
Localized Fault-Tolerant Event Boundary Detection
in Sensor Networks

M i n Ding Dechang Chen Kai Xing & Xiuzhen Cheng
i Computer Science Uniformed Services University Computer Science

of the Health Sciences
Bethesda, MD 20817, USA

The George Washington University
Washington, DC 20052, USA

The George Washington University
Washington, DC 20052. USA

minding@gwu.edu dchen@usuhs.mil (kaix,cheng}@gwu.edu

Abstracf- This paper targets the identification of faulty
sensors and detection of the reach of events in sensor
networks with faulty sensors. Typical applications in-
clude the detection of the transportation front line of
a contamination and the diagnosis of network health.
We propose and analyze two novel algorithms for faulty
sensor identification and falt-tolerant event boundary
detection. These algorithms are purely localized and thus
scale well to large sensor networks. Their computational
overhead is low, since only simple numerical operations are
invoked. Simulation results indicate that these algorithms
can clearly detect the event boundary and can identify
faulty sensors with a high accuracy and a low false alarm
rate when as many as 20% sensors become faulty.

Our work is exploratory in that the proposed algo-
rithms can accept any kind of scalar values as inputs,
a dramatic improvement over existing works that take
only 011 decision predicates. Therefore, our algorithms are
generic. They can be applied as long as the “events” can
be modelled by numerical numbers. Though designed for
sensor networks, our algorithms can be applied to the
outlier detection and regional data analysis in spatial data
mining.

Keywords: Sensor networks, event boundary detec-
tion, fault tolerance, faulty sensor identification.

I . INTRODUCTION

The marriage of Sensor and network technologies
provides many exciting applications of sensor networks
141, [17], [27]. With their capabilities for monitoring and
control, networked sensors are expected to be widely
deployed. Such a network can provide a fine global
picture through the collaboration of many sensors with
each observing a coarse local view [13], [16]. The
difficulty in flourishing these networks lies in in-network
processing observations from sensors in close geographic
proximity [8 J ,

One important task of a typical sensor network is to
monitor. detect, and report the occurrences of interesting
events (e.g. forest fire, chemical spills, etc.) with the

presence of f a d t y sensor measurements. These events
usually span some geographic region and in many appli-
cation scenarios the detection of the event boundary may
become more important than the detection of the entire
event region, A good example is the timely estimation of
the possible reach of the contamination in a surveillance
network monitoring the transportation of chemical spills
in soil. On the other hand, individual sensor reading is
not reliable. Filtering out faulty readings and transmitting
only the boundary information to the base station can
save energy. In this paper we target the problem of
identifying faulty sensors and detecting event boundaries
in sensor networks with faulty sensors,

There exist other application scenarios that motivate
our research. In sensor network health diagnosis [28],
we would like to identify the regions containing sensors
that behave differently from those in the outside of
the regions. For example, in military sensor networks,
enemies can destroy or attack the Sensors within a
reachable region. In habitat monitoring, sensors in close
proximity may have a similar level of residual energy
since they are on the same duty [28]. In both cases,
most or all sensors within some region may be dead, or
behave arbitrarily or maliciously. A typical event region
detection may fail due to the lack of meaningful sensor
readings, and computing the boundary then becomes a
feasible alternative.

However, faulty sensor detection and event boundary
computation are not trivial at all. One significant chal-
lenge facing the two tasks comes from the strict resource
limitation (battery power, bandwidth, etc.). Sensors are
powered by battery, which may not be recharged or
replaced after deployment. We can not afford to allow a
base station collect all sensor measurements and compute
event boundaries in a centralized fashion [9], [lo], [16].
Therefore, we have to seek localized and computation-
ally efficient algorithms for each node to determine
whether it is faulty or whether it is close to the event
boundary. The presence of faulty sensors constitutes

902 0-7803-8%8-9/05B20.00 (C)ZOOS IEEE

mailto:minding@gwu.edu
mailto:dchen@usuhs.mil
mailto:kaix,cheng}@gwu.edu

another significant. challenge for event boundary com-
putation. Sensor readings may be faulty due to hardware
crash, security attack, or environment disturbance. Thus
a solid event boundary detection algorithm must be
robust and fault-tolerant.
Our major contribution consists of one localized algo-

rithm for faulty sensor identification and one localized
algorithm for fault-tolerant event boundary detection.
These two algorithms are generic. They can take as
inputs any type of numbers provided by sensors. This
is fundamentally different from the existing works in
event, event region, and event boundary computation [6],
[7], [11], where sensors are required to access a binary
decision procedure by comparing their readings with a
predetermined threshold. This binary decision is called a
O/I decision predicate, with 1 indicating an event status
and 0 indicating a normal status. Using 0/1 decision
predicates for event, event region, and event boundary
computation may have the following disadvantages:

0/1 decision predicates are the results of comparing
current Sensor readings with a threshold. If the
threshold is a global cut based on a priori informa-
tion, 011 predicates will miss the spatial information
on deployed sensors.
0/1 decision predicates are the preprocessing results
of the actual measured data. Detection over binary
predicates represents the second round approxima-
tion.
0/1 predicates may not be correct due to faulty
sensors, Intuitively, algorithms based on original
sensor readings or measurements should be more
precise and more robust.

There are some other unique characteristics of the
proposed algorithms. The boundary detection algorithm
takes into account the issue of fuuk-event disumbigua-
tion. We note that both fauIty sensors and sensors in an
event region can generate “abnormal readings” deviated
from a typical application-specific range. Intuitively,
when a remarkable change in sensor readings is detected,
something must have happened. If the change is present
with a single sensor only, the sensor is faulty. If most
neighboring sensors observe the same phenomenon si-
multaneously, an event occurs. In other words, readings
from faulty sensors are geographically independent. But
readings from sensors in close proximity are spatially
correlated [l l] . This property has been embedded into
our event boundary detection algorithm. Simulation re-
sults indicate that our algorithms have a strong fault-
tolerant ability and are effective in identifying faulty
sensors and locating the event boundaries. For exam-
ple, for a moderately dense sensor network (about 30

.

nodes in the neighborhood) with 20% fauIty sensors,
our dgorithms can clearly detect the event boundary and
maintain a high faulty sensor detection accuracy (above
90%) and a low false aIarm rate.

