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Abstracf- This paper targets the identification of faulty 
sensors and detection of the reach of events in sensor 
networks with faulty sensors. Typical applications in- 
clude the detection of the transportation front line of 
a contamination and the diagnosis of network health. 
We propose and analyze two novel algorithms for faulty 
sensor identification and falt-tolerant event boundary 
detection. These algorithms are purely localized and thus 
scale well to large sensor networks. Their computational 
overhead is low, since only simple numerical operations are 
invoked. Simulation results indicate that these algorithms 
can clearly detect the event boundary and can identify 
faulty sensors with a high accuracy and a low false alarm 
rate when as many as 20% sensors become faulty. 

Our work is exploratory in that the proposed algo- 
rithms can accept any kind of scalar values as inputs, 
a dramatic improvement over existing works that take 
only 011 decision predicates. Therefore, our algorithms are 
generic. They can be applied as long as the “events” can 
be modelled by numerical numbers. Though designed for 
sensor networks, our algorithms can be applied to the 
outlier detection and regional data analysis in spatial data 
mining. 

Keywords: Sensor networks, event boundary detec- 
tion, fault tolerance, faulty sensor identification. 

I .  INTRODUCTION 

The marriage of Sensor and network technologies 
provides many exciting applications of sensor networks 
141, [17], [27]. With their capabilities for monitoring and 
control, networked sensors are expected to be widely 
deployed. Such a network can provide a fine global 
picture through the collaboration of many sensors with 
each observing a coarse local view [13], [16]. The 
difficulty in flourishing these networks lies in in-network 
processing observations from sensors in close geographic 
proximity [8 J ,  

One important task of a typical sensor network is to 
monitor. detect, and report the occurrences of interesting 
events (e.g. forest fire, chemical spills, etc.) with the 

presence of f a d t y  sensor measurements. These events 
usually span some geographic region and in many appli- 
cation scenarios the detection of the event boundary may 
become more important than the detection of the entire 
event region, A good example is the timely estimation of 
the possible reach of the contamination in a surveillance 
network monitoring the transportation of chemical spills 
in soil. On the other hand, individual sensor reading is 
not reliable. Filtering out faulty readings and transmitting 
only the boundary information to the base station can 
save energy. In this paper we target the problem of 
identifying faulty sensors and detecting event boundaries 
in sensor networks with faulty sensors, 

There exist other application scenarios that motivate 
our research. In sensor network health diagnosis [28], 
we would like to identify the regions containing sensors 
that behave differently from those in the outside of 
the regions. For example, in military sensor networks, 
enemies can destroy or attack the Sensors within a 
reachable region. In habitat monitoring, sensors in close 
proximity may have a similar level of residual energy 
since they are on the same duty [28]. In both cases, 
most or all sensors within some region may be dead, or 
behave arbitrarily or maliciously. A typical event region 
detection may fail due to the lack of meaningful sensor 
readings, and computing the boundary then becomes a 
feasible alternative. 

However, faulty sensor detection and event boundary 
computation are not trivial at all. One significant chal- 
lenge facing the two tasks comes from the strict resource 
limitation (battery power, bandwidth, etc.). Sensors are 
powered by battery, which may not be recharged or 
replaced after deployment. We can not afford to allow a 
base station collect all sensor measurements and compute 
event boundaries in a centralized fashion [9], [lo], [16]. 
Therefore, we have to seek localized and computation- 
ally efficient algorithms for each node to determine 
whether it is faulty or whether it is close to the event 
boundary. The presence of faulty sensors constitutes 
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another significant. challenge for event boundary com- 
putation. Sensor readings may be faulty due to hardware 
crash, security attack, or environment disturbance. Thus 
a solid event boundary detection algorithm must be 
robust and fault-tolerant. 
Our major contribution consists of one localized algo- 

rithm for faulty sensor identification and one localized 
algorithm for fault-tolerant event boundary detection. 
These two algorithms are generic. They can take as 
inputs any type of numbers provided by sensors. This 
is fundamentally different from the existing works in 
event, event region, and event boundary computation [6], 
[7], [11], where sensors are required to access a binary 
decision procedure by comparing their readings with a 
predetermined threshold. This binary decision is called a 
O/I decision predicate, with 1 indicating an event status 
and 0 indicating a normal status. Using 0/1 decision 
predicates for event, event region, and event boundary 
computation may have the following disadvantages: 

0/1 decision predicates are the results of comparing 
current Sensor readings with a threshold. If the 
threshold is a global cut based on a priori informa- 
tion, 011 predicates will miss the spatial information 
on deployed sensors. 
0/1 decision predicates are the preprocessing results 
of the actual measured data. Detection over binary 
predicates represents the second round approxima- 
tion. 
0/1 predicates may not be correct due to faulty 
sensors, Intuitively, algorithms based on original 
sensor readings or measurements should be more 
precise and more robust. 

