∗(x) ensures that more neigh-
bors will participate in voting. As illustrated in Fig. 2, the
broadcasting message includes x’s evaluation on a neighbor
xi ∈ Ñ (x), with xi’s status as 1/0 indicating that xi is
outlying/normal. At the same time, sensor x will receive
announcements from others and should make records of all the
votes regarding to its neighbors in N (x). Then for a neighbor
xi, sensor x counts the proportion pi among all the received
advertisements that xi is an outlier and decides finally that
xi is an insider attacker if pi > 0.5. Such a decision can be
combined with the routing protocol to select a reliable next-
hop forwarder. Further, a report can be generated and delivered
to the base station, which should isolate the insider attacker
xi if multiple reports about xi have been received.
In general the majority vote combines decisions from

various resources to reach a result with a higher accuracy.
Below we present one analysis on the performance of the
majority vote. Consider the sensor x, and let p denote the
posterior probability of being abnormal for the given sensor
x. For simplicity, we assume that p > 0.5, i.e., x is an
outlier. (The case p ≤ 0.5 can be discussed similarly.)
Suppose that l sensors s1, s2, · · · , sl are available to assess the
status (outlying/normal) of x using the procedure presented in
Subsection IV-C. It is not hard to see that the decision from
si can be formulated as a fraction yi ∈ (0, 1) that is used to
estimate p. Therefore these l sensors contribute the following
estimates of p: y1, y2, · · ·, yl. Let y1, y2, · · ·, yl be rearranged
in order from least to greatest and let the ordered values be
y(1), y(2), · · ·, y(l), where y(1) ≤ y(2) ≤ · · · ≤ y(l). Suppose
the sequence y1, y2, · · ·, yl, denoted by [y], forms a sample
from a distribution function. Then the effect of majority vote
applied to y1, y2, · · ·, yl is equivalent to that of the following
function of the sample:

V ([y]) =

½
y((n+1)/2) if n is odd
y(n/2) if n is even. (13)

The decision regarding the status of x is made by V ([y]) in
the following way: x is an outlier if and only if V ([y]) >
0.5. Note that V [y] is a random variable whose distribution
affects the decisions. It can be shown that, under certain

conditions [5], V ([y]) is asymptotically normally distributed,
and the probability of error in classifying x by the majority
vote is

lim
l→∞

e(V [y]) = lim
l→∞

P (V ([y]) ≤ 0.5) = 0.
This shows that the results from voting will be more accurate
when more sensors participate in voting.
The majority vote is essential for our detection scheme in

that it not only enlarges a sensor’s field of vision and makes
the final decision more accurate, but also helps prolong the
network lifetime. Note that the underlying MAC protocols
usually implements a sleep-wakeup schedule to save energy,
which makes continuous monitoring almost impossible. With
the majority vote, a sensor can use its neighbor’s monitoring
results for reference. Thus, a sensor listens intermittently for
the neighborhood activities and makes its decision by inte-
grating the observations from the neighborhood. The majority
vote makes our detection scheme applicable in the resource-
restrained sensor networks.

V. PERFORMANCE ANALYSIS
A. Computation Complexity
The computation overhead comes mainly from the last three

phases. Assume a q-component vector is available to model
a sensor’s behavior. Let n, n1 and m denote the number of
sensors in the neighborhood N ,N1 and N ∗, respectively.
In false information filtering, the attribute standardization
costs O(qn1). Finding the maximum component attributes
{f 0M (xi)|1 ≤ i ≤ n1} costs O(qn1), while finding the
minimum fmM and computing the trust values both cost O(n1).
To select a reliable intermediary node for each node inN−N1,
the computation cost is O(nn1). Hence, the computation cost
of the second phase is O(nn1) if q ¿ n. In the third phase,
sensor x first computes the OGK estimates µ̂ and Σ̂ at the
cost of O(q2n), then calculates the Mahalanobis distances
for each neighbor in Ñ (x) at the cost of O(q3n). Thus, the
computational complexity for the third phase is O(q3n). In
the last phase, the majority vote costs O(mn). Thereafter, the
computation complexity of the detection algorithm is O(mn)
if mÀ nÀ q.

B. Communication Overhead
Our detection algorithm involves only localized data ex-

change. In the information collection phase, sensor x broad-
casts its monitoring results within the neighborhood N (x).
In the voting phase, an outlier advertisement is broadcasted
within the neighborhood N ∗(x). Thus the communication
overhead is O(n) + O(m), which is approximately O(m) if
mÀ n.
Note that the selection of N (x) and N ∗(x) is dependent on

the network density. With a dense network, N (x)(N ∗(x)) can
be chosen as x’s 1-hop (2-hop) neighborhood, which incurs
the least communication overhead. For a sparse network with
a low density, N (x) and N ∗(x) should contain the multi-hop
neighborhood for better performance. In this case, a higher
communication overhead is generated to obtain good detection
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results. This represents a tradeoff between communication
overhead and performance.