Our approach to faulty sensor and event boundary
detection is related to the outlier detection and regional
data analysis in spatial data mining [lZ], [14], [151. It
is expected that the algorithms proposed in this paper
will find many applications in fields other than sensor
networks.

This paper is organized as follows. We first briefly
summarize the related work in Section IT and explain
useful notations in Section 111. The two localized algo-
rithms for faulty sensor identification and fault-tolerant
event boundary detection are proposed in Sections IV
and V. Performance metrics and analysis are outlined
in Section VI. Our simulation results are reported in
Section VII. We conclude our paper in Section VI11 with
future work discussion.

11. REL.4TED WORK

In this section, we summarize related works along
three major lines: 0/1 decision predicate computation,
faulty sensor detection, and event region and event
boundary detection. Most existing deviation and event
detection algorithms rely on the 0/1 decision predicates
computed by individual sensors.

As we have noted earlier, when a remarkable change
in the readings of sensors is detected, a faulty sensor
or a real event must have occurred. This observation
is explored in [3], [13], [19] for 0/1 decision predi-
cate computation. The related algorithms require only
the most recent readings (within a sliding window) of
individual sensors. No collaboration among neighboring
sensors are exploited. In [3] , the “change point” of the
time series are statistically computed. The result can be
used to answer questions such as “when does the front
line of the contamination reach location (x ~ Y) ? ” The
detector proposed in [13] computes a running average
and compares it with a threshold, which can be adjusted
by false alarm rate. In [19], kernel densily estimators are
designed to check whether the number of “abnormal”
readings are beyond an application-specific threshold.
Note that none of these works can disambiguate faulty
sensors and real event sensors since only observations
from individual sensors are studied. By exploring the
correlation among neighboring sensors, our work can
tell faulty sensors from event sensors and compute the
boundary of the event region.

Failed or misbehaving nodes are faulty sensors that
can be detected through route discovery and update.
Common routing protocols leverage the re-establishment

903

of route discovery to evade failed nodes [20]. Staddon,
Balfanz, and Durfee [22] propose to trace failed nodes
in sensor networks at a base station, assuming a11 sensor
measurements will be directed 10 the base station along
a routing tree. In this work, the base station that has a
global view of the network topology can identify failed
nodes through route update messages. In [lS], nodes can
listen-in on the neighbor to detect failed or misbehaving
neighbors. In [23], base stations launch marked packets
to probe sensors and reIy on their responses to identify
and isolate insecure locations. Our algorithm is more
versatile. It can detect many kmds of misbehaving nodes,
as long as the “abnormal behavior” can be modelled
by real numbers. Our algorithm does not rely on any
routing or global topoIogy information, thus provides
better scalability and flexibility. Moreover, our algorithm
can be combined with any routing protocol to route
the detected information to base stations for further
instructions.

Clouqueur, Saluja, and Ramanathan [7] seek algo-
rithms to collaboratively detect the presence of a target
in a region G. Each sensor obtains the target energy
(or local decision) from all other sensors in the region,
drops extreme values if faulty sensors exist, computes
the average, and then compares it with a pre-determined
threshold for final decision. Correspondingly, the algo-
rithm is termed valisefusion if the input is target energy,
or decision Jitsiorr if the input is the local decision made
by each sensor. Under these algorithms, all sensors in
region G will conclude with a same decision. However,
both target energy and local decision need to be com-
puted ahead of time. Further, these algorithms do not
specify how to define region G, as the communication
and computation overheads are strongly related to the
size of G. Our algorithm requires only raw readings from
the neighborhood and captures the boundary sensors
surrounding the region,

Krishnamachari and Iyengar [l l] propose several
localized threshold based decision schemes to detect
both faulty sensors and event regions. The 0/1 decision
predicates from the neighborhood are collected and
the number of neighbors with the same predicates are
calculated. This number is used for the final decision
based on a majority vote. The algorithm presented in
this paper identifies both faulty sensors and front lines
of event regions. It works well with not only 0/1 decision
predicates but also numbers that abstract sensor readings
or sensor behaviors.

The unique work that targets localized boundary de-
tection in sensor networks is proposed in [6] . All of the
three schemes in [6] rake as inputs the 0/1 decision pred-
icates from neighboring sensors. The statistical approach

computes the number of 0’s and 1’s in thc neighborhood
and a boundary sensor is detected if its neighbors contain
a “simdar” number of 0’s and 1’s. Here the “similarity”
is defined based on a threshold whose value can be
obtained based on a lookup table. The image processing
approach computes a weighted average of all the neigh-
boring values. The classifier-based approach computes
an optimal classifier by sampling the neighboring area,
The first two approaches need a threshold whose value is
determined by multiple parameters, The classifier-based
approach does not need a threshoId, but the fine sample
granularity contributes a high computational overhead,
Our boundary detection algorithm does not need the
pre-computation of the 0/1 decision predicates. It. is
computationally simpler than the last two approaches.
Further, the threshold in our algorithm only depends on
the fault tolerance requirement.

Network health scans are also related to boundary
detection. Residual energy scan (eScan) [28], for ex-
ample, is proposed to identify regions with low energy
supply. This can help users decide when to deploy new
sensors to avoid network malfunctions caused by energy
depletion. In eScan, a data disseminating tree rooted at
the base station is constructed and residual energies from
sensors along the tree are aggregated based on some
predetermined rules, Our algorithm can obtain similar
scans, as long as residual energies have the regional
property. However, it is more robust, as no tree or other
fragile structures are needed in the algorithm execution.

