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Abstract

A central problem in sensor network security is that sen-
sors are susceptible to physical capture attacks. Once a sen-
sor is compromised, the adversary can easily launch clone
attacks by replicating the compromised node, distributing
the clones throughout the network, and starting a variety
of insider attacks. Previous works against clone attacks
suffer from either a high communication/storage overhead
or a poor detection accuracy. In this paper, we propose
a novel scheme for detecting clone attacks in sensor net-
works, which computes for each sensor a social fingerprint
by extracting the neighborhood characteristics, and verifies
the legitimacy of the originator for each message by check-
ing the enclosed fingerprint. The fingerprint generation is
based on the superimposed s-disjunct code, which incurs a
very light communication and computation overhead. The
fingerprint verification is conducted at both the base sta-
tion and the neighboring sensors, which ensures a high de-
tection probability. The security and performance analysis
indicate that our algorithm can identify clone attacks with
a high detection probability at the cost of a low computa-
tion/communication/storage overhead. To our best knowl-
edge, our scheme is the first to provide realtime detection of
clone attacks in an effective and efficient way.

1 Introduction

In sensor networks, adversaries may easily capture and
compromise sensors and deploy unlimited number of clones

of the compromised nodes. Since these clones have legiti-
mate access to the network (legitimate IDs, keys, other se-
curity credentials, etc.), they can participate in the network
operations in the same way as a legitimate node, and thus
launch a large variety of insider attacks [1, 8, 15], or even
take over the network. If these clones are left undetected,
the network is unshielded to attackers and thus extremely
vulnerable. Therefore, clone attackers are severely destruc-
tive, and effective and efficient solutions for clone attack
detection are needed to limit their damage.

Nevertheless, detecting clone attacks is not trivial at all.
The fundamental challenge comes from the fact that the
replicas own all the security information (ID, keys, codes,
etc.) of the original compromised sensor. Thus, they can
pass all the identity/security check and escape from be-
ing distinguished from a legitimate sensor. In addition, a
“smart” clone may try to hide from being detected by all
means. Furthermore, clones may collude to cheat the net-
work administrator into believing that they are legitimate.
Note that an adversary may distribute clone nodes anywhere
in the network. Thus localized detection schemes do not
work effectively.

Most existing research efforts in sensor networks against
clone attacks focus on preventive technologies rather than
detective techniques, e.g., key schemes to prevent sensors
from being compromised. Unfortunately, most of these
preventive technologies (i.e., key schemes) may easily lose
their power against clone attacks [3]. Therefore it is im-
perative to provide effective/efficient clone attack detec-
tion. Actually clone detection in sensor networks is a rel-
atively overlooked area. To our best knowledge, the two
works [3, 12] that propose nontrivial schemes for clone at-
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tack detection rely on having each sensor send its location
claims or neighbor list to witnesses or the BS, which re-
quires a large amount of message transmissions. Due to
this high message overhead, these schemes can not detect
cloned nodes in realtime, therefore could not completely
protect the network from clone attacks. In addition, these
two schemes are effective only when the number of clones
are limited.

Despite the difficulties, detection of clone attacks can
be achieved by exploring the social characteristics of each
sensor. Note that once deployed, a sensor resides within a
fixed neighborhood. The sensor and its neighborhood form
a small “community”, or a “social network”. A cloned sen-
sor can have the same legitimate credentials (ID, keys, etc)
as the original node, but cannot have the same community
neighborhood. Thus, each sensor can be distinguishably
characterized by its social community network. Note that
in a small community, a newcomer can be easily recognized
if speaking with a different accent. Similarly, a clone node
can be easily identified by its neighbors if carrying a “social
signature” belonging to a different community. This obser-
vation motivates our research on clone sensor detection.

In this paper, we propose a novel scheme to detect clone
attacks, in which a fingerprint for each sensor is computed
by incorporating the neighborhood information through a
superimposed s-disjunct code, and the existence of a clone
attack is identified by checking the validity of the origina-
tor’s fingerprint for each message. The detection scheme
is sketched as follows. Before deployment, each sensor is
preloaded with a codeword generated from a superimposed
s-disjunct code. Then a node can compute its social finger-
print based on the codewords collected from its neighbor-
hood. Each sensor should also compute the fingerprints for
the nodes in its local community, and store them for later
verification purpose. Whenever a sensor sends a message
to the base station, it should include its fingerprint as well.
Then the neighboring sensors can verify the legitimacy of
the source node by comparing the enclosed fingerprint with
their own record. To further reenforce the security, the base
station should also retain a fingerprint for each sensor, and
monitor the network globally by checking if any inconsis-
tence exists among reports originated from sensors with the
same ID.