VI. SIMULATION STUDY
A. Simulation Settings
We consider a 64 × 64 square region in our simulation

study. N = 4096 sensors are uniformly distributed in the
network region. The behavior of each sensor is modeled by
a vector containing q = 3 attributes. For normal sensors,
the attribute values are drawn from N3(µ1,Σ1); for outlier
sensors, the attribute values are drawn from N3(µ2,Σ2). In
our simulations, we set µ1 = (µ11, µ12, µ13) = (10, 15, 20),
µ2 = (µ21, µ22, µ23) = (30, 35, 40), Σ1 = Σ2 = Σ, where the
variance-covariance matrix Σ is defined using the standard
deviations σi and the correlation coefficient matrix ρ5. We
select (σ1, σ2, σ3) = (1, 1, 1) and consider the following three
cases for ρ:

ρ1 =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

 , (14)

ρ2 =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 , (15)

ρ3 =

 1 0 0
0 1 0
0 0 1

 , (16)

where ρ1 indicates large positive correlation, ρ2 indicates
medium negative correlation, ρ3 indicates independence
among attributes. This presents a coarse summary of all
the possibilities in the real network scenarios. Note that the
means and variances can be selected arbitrarily as long as the
difference |µ1j − µ2j | (1 ≤ j ≤ q) is large enough compared
with the related standard deviations.
We assume that outlying sensors are distributed uniformly

amongst normal sensors. An outlying sensor may be “ab-
normal” in one single aspect of its networking behavior, or
in all aspects. We also assume that when broadcasting an
observation about the neighbor xi, as stated in Section IV-A,
an outlying sensor x may modify each attribute value fj(xi)
(1 ≤ j ≤ q) with a probability pe, which is set to be pe = 0.5
in our simulations. The modification is simulated by adding a
noise e as

fj(xi)← fj(xi) + e, (17)

where e is drawn from N(0, σ2e) with σ2e = 100. We then
observe that the above selection of values of µ1, µ2 and σ2e
makes it possible that a normal attribute is modified to an
outlying one, or vice versa. This might indicate one aspect of
the behavior of a “smart” adversary.
We consider the application of our algorithm in both sparse

and dense networks, and conduct two tests correspondingly.

5Given a q× q correlation coefficient matrix ρ = (ρij) and a 1× q vector
of standard deviations σi, the variance-covariance matrix Σ = (Σij) can be
determined by Σij = ρijσiσj , 1 ≤ i, j ≤ q.

For both cases, N1(x) is chosen to be x’s one-hop neighbor-
hood. N (x) is selected to be x’s two-hop neighborhood for
a sparse network in Test 1, and N (x) = N1(x) for a dense
network in Test 2. The results are averaged over 100 runs for
both tests.
In all the simulations, we evaluate our detection algorithm

in terms of the following metrics:
• Detection accuracy: the ratio of the number of insider
attackers detected to the total number of insider attackers.

• False alarm: the ratio of the number of normal sensors
that are claimed as insider attackers to the total number
of normal sensors.

Both metrics are in the range [0, 1]. The higher the detection
accuracy and the lower the false alarm, the better the detection
algorithm.

B. Simulation Results
As illustrated in Figs. 3 and 4, our algorithm can effectively

identify insider attackers with a high detection accuracy and
a low false alarm in most cases. Let d denote the average
number of direct neighbors, which also represents the node
density in the network. Our detection algorithm can reach
a high detection accuracy (> 90%) when as many as 25%
sensors are outlying, for a sparse network with d ≥ 10, and
for a dense network with d ≥ 25. We observe that a higher d
value results in a better detection accuracy. The improvement
comes from the increase in the size of the sample data set,
since a larger size implies that there is more information
used to estimate the location and dispersion of the distribution
(Subsection IV-C) and more information available to the voting
operation (Subsection IV-D).
Another important feature of our detection scheme is the

robustness. We observe that the increase in the number of
outlying sensors leads to no increase in the false alarm
rate. Such a nice property results from the robust statistics
employed in the computation of Mahalanobis distances. Note
that with more malicious sensors, more bogus information will
be injected, and consequently the functioning of the detection
algorithm is more likely to be disturbed. However, as the
number of outlying sensors increases, our algorithm is robust
in that its performance degrades very slowly in the detection
accuracy and it restrains the false alarm rate effectively.
In general, the detection accuracy decreases along with the

increase of the sensor outlying probability. Such a trend is
much more obvious when a sensor misbehaves in only one
aspect of its networking behavior. However, when an outlying
sensor is abnormal in all aspects, the detection accuracy can
be as high as 1 in most cases. This improvement is due to
the more “obvious” deviation, and our detection algorithm is
“sensitive” to the degree of an outlier’s deviation from the
normal nodes.
Another interesting observation from Figs. 3 and 4 is that

the correlation among the attributes influences the detection
accuracy, especially when a misbehaving sensor has only one
outlying attribute. Though the differences are not significant,
we can still observe that the more correlated the attributes, the
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Fig. 3. Test 1: Sparse networks.

better the detection accuracy. This pattern may help design a
special detection scheme for some specific attributes. We will
explore along this direction in our future study.

VII. CONCLUSION AND DISCUSSION

In this paper we propose a novel idea of insider attacker
detection in wireless sensor networks. By exploiting the spatial
correlation among the networking behaviors of sensors in
close proximity, our detection algorithm can achieve a high
detection accuracy and a low false alarm rate as indicated
by the extensive simulation study. The nice feature of the
algorithm is that it requires no prior knowledge about normal
or malicious sensors, which is important considering the
dynamic attacking behaviors. Further, our algorithm can be
employed to inspect any aspects of networking activities, with
the multiple attributes evaluated simultaneously. The algorithm
is pure localized, thus scales well to large sensor networks.
We notice that the detection algorithm can be specialized

by exploring the degree of the correlations existent among
different aspects of sensor networking behaviors. We target
this specialization as a future work.
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