111. NOTATIONS AND NETWORK MODEL
Throughout this paper, we assume that N sensors are

uniformly deployed in a b x b squared field located in the
two dimensional Euclidean plane R2. A sensor’s reading
is fadry (abnormal) if it deviates significantly from other
readings of neighboring sensors [11. Sensors with faulty
readings are called faulty sensors. In this paper, the ith
sensor Si and its location will be used exchangeably. We
use S to denote the set of all the sensors in the field and
R denote the radio range of the sensors. Let Xi denote
the reading of the sensor Si. Instead of a 0-1 binary
variable, xi is assumed to represent the actual reading
of a factor or variable, such as temperature, light, sound,
the number of occurrences of some phenomenon, and so
on. For example, a rogue node that continues to inject
messages to the network or drop all relay messages in
DOS attack is a misbehaving node. Therefore, xi can
be continuous or discrete. Informally, an event can be
defined in terms of sensor readings. An even[, denoted
by E, is a subset of R2 such that readings of the sensors
in E are significantly different from those of sensors not
in E . A faulty sensor can be viewed as a special event

904

which contains only one point, i.e., the sensor itself, A
point x E R2 is said to be iii the boundary of of E
if and only if each closed disk centered at x contains
both points in I and points not in E. The boundmy of
the event E, denoted by B(€), is the collection of all the
points in the boundary of 1. As an example, a circle is
the boundary of the region bounded by the circle if the
region is an event.

We assume each sensor can compute' its physical po-
sition through eilher GPS or some GPS-less techniques
such as IS], [21], [24], [26]. Note that in this paper
we focus on the fault tolerant event boundary detection,
thus the delivery of the event boundaries will not be
con sidered.

Iv. LOCALIZED FAULTY SENSOR DETECTION

In this seclion, we describe our algorithm for detecting
sensors whose readings (measurements) are faulty.

A. Derivation of Detection Procedure
The procedure of locating a faulty sensor could be

formalized statistically as follows. Consider how to com-
p a e the reading at Si with those of its neighbors. Let
N(Si) denote a bounded closed set of R2 that contains
the sensor Si and additional k sensors Sil, Si2, . . .,
S&. The set N(Si) represents a closed neighborhood of
the sensor Si. An example of N(Si) is the closed disk

(4 (4 (i) centered at Si with the radius R. Let z1 , x2 , .'.,zk
denote the measurement at &I, Si2, . . . , S;k, respectively.

(4 (4 (4 A comparison between zi and {q : z2 . ! zk } could
be done by checkin the difference between z; and
the "center" of {q , ;-"xk }, Clearly, such a
difference is

(1)

where medi denotes the median of the set

equation (1) should not be replaced by the mean

This is because the sample mean can not represent
well the "center" of a sample when some values of
the sample are extreme. However, median is a robust
estimator of the "center" of a sample. If di is large or
large but negative, then it is very likely that S; is faulty.
Now we start to quantify the degree of extremeness of
di. To do this. the differences d from sensors near Si
are needed,

Consider another bounded closed set N*(Si) c R2
that contains Si and additional IZ - 1 sensors. This set
" (S i) also represents a neighborhood of Si. Among
many choices of " (S i) , one could select N*(Si) =

(8 p (4

(q (4 ,z2 (2) ,...,xf)}, we note that medi in

(x j i) + z ~) + - . .+&k of the set {xi"',zp,. . . , X k (4).

di = zi - me&,

Fig. 1. A-" neighborhood N*(,%) of sensor Si and .Af neighbor-
hoods of sensors inside *u4(Si). h c h Id neighborhood is used to
compute d; . while the N* (Si) is used to compare the di's.

N(S,). We denote the n sensors in N*(Si) by 4,
Sz, - . - , ST,. S e e Figure 1 for an illustration of N

and N*. According to equation (1) sensors in N'(S,)
yield &. . .., cl;, I . . , d,. Now if d i is extreme in
D = { d l , ~ .. di ! f . a I &}, Si will be treated as a faulty
sensor. The decision can b? made vigorously using the
following procedure. Let ji and 6 denote, respectively,
the sample mean and sample standard deviation of the
set D, i.e..

2 di, 1
b = ; ,

2=1

DECISION: If 1yil 2 9, treat Si as a faulty sensor. Here
e(> 1) is a preselected number.

We now start to justify the above decision making
procedure under certain assumptions. For this purpose,
we first need some result of the median. Given N(Si),
assume z1 , x2 , . . ., xr) form a sample from a popu-
lation having a continuous distribution function F. Let

greatest and let the ordered values be zyZ), x (~) , . . ., z (~) ,

where xii) 5 xii) < ' . ' 5 XI?). Then equation (1) can
be rewritten as

(2) (4

ii) , x2 (a) , . . ., xt) be rearranged in order from least to
(4 (2) (4

(1) (2) -

Assuming that the median of the distribution F is f i and
F (b) = 0.5 has a unique solution, we have the following

905

PROPOSITION: As I ; 4 00, medi converges in proba-
bility to ji.
To prove, we first note the following special case of
Theorem 9.6.5 in [25j: if k p k is a positive integer such

converges
in probability to f i , For any real number a. let La.] denote
the largest integer less than or equal to a and let (U)
denote the difference a - io.]. 'Then 0 5 (a) < 1. Set
P?k = c

thatps = o.F~+o(I/~), then'as k --+ 00, z(kpk) (2)

i0.5LJ . Then

0 5 k - (0.51;) + 1 1
Plk = k = 0 . 5 + 0 (~) .

Let p21; = - l /k . Then p 2 k = 0.5 + O(l/k). There-
fore, both X(kPlk) (4 and x[2p2kl converge in probability to
ji Now the proposition follows from the observation that
equation (3) is equivalent to the following

The above property of median is established for a quite
general class of F . Deeper results of median arc also
available. For example, an asymptotic normal distribu-
tion of median can be obtained under some general
conditions [Z].

Now consider the following simple scenario where
i> readings of sensors in N*(Si), i.e., 2 1 , z,,
are independent; ii) for each sensor Sj in Jz/*(Si), the
readings from the sensors in hr(Sj) form a sample of
a normal distribution; iii) all the variances of the above
mentioned distributions are qua l . Since the median is
equal to the mean for any normal distribution, it follows
from the proposition and i)-iii) that as IC becomes large,
the sequence d l , a . -, d, form approximately a sample
from a normal distribution with mean equal to 0. This
implies that as b is large, the sequence from standard-
ization, i.e., 91, ' . ., p n , can be treated as a sample
from a standard normal population N(0,l). When xi is
particularly large or small, compared with all the other
12: values, di will deviate markedly from all the other d
values. Consequently, Iyil will be large, which implies
that will fall into the tail region of the density of the
standard normal population. However, if I;yil is large, the
probability of obtaining this observation yi is small and
thus Si should be treated as faulty. When 6' = 2, the
probability of observing a pi with lyil 2 2 is about 5%.