Compared with the existent work against clone attacks
in sensor networks [12] [3], our algorithm has the following
characteristics and advantages:

• Our scheme explores the superimposed s-disjunct code
for a timely clone attack detection. A fingerprint can
be easily encoded with a very short bit stream, which
results in small message overhead.

• Our scheme can identify cloned sensors with a high
detection accuracy at the expense of a very low com-

munication/computation/storage overhead.

• Our scheme is robust against collaborative clone at-
tackers, and has no limitation on the number of com-
promised/cloned sensors, which is a significant im-
provement compared to the existent works [3, 12].

• Our scheme conducts fingerprint verification locally
(via neighboring nodes ) and globally (via the basesta-
tion) for each message broadcasted by any node, there-
fore clone attackers can be detected in realtime.

The rest of the paper is organized as follows. In Sec-
tion 2, the most related work on clone attack detection is
briefly summarized. Then we introduce the network and se-
curity models in Section 3, and present the preliminaries in
Section 4. The novel scheme on detecting clone attacks is
presented in Section 5, and the security analysis and perfor-
mance evaluation are reported in Section 6 and Section 7,
respectively. Finally, we conclude this paper in Section 8.

2 Related Work

A straightforward solution to defend against clone at-
tacks is to let the base station collect the neighborhood in-
formation (e.g. location, neighbor list, etc.) from each sen-
sor and monitor the network in a centralized way.This ap-
proach suffers from high communication overhead by re-
questing redundant information from the network. Further,
a “smart” clone may report the neighborhood of the original
node, making the base station fail in identifying the replica.

In [1], Capkun et al. propose for one-hop networks that
the base station (BS) can store the unique signal characteris-
tic for each device, and thus device cloning can be detected
accordingly. However, in a multi-hop sensor network, it
is impractical for BS to track the signal characteristics of
sensors multi-hops away. In localized voting/misbehavior
detection schemes [4, 7, 8], nodes within a neighborhood
agree/vote on the legitimacy of a given node based on their
local observations. Nevertheless, these schemes are not ca-
pable of detecting clones with normal behavior, and may
fail when multiple clones in close proximity collude. Fur-
thermore, localized voting/misbehavior detection schemes
inherently lack the ability to detect distributed clones that
may appear at any place in the network.

To our best knowledge, the first non-naive detection
scheme against distributed clone attacks is to employ wit-
ness nodes to undertake the task of clone attak detection
[12]. For a sensor u, the neighbors should register u’s ID
and location at multiple witness nodes. The witness nodes
can be either randomly selected throughout the network, or
simply picked up along a routing path. Any witness node
having received conflicting reports about the same sensor
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should initiate a revoke message. For a high detection prob-
ability, this witness-based scheme exploits flooding for in-
formation exchange and thus results in a high communica-
tion overhead. Also, the scheme relies on public key cryp-
tography, which is expensive for most mote-like sensors.
The storage overhead is also high since each sensor needs
to store enough public keys of the others.

Another distributed solution is to detect clones based on
set operations. In [3], Choi et al. propose to divide a sensor
network into exclusive subregions and check if there is any
overlapping between them. An non-empty intersection indi-
cates the existence of replicated sensors. The results of the
membership checking are united and authenticated along a
tree structure, and sent to the base station finally. Despite
the fact that the number of messages is reduced to O(N),
the length of the messages increases linearly, and the total
amount of data to be transferred for membership checking
is not reduced at all.

As discussed above, the existent solutions have their lim-
ited usage for detecting clone attacks in sensor networks,
either due to the limited vision on the whole network by the
detectors [1, 7, 8], or because of the high communication
overhead for information collection to identify and revoke
the cloned nodes [12] [3].

3 Network and Security Models

3.1 Network Model

In this paper, we consider a static homogeneous sensor
network, in which a base station (BS) intermittently col-
lects data from multi hops away. There exist N resource-
constrained sensors in the network, whose positions can be
determined after deployment via a self-positioning mecha-
nism such as those proposed in [2, 9, 13]. Let N (u) denote
an open neighborhood of u that contains n nearest neigh-
bors. Note that N (u) could be the one-hop neighborhood
or any neighboring area containing n closest nodes. We de-
note N (N (u)) the cumulative neighborhood of N (u). For
any two arbitrary neighboring nodes u and v, we can infer
that N (u) and N (v) are different (N (u) �= N (v)) since
u /∈ N (u) but u ∈ N (v) and v /∈ N (v) but v ∈ N (u).