B. Algoritlm
Let C1 denote the set of sensors with I yi I 2 8. The set

C1 is viewed as a set of sensors that are claimed as faulty
by the above procedure. Note thak when an event occurs,

a sensor Si E C1 may be close to the event boundary but
is not faulty (See Figure 2(a)). The procedure in part IV-
A can be summarized into the following algorithm,

ALGORITHM 1
Construct {N) and {W}. For each sensor Si,
perform the following steps,
Use {N(Si)) and equation (1) to compute di for
sensor Si.
Use {"(Si)} and quation (2) to compute gi for
sensor Si.
If Ipil 2 13, where 0 > 1 is predetermined, assign
Si to C1. Otherwise, Si is treated as a normal
sensor.

Clearly, IC1 1, the size of C1, depends on 0. Assuming
the ;y values in equation (2) constitute a sample of a
standard normal distribution and the decisions are made
independently, then if 8 is such that the right tail area of
the density of IV(0,l) is CY,

In practice, a sensor becomes faulty if i) data mea-
surement or data collection makes errors, or ii) some
variability in the area surrounding the sensor has changed
significantly, or iii) the inherent function of the sensor i s
abnormal. In any of the three cases, readings from faulty
sensors do not reflect reality, so that they can be dis-
carded before further analysis on sensor data. However,
faulty readings may contain valuable information related
to events and provide help in detecting the events. For
this reason, issues concerning event region detection will
be addressed in the presence of data from faulty sensors.

will be about Q x N .

v. LOCALIZED EVENT BOUNDARY DETECTiON

In this section, we describe our procedure for local-
ized event region detection. To detect an event region,
it suffices to detect the sensor nodes near or on the
boundary of the event. As mentioned above, C1 may
contain some normal sensors close to the event boundary.
However, Algorithm 1 usually does not effectively detect
sensors close to the boundary of the event. To illustrate
this point, let us consider the simple situation where
the event lies to one side of a straight line. Suppose
that readings of sensors in the event (region) E form a
sample from a normal distribution N(p1, cr2) and sensor
readings outside & form another sample from N(y2, u2).
where 1.11 # p a , and IT is small compared to 1/11 -pa] .
{ N) and {ni'} are constructed using closed disks.
Consider sensor Si. Assume that readings of sensors
in a neighborhood of Si are within 20 distance from
the means of their corresponding normal distributions.
Take each N neighborhood of sensors in w (S i) to be
sufficiently large. Due to uniformity of h e deployment

906

Fig. 2.
the ellipse i s the event region. A sensor becomes faulty with probability p = 0.2. A
A o in (b], (c). and (d) represents a node in C1, C2, and Cs, respectively.

Illustration of C1. Cz. and C3. Dah in (a) are obtained from one run of the experiment leading ro Figs 13 and 14. The interior of
represents a sensor and a + represents a faulty sensor.

\

Fig. 3. Event E is the union of line 1 and the portion on the left
hand side of 1 . Si is a sensor located on B(E) and SI is a sensor
inside Ap'(Si). Both N * (S i) and ?V(S,) are closed disks.

of sensors, cdculation based on equation (I) shows that
each d follows N(0: a2) approximately. For example, at
sensor SI shown in Figure 3, d l follows approximately
N (0 7 a 2) . The reasoning is as folIows. Let RI denote
the portion of N(S1) that lies on the right hand side
of the event boundary, and El2 denote the remaining
portion of N(S1). Then the area of RI is larger than
that of R2. Since the sensors are uniformly distributed,
the expected number of sensors in R1 is larger than the
expected number of sensors in R2. Then medl will be
obtained using the sensor readings from R I . When cr
is small compared to Ip1 - pal, medl is about p 2 , so
that d l , which is about z1 - p2, follows approximately

Furthermore, it is seen that y1; . ., yn from (2) form
approximately a sample of N(0,l) where each member
of the sample is within distance 2 of 0. This shows that
Si can not be detected if 19 = 2.

So that sensors near and on B(E) can be detected ef-
ficiently, the procedure described in Algorithm 1 should
be modified. As motivated above, when Si close to the
boundary can not be detected, we should select a special
neighborhood "(Si) such that I&, compared with d
values from surrounding neighborhoods, is as extreme

N (0 , a').

Fig. 4.
containing PI, P2. B. and Si.

Illustration of random bisection. " (S ,) is the half disk

as possible. There are many options in doing this. Here
we describe two of them: random bisection and random
trisection.

1) Random Bisection: Consider an Si from the set
S - CI. Place a closed disk centered at Si. Randomly
draw a line through Si, dividing the disk into two halves.
Calculate di in each half. Use NN(Si) to denote the half
disk yielding the largest Idil. For an illustration, consult
Figure 4. In the figure, the h e randomly chosen meets
the boundary of the disk at points PI and P2, and the
boundary of the event meets the boundary of the disk at
points A and B. Due to uniformity of sensor diployment,
we see that ldil from the half disk containing PI, P2, B,
and Si is the largest, and hence this half will be used as

After "(Si) is found, the resulting di will be used
to replace the old d i , keeping unchanged all the other
d values from N*(Si). Then perform calculation in (2)
and make a decision on Si.

2) Random Trisection: Consider a closed disk cen-
tered at Si E S - CI. Randomly divide the disk into
three sectors with an equal area. Number the sectors as
i, ii, and iii, as shown in Figure 5. Form a union using
any two sectors and calculate d i in each union (total =3).
The union resulting in the largest 141 is "(Si) . It is

"(Si).

907

and C3 into the following algorithm.