3.2 Security Model

In our consideration, sensors are not tamper-resistant.
The compromise or capture of a sensor releases all its se-
curity information to the attacker. Thereafter, the adver-
sary can start replicating the node, and distribute the clones
throughout the network. Note that the cloned nodes own all
the legitimate information of the compromised node (e.g.
ID, keys, code, etc.). Thus the replicas can easily partici-
pate in the network operation in the same way as the legit-

imate nodes. The cloned nodes are under the control of the
adversary, and therefore can launch various internal attacks
afterward. For example, a cloned node can easily fabricate
a false event report to mislead the decision makers, or keep
injecting bogus data to cause network outage.

In accordance with the existent work against clone at-
tacks [12] [3], we assume that the adversary cannot create
new IDs for cloned nodes, since otherwise the attackers will
have to create the corresponding security information (keys,
codes, etc.), which is very difficult and even infeasible in
most cases. Thus, the adversary would simply select to ex-
tract the cryptographic information of a compromised sen-
sor and load into multiple nodes.

We assume that the base station is sufficiently powerful
to defend itself against security threats, while the low-cost
sensors can be compromised or physically captured. We
also assume that a secure routing protocol is available, such
that the message being forwarded can be protected from be-
ing altered and can be authenticated (e.g. [6, 11, 16]).

4 Preliminaries

In this section, we introduce the basic knowledge on su-
perimposed s-disjunct codes, based on which we can re-
trieve the social community information and create a fin-
gerprint for each sensor. Such fingerprints can help detect
clone attacks, which is detailed in the next section.

Let X be a M × N binary matrix with Xi,j being the
element at the i-th row and j-th column. In this paper, we
consider a matrix X with a constant column weight ω and a
constant row weight λ. Then,

M∑
i=1

Xi,j = ω,

N∑
j=1

Xi,j = λ,

where 1 ≤ i ≤ M, 1 ≤ j ≤ N . The binary matrix X can
be used to define a binary code, with each column Xj =
(X1,j ,X2,j , ...,XM,j)T corresponding to a codeword.

Definition 4.1 Given two binary codewords y =
(y1, y2..., yM )T and z = (z1, z2, ..., zM )T , we say
that y covers z if the Boolean sum (logic OR operation) of
y and z equals y, i.e. y

∨
z = y.

Definition 4.2 An M×N binary matrix X definies a super-
imposed code of length M , size N , strength s (1 < s < M ),
and listsize ≤ L − 1 (1 ≤ L ≤ M − s), if the Boolean
sum of any s-subset of columns of X can cover no more
than L−1 columns of X which are not in the s-subset. This
code is also called an (s, L,M)-code of size N .

35






1 0 0 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1




Figure 1. An example of a superimposed
(3, 1, 13)-code of size 13

For example, the matrix in Fig. 1 defines a superimposed
(3, 1, 13)-code of size 13.

Definition 4.3 A binary matrix X defines an s-disjunct
code if and only if the Boolean sum of any s-subset of
columns of X does not cover any other column of X that
are not in the s-subset.

According to the s-disjunct characteristic of superim-
posed s-disjunct codes, we can derive the following impor-
tant property, which will be employed to compute finger-
prints to work against clone attacks in the following section:

Property 4.1 Given a superimposed s-disjunct code X , for
any s-subset of columns of X , there exists at least one row
in X that intersects all the s columns with a value 0.

Note that how to construct a good superimposed s-
disjunct code has been extensively studied in literature (
[5, 10, 14]). We assume one is available for us to use in this
paper. Also, we employ a superimposed s-disjunct code
with constant weights in our detection scheme.

5 Real-time Clone Attack Detection in Sen-
sor Networks

In this section, we present our scheme for detecting clone
attacks. The detection scheme consists of two phases: com-
puting a fingerprint for each sensor based on its social net-
work, and then detecting clone attacks afterwards.

5.1 Generation of Fingerprints

Before deployment, a superimposed s-disjunct code X
is pre-computed offline. As stated in Section 4, X can be
represented by an M × N binary matrix, where N is the
number of sensors to be distributed in the network region.
Each sensor is preloaded with a unique codeword, which is
also a column of the matrix X .

Right after deployment, sensor u broadcasts a message
containing u’s codeword to the neighborhood N (N (u))
and listens for the messages sent in the neighborhood
N (N (u)). In our consideration1, the neighborhood N (u)
should satisfy n ≥ s, where n is the number of sensors in
N (u), s is the strength of the superimposed code X .

After the information collection, sensor u computes the
fingerprint for each node v ∈ N (u), and stores the finger-
print for later use (to be explained in Section 5.2). Given
a sensor v ∈ N (u), sensor u computes v’s fingerprint as
follows. Let X(v) = {X(v)

1 ,X
(v)
2 , ...,X

(v)
n } denotes the

codeword set of the nodes in v’s neighborhood N (v), where
X

(v)
i denotes the codeword of v’s i-th closest neighbor.

Among the received codewords X(v), the Boolean sum of
X

(v)
(s) , the codeword set of v’s s-closest neighbors, is com-

puted first. According to the property of the superimposed
s-disjunct code (see Property 4.1 in Section 4), the result-
ing vector should contain at least one element with a value
‘0’. These zero elements imply the relationship among the
s neighbors, which can be employed to represent the social
characteristic of sensor v. Motivated by this observation,
we use the binary representation of the position of one zero
element in the Boolean sum of X

(v)
(s) as the social finger-

print of v. Since the Boolean sum of X
(v)
(s) may contain

multiple zero elements, we propose to employ more code-
words in N (v) for the purpose of decreasing the number
of zero elements. Intuitively, the social fingerprint should
be “stronger” if more information from N (v) is brought in
during the fingerprint computation. Algorithm 1 details the
procedure of fingerprint computation for each sensor by in-
vestigating the associated neighborhood information.

Sensor u uses Algorithm 1 to compute the fingerprint for
each node v ∈ N (u). Algorithm 1 takes the codeword set
X(v) as input sensor u has received from its neighborhood.
The algorithm starts from an s-subset of X(v) that contains
the codewords of the s closest neighbors of sensor v, and
expands the subset until any further increment will cause
the resulting boolean sum to contain no zero. For the subset
resulting from the last increment, compute the boolean sum
and select one of the zero elements, the position of which
will be the fingerprint of sensor v.

1As stated in Algorithm 1, sensor u may require more than s codewords
for fingerprint computation. Thus, n should be large enough for sensor u
to collect the necessary information from N (u).

46



Algorithm 1 Fingerprint Creation

1: function FP =fingerprint(v, X(v)) � Compute
the fingerprint for sensor v based on the codeword set
X(v) = {X(v)

1 , ..., X
(v)
n }. Note that sensor u should

conduct this algorithm for each neighbor v ∈ N (u).
2: B = X

(v)
1

∨
X

(v)
2

∨ · · · ∨ X
(v)
s �

Compute the boolean sum of X
(v)

(s) , the codeword set
of v’s s-closest neighbors

3: i = s + 1
4: while (B

∨
X

(v)
i ) �= �1 do � Expand X

(v)

(i)

by adding the codeword of v’s i+1-closest neighbor,
until any further increment causes the boolean sum to
contain no zeros.

5: B = B
∨

X
(v)
i

6: i = i + 1
7: end while
8: posZeros = findZeros(B) � Return the positions of

the zero elements in the boolean sum B
9: if size(posZeros) > 1 then

10: k = pseudoRansom(v, size(posZeros))
11: position = Select(k, posZeros) � Select

the k-th zero element from posZeros if there are
more than one zero element in B

12: else
13: position = posZeros
14: end if
15: FP = binary(position) � return the binary

representation of the position with a zero element
16: return FP
17: end function

Note that for v and a neighbor u ∈ N (v), u and v
both need to conduct Algorithm 1 to compute the finger-
print FPv for sensor v. By taking v’s ID as input for the
pseudo random function (see line 10 in Algorithm 1), u and
v will reach the same FPv though they need to select one
zero element from multiple options independently.

5.2 Detection of Clone Attacks

For sensor u, its fingerprint is computed from the code-
words collected from its neighborhood N (u). As stated in
Section 3, sensors are stationary after deployment. A legit-
imate sensor u belongs to a “fixed” neighborhood, whose
social characteristics can be encoded into u’s fingerprint.
Therefore, each sensor is required to “sign” with its finger-
print FPu whenever it generates a new message to send to
the base station. The message transmission should be in the
following format2:

u → BS : {IDu, FPu, content}
2This message will be protected by encryption and message authenti-

cation code, as stated in our security model.