ALGORITHM 2

Fig. 5. Illustration of random trisection. Sectors PlPlSi. P'SiP3,
and P3SiPl are numbered as i. U. and iii. respectively. Each sector
contains an angle equal to 2 ~ / 3 . " (S a) is the union of sectors i
and iii.

easy to see that in Figure 5 , NM(Sz) is the union of
sectors i and iii. The d, with the largest ldzl will replace
previous d,, keeping unchanged all the other d values
from N'(S ,) , and subsequently a decision will be made
on S,.

There are two options of the decision on S,, based on
NN(S,). If 1yt/21 < 6, S, would be treated as a normal
sensor. If lg%l 2 8, the sensor S, can be close to or far
away from the boundary B(&). Let C2 denote the set of
all the sensors with lyzl 2 6. The set C2 is expected to
contain enough sensors close to the event boundary (See
Fig. 2(c)). In general, C;! catches more sensors near the
event boundary than C1 does, Now we discuss how to
combine C1 and C2 to infer the event boundary.

As seen in the denvation of C1 and Cz, the set Cl is
expected to contain faulty sensors and CZ is expected to
contain sensors close to the event boundary. However, in
general, C1 also contains some sensors near the boundary
that are not faulty, and C2 contains some sensors that are
not close to the boundary. We now present a method
to combine C1 and Ca to form a set of sensors that
can be used to infer the outline of the event boundary.
Consider how to select sensors from the union C1 UC2
Lo approximate the boundary. For a sensor St E C1 UC2,
draw a closed disk D(S2; e) with radius c centered at S,.
The expected number of sensors falling into the disk is
M = T . Since sensor readings are usually correlated
and C2 mainly contributes to the set of sensors near
the event boundary, S, is expected to be close to the
boundary if D(Sz;c) contains at least one sensor from
C2 that is different from S,. For any positive integer m.
let &(m) denote the subset of C1 UC2 such that for
each S, E Cs(m), the disk D(Sz;) contains at
least one sensor from Ca that is diferent from S,. The
set Ca(m) will serve as a set of sensors used to infer
the event boundary (S e e Figure 2(d)). For convenience,
sometimes we will write C3 for CZ(m).

Now we summarize the above procedure of finding C2

iw2 N

Construct { N) and {N*}. Apply Algorithm 1 to
produce the set C1 (0 = 01).
For each sensor Si E S-C1, perfom the following
steps. Obtain NN(Si) and update di from step 1)
to the new di from "(Si), keeping unchanged
all the other d values from N*(Si) obtained in
step 1). Use equation (2) to recompute pi. If Iyil 2
8 , assign Si to set C2 (0 = 82) ; otherwise, treat Si
as a normal sensor.
Obtain Cs(m), where m is a predetermined posi-
tive integer.

We stress on the following points on the use of the
algorithm. First, the updated di in step 2) is only needed
when making a decision on sensor Si. Once such a
decision is made, this new di will have to be changed
back to the original one obtained in step 1). Second,
assuming the y values in equation (2) constitute a sample
of a standard normal distribution and the decisions are
made independently, then if 191 and 8 2 are such that the
right tail areas of the density of N(0,l) are a1 and cyz,
respectively, the size of C2 is about (1 - a1) x a2 x N .
Third, unlike Algorithm 1, which utilizes the topological
information of sensor locations to find C1, Algorithm 2
uses the geographical information of locations to locate
C2 and Cs,

VI. PERFORMANCE EVALUATION
Evaluation of the proposed algorithms include two

tasks: evaluating C1 and evaluating C3. In this section,
we first define metrics to evaluate C1. Then we examine
what type of sensors could be detected as being in C2 by
Algorithm 2. The finding is then used to define metrics
to evaluate the performance of C3.

A. Evaluation of C1

To evaluate the performance of C1, we compute the
detecrion accuracy a(Cl), defined to be the ratio of
number of faulty sensors detected to the total number of
faulty sensors, and the false alarm rate e(Cl), defined
to be the ratio of number of non-faulty sensors that
are claimed as faulty to the total number of non-faulty
sensors. Let U denote the set of faulty sensors in the
field, then

If .(Cl) is high and e(C1) is low, Algorithm 1 has a good
performance.

908

I I containing PI, has an area

TR2 1 2 AI = -w - -R sinw,
27T 2

Fig 6. The event boundary intersects the disk D(S,; R) in WO

seclors I and iu. A and B are two intersection points between the
event boundary and the boundary of the disk. r‘ is the distance from
sensor S, to the event boundary.

I

Fig. 7. The event boundary intersects the disk D(S,: R) in three
sectors i, ii, and U]. A and B are fwo intersection points between the
event boundary and the boundary of the disk. T is the distance from
sensor Si to the event boundary.

B. When Could Sensors be Assigned fo CZ?

Here we present a brief examination on what kind of
sensors have the potential to be detected by Algorithm 2
as belonging to Ca. Let T denote the distance from the
sensor Si to the event boundary. We now informaliy
show that if T is larger than R/2. then the chance that
Si will not be detected by Algorithm 2 is high. We first
consider the cae where the random trisection method is
used in obtaining {NN}.

Let D(Si; R) denote the closed disk of radius R cen-
tered at Si. Without loss of generality, we may assume
that the portion of the boundary falling into D(S,;R)
is a line segment. Clearly, if B(&) does not intersect
D(Si; R) or intersects D(&; R) only in one sector. it
is very likely that di from the resulting neighborhood
NN(Si) will not become extreme among d values from
JV* (Si) so that Si may not be detected as a sensor in Ca.
Therefore, we only need to consider two cases shown in
Figure 6 and Figure 7, where B(&) intersects D(&; R)
in at least two sectors.

Consider Figure 6, where B(C) intersects D(Si; R) in
two sectors. Clearly, AbV(S,) should be the union of
sectors i and iii. The event boundary cuts N M (S i) into
two parts. The part occupied by the event, i.e., the part

where LL‘ E (0:7i] is the value of LASiB. And conse-
quently, the area of the other part is

r R 2 47r
A2 = -(-) - .41.

271 3
So that d, from NN(S,) becomes extreme, we require
A I 2 A*, which implies

x R 2 47r
27i 2 zll 3

2(-w 7iR2 - -R 1 2 sinw) 2 -(T).