Assume X is the superimposed s-disjunct code to gen-
erate the social codeword for each sensor, which can be
represented by an M × N matrix. According to Algo-
rithm 1, the length of a fingerprint is log2(M). Even with
M = 100, 000, a fingerprint takes no more than 2 bytes
to be included in a message. Hence, our detection algo-
rithm imposes a very slight message overhead for protecting
a sensor network against clone attacks.

In our consideration, a cloned sensor may use an arbi-
trary fingerprint (e.g. the fingerprint of the original sensor),
or compute a new fingerprint that is consistent with its new
residency. Hence, detecting clone attacks should be con-
ducted in two aspects:

5.2.1 Detection at the sensor side

Suppose u generates a new message, which is forwarded
to a neighbor v ∈ N (u). Sensor v should check whether
the enclosed fingerprint FPu is consistent with the one in
its record that v has computed for u previously. Once v
identifies any mismatch, v should raise an alarm to the base
station. Then, the base station should send a query to the
neighborhood N (u). Each sensor in N (u) should reply to
BS with its own record about FPu. Thus, BS can determine
which sensor should be revoked afterwards3.

The local fingerprint verification ensures that no sensor
can use a fingerprint that is not consistent with its neighbor-
hood. Note that a legitimate sensor u derives its fingerprint
based on the information retrieved from its neighborhood.
The local information exchange ensures that u’s neighbors
can also compute u’s fingerprint independently. Thereafter,
though a cloned sensor u can “pretend” to be legitimate by
having all the valid security information, it cannot cheat its
neighbors that can easily tell whether u is using an incon-
sistent fingerprint.

5.2.2 Detection at the base station

The base station should maintain a fingerprint file indexed
with sensor IDs, and insert an entry for sensor u upon re-
ceiving u’s first message. After BS receives a new message
C from sensor u, it checks whether the fingerprint FPu in
C matches its record obtained from u’s previous messages.
If FPu does not match the record, there must be a clone
attack in the network. Then, BS may broadcast a revoke
message concerning sensor u throughout the network, such
that those sensors with the ID u will be isolated afterwards.

The detection at the base station is to work against a
“smart” clone that intelligently computes a new fingerprint
consistent with its current neighborhood so as to escape

3In this case, either u is a clone, or v is a compromised node which
raises a false alarm.
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from being identified by the neighboring sensors. By es-
tablishing a fingerprint file, the base station can easily de-
termine whether there exist several sensors in the network
that use different fingerprints but with the same ID.

6 Security Analysis

In this section, we analyze the impact of compromised
and cloned nodes on our detection algorithm. We observe
that an adversary can launch effective clone attacks at the
following two scenarios. Note that a clone attack at other
scenarios can be detected via the fingerprint computed by
Algorithm 1 with a much less effort.

• Node compromise/clone during fingerprint generation,

• Node compromise/clone during the detection phase.

Next, we will study the resilience of our scheme under these
two scenarios, and quantify the effectiveness of our detec-
tion by studying the detection probability.

6.1 Node compromise/clone at fingerprint
generation

Assume an adversary compromises a sensor u right af-
ter deployment, replicates and distributes the clones before
the fingerprint generation is finished in the network. Then
u’s clones, say u′

1, u
′
2, ...., u

′
t, can participate in the finger-

print generation procedure as a legitimate sensor. Since
the clones are deployed into different locations, their de-
rived fingerprints will be different. Thus, the base station
can easily identify these clones, which have the same ID
(IDu = IDu′

1
= ... = IDu′

t
) but different fingerprints.

Note that there is no impact on a legitimate sensor w,
if a clone node u′

i is inserted into the neighborhood N (w).
Sensor w can safely use its fingerprint which may contain
the codeword contributed by the clone u′

i though, since the
other legitimate neighbors in N (w) will use the codeword
of u′

i as well. It does not affect the effectiveness of w’s
fingerprint against clone attacks, because w’s fingerprint is
based on the neighborhood difference and social relation-
ships rather than an individual codeword.