Simplification leads to w - 9 2 sinw. We see that
w 2 %, since sinw 2 0. Then

Now consider Figure 7, where B(E) intersects
D(Si; R) in all three sectors. Let w E (0,7r] be the value
of LASiB. Then w 2 2n/3. So r = Rcos: 5 f.
Summarizing the above shows that r < $.

Similarly, when the random bisection method is used
in obtaining {UN}, we can also show that T < 5.

Due to the above property of R, we call R/2 the
tolerance radius.

C. Evaluation of C3

Here we first describe a quantity to judge how well
Cs can be used to fit the boundary. Then we present
a quantity to examine how many sensors that are “far
away” are included in CB. We begin with the following
definition.

DEFINITION: For a positive number T , let BA(&;r)
denote the set of all points in R2 such that the distance
of each point to the boundary B(E) is at most r . The
degree of $tfing of C3 is defined to be

Intuitively, BA(€; T) is a strip with width 277 centered
around the event boundary. The quantity a(C3,r) is
expected to provide valuable information on whether or
not the detection algorithm performs well in det.ecting
the boundary of the event. The reasoning is as follows.
Suppose BA(€; T) is such that all the sensors in BA(€; T)

provide a good outline of the boundary I?(€). If a(C3, T)

is large, say, above 90%, then all the sensors in BA(&; T)

that are detected by an event detection algorithm are also
expected to provide a good outline of the boundary of
the event.

909

1 BAIE: r)
I

Fig. 8. An illustration of the square Q fitted into the boundary area.

The value of T pIays an important role in interpreting
BA(E;r) and a(Cs,r). If t’ is large, say, above R/2,
then the above Section VI-B shows that many sensors
within BA(&;r) will not be detected so that a(C3,r)
can be very low. On the other hand, if r is very small,
BA(&; T) may become a strip containing few sensors so
that BA(€; T) does not present a good description of the
boundary B(E). A natural question is then: how can one
choose an appropriate T such that BA(&;r) provides a
good outline of the boundary and a(C3, r) is informative?

To get an answer, we first note that if these N sensors
are placed into the field using the standard grid method,
then a typical grid is a square with width equal to b / n ,
Given BA(&;r), randomly draw a square Q “inside”
BA(&;r) such that i) its width is 2r; ii) two sides of
the square are “perpendicular” to the boundary B(&).
See Figure 8 for an example of Q,

Set 2r = c x b, where c is to be determined. That is, fl
the width of the fitted squae Q equals c times the width
of a typical grid square. Clearly, the expected number of
sensors caught by Q is

area of Q N x (e x q2
= c2.

(area of sensor field) = b2
For BA(€; T) to provide a good outline of the boundary,
intuitively, we could choose T such that c2, the expected
number of sensors inside Q, equals 1. When c2 = 1, T

has the following value
1 b

= A-).
L Z / l V

Note that T I equals half width of a typical grid,
We now turn to examining how many sensors not

close to the boundary are contained in C3. Motivated
by Section -VI-B, we only check those sensors whose
distances to the boundary are at least R/2. Let A(&; R)
denote the set of all points in R2 such that the distance of
each point to the boundary B (€) is at least R/2. Define
thefalse defection rate of C3 to be the following quantity

If e(C3,R) is small, sensors far away from the event
boundary are not likely to be contained in Cy.

VII. SIMULATION
A. Sin~ularioii Set-IJp

MATLAB is used to perform all sitnuiations. The
sensor network contains 1024 nodes in a square region of
size 32 x 32 units with one sensor randomly placed within
each unit grid. Without loss of generality, we assume
the square region resides in the first quadrant such that
the lower-left comer and the origin are co-located. Sen-
sor coordinates are defined accordingly. Normal sensor
readings are drawn from N(,uI! Q,”) while event sensor
readings are drawn from N (pa ~ CT,”). In the simulation we
choose p1 = 10, 112 = 30, 01 = 0 2 = 1. Note that these
means and variances can be picked arbitrarily as long as
[PI- p21 is large enough compared with CTI and 0 2 , We
choose u1 = 02 = 1 because they represent the system
calibration error which should be small for a sensor that
is not faulty.

In all the simulation scenarios, we choose N = N*,
and N(Si) contains all one-hop neighbors of Si. Increas-
ing the size of N requires increasing either transmission
range to enlarge, the one-hop neighbor set, or the hop
count. But multihop neighborhood information implies
high communication overhead, Since our simulation
focuses on the evaluation of the proposed algorithms,
we choose to increase transmission range and thus N
always contains one-hop neighbors. Therefore, we call
the average number of sensors in N the densily of the
sensor network,

Note that both algorithms I and 2 need thresholds
(6’ = 81 to compute C1 and 6’ = 192 to compute C,)
to make decisions. In all the simulation scenarios for
event boundary detection. we choose 6’ = 81 = 82.
The settings of the threshold, listed in Table I , depend
on p , the probability that a sensor becomes faulty. If
p = 0, we simply set I9 = 2 in order to detect the event
boundary. The 8 values are obtained from a standard
normal distribution, as shown in Sections IV and V. Note

P I 5% I 10% I 15% I 20%
0 I 1.96 I 1.65 I 1.44 I 1.28

TABLE I
THE SETTINGS OF THRESHOLD 8 .

that in general p is not a priori for a sensor, but its
empirical value may be available based on the elapsed
time after deployment. On the other hand, sensors can
obtain information of the false alarm rate from base
stations and adaptively adjust the settings of thresholds.

910

In our simulation we choose to use the values listed in
Table I for simplicity.

To simulate Algorithm 1 for faulty sensor detection,
no event is generated in the region. AI1 faulty values are
drawn from N(30) 1). In the simulation of event bound-
ary detection, an event region with different boundary
shapes, such as a rectangle, a triangle, a circle, an ellipse,
a straight line, a sine curve, and so on, are considered,
A sensor in the event region gets a value from N(10,l)
with probability p and a sensor out of the event region
gels a value from N (3 0 , 1) with probability p. These
settings are selected to make readings from an event
region and readings outside the region largely interfere
with each other. When inputs are binary decision pred-
icates, a sensor flips its value from 1 to 0 or from 0 to
1 with probability y.

We will report the results for event regions with
ellipses or straight lines as the boundaries. Straight lines
are selected because when the network area is large, the
view of the boundary of one sensor near the boundary is
approximated by a line segment in most cases. An ellipse
represents a curly boundary. Our simulation produces
similar results for event regions with other boundary
shapes.

The event regions are generated as follows. For a
linear boundary, a line y = kx + b is computed, where
k = tan 8 is the slope, with 8 drawn randomly from
(O,;), and b is the intercept, drawn randomly from
(-16,lc). The area below the line is the event region.
For a curly boundary, the event region is an ellipse that
can be represented by E(a, b, 20, yo, 8) = 0 [6] . Here 2a
and 2b are the lengths of the major and minor axes of
the ellipse, with a, b drawn randomly from [4,16]. The
center of the ellipse is (rc~,yo), where 20 and go are
randomly chosen from [a, 32 - a] , 8, the angle between
the major axis of the ellipse and the x-axis, is a random
number between 0 and 7i.

B. Sirnitlation Results
In this suhsection, we report our simulation results,

each representing an averaged summary over 100 runs.
The performance metrics include the detection accuracy
and false aIarm rate for faulty sensor detection, as defined
by equation (4) in Subsection VI-A for the evaluation of
C1, and the degree of fitting and false detection rate for
event boundary detection, as defined by equations (3,
(6) , and (7) in Subsection VI-C for the evaluation of Cs.
Note that the two sets, C1 and CY, contain the detected
faulty sensors and boundary sensors, respectively.

Figs. 9 and 10 plot the detection accuracy and false
darm rate vs. p , the probability that a sensor reading

Fig. 9. R u t t y sensor detection accuracy v s . p .

z

Fig. 10. False alarm rate i n faulty sensor detection vs. p .

becomes faulty, under different network densities for
faulty sensor detection. In Fig. 9, it is observed that
the higher ihe p , the lower the detection accuracy. From
Fig. 10, we observe that the false alarm rate decreases
with p when density equals 20, 30, 40 and 50. By
carefully tracing back the intermediate results, we find
that the current settings of thresholds help to decrease the
false alarm rate. From both graphs, we also observe that
a higher network density often leads to a higher detection
accuracy and lower false alarm rate. This is reasonable
because more sensors in N and AP together bring more
information for better results. Note that when p 5 0.2
and density 2 30, the detection accuracy is above 94%
and false alarm rate is around 1%. For density = 20, we
achieve a detection accuracy of around 90% and false
alarm rate < 2%. From both graphs, we observe that a
smaller number of sensors in Af with density = 10 may
not be a good choice for Algorithm 1.

For event boundary detection described in Section V,
we report the degree of fitting and the false deiection rate
vs. network density and vs. p , respectively, in Figs. 11-14.
Note that in transition from C1 and C:! to C3, we need to
set m, defined in Section V. Through simulation studies
we observe that a larger m usually results in a higher

91 1

Fig. 11. Degree of fitting vs. network density when p = 0.

degree of fitting and a higher false detection rate, when
the network density and p are fixed. In the following we
fix mr = 4 since this setting in general achieves a good
degree of fitting and a low false detection rate.

A general observation from Figs. 11-14 is that for both
linear and elliptical boundaries, the random trisection
method outperforms the random bisection method. This
is because random trisection induces a larger NN.
Besides, the degree of fitting for the linear boundary is
higher than that of the elliptical curve. Now we examine
each pair of figures in detail.

Figs. 11 and 12 demonstrate the performance of CB
with variable densities when p = 0. We observe that
increasing density in general can increase both the degree
of fitting and the false detection rate. This increase can be
explained as follows. When we increase the density, i.e.,
the number of sensors in N and N', we actually increase
the transmission range R in our simulation. Thus the
tolerance radius (f) is increased, which means more
sensors close to the boundary will be assigned to C2.
Then the size of C3 will be increased and thus the degree
of fitting and the false detection rate will be increased
accordingly. From the figures, we see that when the
density is large enough (density 2 30), both the degree
of fitting and the false detection rate increase slightly.
This indicates that a density larger than 30 might affect
the degree of fitting and false.detection rate in about the
same way as a density of 30.

We also observe several deviations from the "increas-
ing trend" in Figs. 11 and 12. This is mainly due to the
limited size of the simulation region, which becomes
too small (compared with xR2) when we increase the
transmission range. Note that the unit of the y-axis also
amplifies the deviation in Fig. 12.

When the sensor fault probability increases, the per-
formance of CJ usually decreases, as shown in Figs. 13
and 14. Compared with Fig. 11, the degree of fitting
is low when p > 0 for the same network density. This

Fig, 12. False detection rate 10. network density when p = 0.

Fig. 13. Degree of fitting vs. p when density = 30.

Fig. 14. False detection rate ICF. p when density = 30.

is obvious since faulty sensors ' interfere with boundary
nodes. Note that a low degree of fitting does not mean
that the boundary can not be detected. It means that more
sensors close to the boundary escape the detection. As
shown in Fig. 2(d), with degree of fitting as low as 55%
when p = 0.2, the elliptical boundary is still clearly
identified. In this scenario, the faulty sensor detection
accuracy is 91%.

We have also-conducted simulations when input data
are binary decision predicates and obtained results close

912

to those reported in Figs. 13 and 14. This indicates
that our algorithms are applicable to both 0/1 decision
predicates and numeric sensor readings.

VIII. FUTURE WORK DISCUSSION

We believe that our ideas in detecting faulty sensors
and event boundaries can be extended to multi-modality
sensor networks. and the data aggregation can be done
along both temporal and spatial dimensions for decreas-
ing the false alarm rate in faulty sensor detection and
the false detection rate for boundary detection. Thus
we propose to explore along these directions in the
future. The current algorithms are sensitive to the settings
of thresholds, which are dependent on the sensor fault
probability. By exploiting the false alarm probability
obtained from base stations. an adaptive threshold that
better fits the application context can be designed. We
also target this as a future work. Besides, in our future
work, we will explore the technique of curve fitting,
instead of the metrics of degree of fitting and false
detection rates. in order to evaluate the performance of
our algorithm in detecting the event boundary.