6.2 Node compromise/clone at the detec-
tion phase

Assume an adversary compromises a sensor u, replicates
and distributes the clones after all the legitimate sensors
have derived their fingerprints. Then for a cloned sensor v,
the adversary may determine v’s fingerprint FPv according
to the following methods:

• Case I: Sensor v selects FPv = FPu. Suppose sensor
v generates a message C and forwards it to a neigh-
bor w ∈ N (v). If w is legitimate, w should raise an
alarm since no match can be found in w’s fingerprint
records. Then the base station can identify the clone v
after checking the fingerprints belonging to N (v). Un-
less the adversary completely compromises and con-
trols the neighborhood N (v), the clone v will be iden-
tified by our detection scheme.

Note that there is no incentive for the adversary to
compromise all nodes in N (v) in order to launch a
clone attack. Furthermore, for a cloned area (contain-
ing cloned nodes only) that is larger than a typical open
neighborhood, all the boundary nodes can be easily
identified and then revoked. Thus, the whole compro-
mised/cloned region will be isolated. Our detection
scheme is robust against colluding attackers.

• Case II: Sensor v selects an arbitrary bit stream as
FPv. Same as case I.

• Case III: Sensor v computes FPv based on the code-
words from its neighborhood N (v). A smart clone
tries to escape from being identified by its neighbors,
and computes a fingerprint consistent with its neigh-
borhood. Assume the adversary is powerful enough
to listen on the codewords broadcasted around N (v)
and help v compute its FPv. However, after receiving
messages from sensors u and v, the base station will
find out that IDu = IDv but FPu �= FPv. Then the
base station identifies the existence of a clone attack,
and therefore revokes all the sensors with IDu.

6.3 Detection Probability

In the following, we investigate the probability
Pundetected that a clone node escapes from being detected
successfully. Assume the adversary compromises a sensor
u, clones t copies of u (denoted as u′

1, u
′
2, ..., u

′
t), and dis-

tributes the clones into the network. To avoid being de-
tected, these t clones must fulfil the following two require-
ments simultaneously:

• Condition I: All the clones u′
1, u

′
2, ..., u

′
t must use the

same fingerprint as the sensor u. Otherwise, the base
station will identify the difference among the finger-
prints used by these nodes that share the same IDs.

• Condition II: Each of the clones u′
1, u

′
2, ..., u

′
t must use

a fingerprint that is consistent with its current neigh-
borhood. Otherwise, the cloned node will be identified
by their neighbors.

Thereafter, only when the neighbors of the t clones con-
tribute to the same fingerprint as that of sensor u, our detec-
tion algorithm fail to identify.
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Let X be the superimposed s-disjunct code with a con-
stant column weight w and a row weight λ. Let X

(u)
(r) =

{X(u)
1 , ...,X

(u)
r } be the codeword set selected for u’s fin-

gerprint in Algorithm 1, where X
(u)
i (a column of X) is the

codeword of u’s i-th closest neighbor in N (u) and r ≥ s.
Denote B(u) as the boolean sum of X

(u)
(r) . We first study

P (B(u)
1 = 0|r = i), the probability that the 1st element in

the vector B(u) is zero given that X
(u)
(r) contains i columns

of X . Then,

P (B(u)
1 = 0|r = i) =

(
(N−λ)

i

)
(
N
i

) . (1)

The same results can be obtained for P (B(u)
2 = 0|r = i),

· · ·, P (B(u)
M = 0|r = i). Therefore,

P (B(u)
1 = 0|r = i)

= P (B(u)
2 = 0|r = i)

= ...

= P (B(u)
M = 0|r = i) (2)

It also holds true that,

∑M
k=1 P (B(u)

k = 0|r = i) = 1. (3)

According to Eqs. (2) and (3), we have

P (B(u)
k = 0|r = i) = 1/M, (4)

where k = 1, 2, ...,M , i ≥ s.

Let i (j) denote the number of codewords that sensor u
(v) uses for the computation of the fingerprint FPu (FPv).
Then we study the probability that sensors u and v run Al-
gorithm 1 independently and obtain the same fingerprints
FPu = FPv, which is

P (FPu = FPv)

=
M∑

k=1

P (B(u)
k = 0|r = i) · P (B(v)

k = 0|r = j)

= M × 1
M

× 1
M

=
1
M

(5)

Now we study the probability that a compromised node
u and its t clones, namely u′

1, u
′
2, · · · , u′

t, derive the same
fingerprints. Let ji be the number of codewords that the
clone node u′

i uses for its fingerprint generation. Then,

Pundetected

= P (FPu = FPu′
1

= . . . = FPu′
t
)