A c KNOW LEDGM ENT

D. Chen was supported by the National Science Foun-

The research of Dr. Xiuzhen Cheng is supported by
dation grant CCR-03 11252.

NSF CAREER Award NO. CNS-0347674.

REFERENCES

V. Barnet and T. Lewis. Outliers in Sratisticcll Datu, John Wiley
and Sons, Inc., 1994.
D. Chen and X. Cheng. An Asymptotic Analysis of Some
Expert Fusion Methods, Pastern Recognition Letters. 22, 901-
90.1, 2001.
D. Chen, X. Cheng, and M. Ding, Localized Event Detection
in,Sensor Networks, manuscript. 2004.
X. Cheng. D.-Z. Du. L. Wang and B. Xu, Relay Sensor Place-
ment in Wireless Sensor Networks, to appear in ACMXluwer
Wireless Nemo&, 2004.
X. Cheng, A. Thaeler. G. Xue, and D. Cben. TPS: A Time-
Based Positioning Scheme for Outdoor Sensor Networks, IEEE
INFOCOM. HongKong China, March 2004.
K.K. Chintalapudi and R. Govindan. Localized Edge Detection
in Sensor Fields. IEEE Ad Hoc Networks Journal, pp. 59-70?
2003.
T. Clouqneur, K.K. Saluja. and P. Ramanathan, Fault Tolerance
in Collaborative Sensor Networks for Target Detection. IEEE
Transacrions on Computers. pp. 320-333. Vol. 53, No. 3. March
2004.
D. Estrin. L. Girod. G. Pottie. and M. Srivastava. Instrumenting
the World with Wireless Sensor Networks, ICASSP’Ol, Salt
Lake City. UT, 2001.
1. Hill, A software architecture to support network sensors,
Master’s Thesis, UC Berkeley, 2000.

J. Hill. R. Szewczyk. A. Woo. S. Hollar, and J. Heidcmann.
System architecture directions for networked sensors, Proc. Yrh
lrrteriiurional Conference on Architecrural Supporf for Ptwpranr-
ming Languages and Upernring Sysrennls. November 2 0 0 .
B. Krishnamnchari and S. Iyengar. Distributed Bayesian Algo-
rithms for Fault-Tolerant Event Region Detection in Wireless
Sensor Networks. IEEE Transactions on Computers. Vol. 53.

K. Krivoruchko, C . Gotway, and A. Zhigimont. Statistical Tools
for Regional Data Analysis Using CIS. CIS ‘03. pp. 41 -48. New
Orleans. LA, November 2003.
D. Li, K.D. Wong. Y.H. Hu. and A.M. Sayeed. Detection.
Classification. and Tracking o f Thrgets. IEEE Signal Processing
Magazine. Vol. 19, pp. 17-29, March 2002.
C.T. Lu. D. Chen. and Y. Kou. Detecting Spatial Outliers
with Multiple Attributes, Pruceedings of 15th lnremational
Conference on Tools with Artijicial Intelligence pp. 122- 128,
November 2003.
C.T. Lu. D. Chen, and Y. Kou, Algorithms for Spatial Outlier
Detection. Proceedings of 3rd IEEE Inrermional Conference
on Dara Mining, p p . 597-600. November 2003.
S. Madden. M. J. Franklin and J.M. Hellerstein and W. Hong,
TAG: a tiny aggregation service for ad-hoc sensor networks.
OSDI, December 2002.
A. Mainwaring, J. Polastre, R. Szewczyk. D. Culler, and J.
Anderson. Wireless Sensor Networks for Habitat Monitoring,
ACM WSNA’02. Atlanta GA. September 2002.
S. Marti, T.J. Giuli. K. h i , and M. Baker. Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks. ACM MOBICOM’OO,
pp. 255-265, Boston, MA, August 2000.
T. Palpanas. D. Papadopoulos. V. Kalogeraki. and D. Gunopu-
10s. Distributed Deviation Detection in Sensor Networks. SIG-
MOD Record, Vol. 32, No. 4. pp. 77-82. December 2003.
A. Perrig. R. Szewczyk. V. Wen. D. Culler. and J. Tygar. Spins:
Security Protocols for Sensor Networks. Wireless Networks,
Vol. 8, No. 5. pp.521-534, September 2002.
W. Ruml. Y. Shang. and Y. Zhang, Location from Mere Con-
nectivity, Proceedings of the 4th ACM International Symposiuiir
on Mobile Ad hoc Neworking and Cumpuling (MobiHOC03),
pp. 201-212. 2003.
J. Staddon. D. Balfanz, and G. Durfee, Efficient Tracing of
Failed Nodes in Sensor Networks. ACM WSNA’O2, pp. 122-
130. Atlanta, CA, September 2002.
S. Tanachaiwiwat, P. Dave. R. Bhindwale, and A. Helmy,
Secure Locations: Routing on Trust and Isolating Compromised
Sensors in Location-Aware Sensor Networks, ACM SenSys’O3,
pp. 324-325. Los Angeles, California. 2003.
A. Thaeler. M. Ding, X. Cheng, and D. Chen. iTPS: An Im-
proved Location Discovery Scheme for Sensor Networks with
Long Range Beacons, to appear in Special Issue on Theoretical
and Algorifhmic Aspecrs of Sensor; Ad Hoc Wireleu. and
Peer-to-Peer Networks of Journal of Parallel and Distributed
COtJlputing, Fall 2004.
S. S. Wilks. Marhernutical Sraristics, Wiley, New York. 1962..
H. Wu. C, Wang, and N.-E Tzeng, Novel Self-Configurable
Positioning Technique for Multi-hop Wireless Networks, to
appear in IEEEACM Trunsaclions OR Networking.
N. Xu, A Survey of Sensor Network Applications.
http://enl.usc .edu/“ ningxu/papers/survey.pdf
Y. Zhao. R. Govmdan. and D. Estrin, Residual Energy Scans
for Monitoring Wireless Sensor Networks, IEEE WCNC’OZ. pp.
78-89. Florida. March 2002.

NO. 3 . pp. 231-250. M X C ~ 2004.

913

http://enl.usc