=
M∑

k=1

P (B(u)
k = 0|r = i) · P (B(u′

1)
k = 0|r = j1)

. . . P (B(u′
t)

k = 0|r = jt)

= M × 1
M

× 1
M

× . . . × 1
M

=
1

M t
(6)

Therefore, given a compromised node u and all its
t clones, with our algorithm, the detection probability
Pdetected against these clones is

Pdetected = 1 − Pundetected

= 1 − 1
M t

(7)

Note that M represents the number of rows in the super-
imposed s-disjunct code X . According to superimposed
code construction methods [10] [5], we can generate an
M×N superimposed s-disjunct code with M as large as N ,
where N is the number of sensors in the network. For a typ-
ical sensor network, N is a very large number. Therefore,
Pdetected should be very close to 1. Our detection algorithm
can protect sensor network against clone attacks effectively
with a high detection probability.

7 Performance Analysis

7.1 Overhead

In the initialization step of our scheme, each node needs
to collect the codewords from its local neighborhood, and
computes its fingerprint. Therefore, the fingerprint gener-
ation poses O(N) local message transmissions in the net-
work overall4. Let numm denote the total number of regu-
lar data messages generated in the network during network
lifetime, the total message transmission cost in the entire
network is O(numm · √N).

Unlike other detection schemes against distributed clone
attack (Section 2) that have each node send a separate
message rather than regular data message, our scheme at-
taches each regular message with a corresponding finger-
print. According to Algorithm 1, the fingerprint is pretty
tiny. Its size can be bounded by log2 M , where M is the
number of rows in the superimposed s-disjunct code used
in the network. Let ratio denote the ratio of the finger-
print size versus the regular packet size, and Lpacket de-
note the bit-length of a regular message. Then, the mes-
sage overhead of our scheme in the entire network after

4The initialization cost of each scheme in Table 1 is neglected, since the
initialization of all the schemes in Table 1 is done in a localized manner,
and incurs negligible cost.
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Schemes Message Storage Cost
Cost (in bits)

Broadcast [12] C + O(N2) O(d)
·T · Lpacket

Deterministic C + O( glng
√

N
d

) O(g)
Multicast [12] ·T · Lpacket

Randomized C + O(N2) O(
√

N)
Multicast [12] ·T · Lpacket

Line-Selected C + O(N
√

N) O(
√

N)
Multicast [12] ·T · Lpacket

SET [3] C + O(N) O(d)
·T · L∗

nonconstant

Our Scheme C · (1 + ratio) O(d) + min(M,
ω · log2 M)

Table 1. Overhead of clone attack detection
approaches.

initialization is O(numm · √N) · Lpacket · ratio, where
ratio = log2 M

Lpacket
× 100%.

Let d denote the average size of the neighbor set in the
network. Since each node u stores the fingerprints of its
neighbors, the average memory cost is O(d) + max(M,ω ·
log2 M), where max(M,ω · log2 M) denotes the memory
usage for u to store its social codeword, ω represents the
column weight in the superimposed s-disjunct code.

Note that only simple binary operations are involved in
local fingerprint computation, therefore our scheme has ex-
tremely low computation overhead.

7.2 Comparison with Existent Work

Let C = O(numm ·√N) ·Lpacket denote the total mes-
sage transmission cost (in bits), and T denote the number of
runs of other clone attack detection schemes during sensor
network lifetime, as shown in Table 1. Compared with these
schemes, our scheme incurs a low communication overhead
and a comparative storage overhead, which are C ·ratio and
O(d) + max(M,ω · log2 M), respectively.

In particular, compared with SET, despite that the num-
ber of message transmissions is reduced to O(N) in
SET, the message length increases linearly (denoted by
L∗

nonconstant), and the total amount of information (mem-
bership) transmitted in the entire network is at the same or-
der of O(N) · T · L∗

nonconstant = O(N
√

N) · T · Lpacket.

8 Conclusion

In this paper, we present a novel realtime detection
scheme against clone attacks. Our algorithm is supe-
rior in that a high detection accuracy as well as re-
siliency can be achieved at the cost of a low communica-
tion/computation/storage overhead. In addition, realtime
clone detection is conducted whenever messages flow in

the network, and cloned attackers can be identified in a
very efficient and effective way. To our best knowledge,
our scheme is the first to provide realtime detection against
clone attacks. For future work, we are going to explore
other kinds of social fingerprints and extend our scheme to
other classes of networks.
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