There are some other unique characteristics of the 
proposed algorithms. The boundary detection algorithm 
takes into account the issue of fuuk-event disumbigua- 
tion. We note that both fauIty sensors and sensors in an 
event region can generate “abnormal readings” deviated 
from a typical application-specific range. Intuitively, 
when a remarkable change in sensor readings is detected, 
something must have happened. If the change is present 
with a single sensor only, the sensor is faulty. If most 
neighboring sensors observe the same phenomenon si- 
multaneously, an event occurs. In other words, readings 
from faulty sensors are geographically independent. But 
readings from sensors in close proximity are spatially 
correlated [l l] .  This property has been embedded into 
our event boundary detection algorithm. Simulation re- 
sults indicate that our algorithms have a strong fault- 
tolerant ability and are effective in identifying faulty 
sensors and locating the event boundaries. For exam- 
ple, for a moderately dense sensor network (about 30 

. 

nodes in the neighborhood) with 20% fauIty sensors, 
our dgorithms can clearly detect the event boundary and 
maintain a high faulty sensor detection accuracy (above 
90%) and a low false aIarm rate. 

Our approach to faulty sensor and event boundary 
detection is related to the outlier detection and regional 
data analysis in spatial data mining [lZ], [14], [151. It 
is expected that the algorithms proposed in this paper 
will find many applications in fields other than sensor 
networks. 

This paper is organized as follows. We first briefly 
summarize the related work in Section IT and explain 
useful notations in Section 111. The two localized algo- 
rithms for faulty sensor identification and fault-tolerant 
event boundary detection are proposed in Sections IV 
and V. Performance metrics and analysis are outlined 
in Section VI. Our simulation results are reported in 
Section VII. We conclude our paper in Section VI11 with 
future work discussion. 

11. REL.4TED WORK 

In this section, we summarize related works along 
three major lines: 0/1 decision predicate computation, 
faulty sensor detection, and event region and event 
boundary detection. Most existing deviation and event 
detection algorithms rely on the 0/1 decision predicates 
computed by individual sensors. 

As we have noted earlier, when a remarkable change 
in the readings of sensors is detected, a faulty sensor 
or a real event must have occurred. This observation 
is explored in [3], [13], [19] for 0/1 decision predi- 
cate computation. The related algorithms require only 
the most recent readings (within a sliding window) of 
individual sensors. No collaboration among neighboring 
sensors are exploited. In [ 3 ] ,  the “change point” of the 
time series are statistically computed. The result can be 
used to answer questions such as “when does the front 
line of the contamination reach location ( x ~ Y ) ? ”  The 
detector proposed in [13] computes a running average 
and compares it with a threshold, which can be adjusted 
by false alarm rate. In [19], kernel densily estimators are 
designed to check whether the number of “abnormal” 
readings are beyond an application-specific threshold. 
Note that none of these works can disambiguate faulty 
sensors and real event sensors since only observations 
from individual sensors are studied. By exploring the 
correlation among neighboring sensors, our work can 
tell faulty sensors from event sensors and compute the 
boundary of the event region. 

Failed or misbehaving nodes are faulty sensors that 
can be detected through route discovery and update. 
Common routing protocols leverage the re-establishment 
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of route discovery to evade failed nodes [20]. Staddon, 
Balfanz, and Durfee [22] propose to trace failed nodes 
in sensor networks at a base station, assuming a11 sensor 
measurements will be directed 10 the base station along 
a routing tree. In this work, the base station that has a 
global view of the network topology can identify failed 
nodes through route update messages. In [lS], nodes can 
listen-in on the neighbor to detect failed or misbehaving 
neighbors. In [23], base stations launch marked packets 
to probe sensors and reIy on their responses to identify 
and isolate insecure locations. Our algorithm is more 
versatile. It can detect many kmds of misbehaving nodes, 
as long as the “abnormal behavior” can be modelled 
by real numbers. Our algorithm does not rely on any 
routing or global topoIogy information, thus provides 
better scalability and flexibility. Moreover, our algorithm 
can be combined with any routing protocol to route 
the detected information to base stations for further 
instructions. 

Clouqueur, Saluja, and Ramanathan [7] seek algo- 
rithms to collaboratively detect the presence of a target 
in a region G. Each sensor obtains the target energy 
(or local decision) from all other sensors in the region, 
drops extreme values if faulty sensors exist, computes 
the average, and then compares it with a pre-determined 
threshold for final decision. Correspondingly, the algo- 
rithm is termed valisefusion if the input is target energy, 
or decision Jitsiorr if the input is the local decision made 
by each sensor. Under these algorithms, all sensors in 
region G will conclude with a same decision. However, 
both target energy and local decision need to be com- 
puted ahead of time. Further, these algorithms do not 
specify how to define region G, as the communication 
and computation overheads are strongly related to the 
size of G. Our algorithm requires only raw readings from 
the neighborhood and captures the boundary sensors 
surrounding the region, 

Krishnamachari and Iyengar [l l]  propose several 
localized threshold based decision schemes to detect 
both faulty sensors and event regions. The 0/1 decision 
predicates from the neighborhood are collected and 
the number of neighbors with the same predicates are 
calculated. This number is used for the final decision 
based on a majority vote. The algorithm presented in 
this paper identifies both faulty sensors and front lines 
of event regions. It works well with not only 0/1 decision 
predicates but also numbers that abstract sensor readings 
or sensor behaviors. 

The unique work that targets localized boundary de- 
tection in sensor networks is proposed in [6] .  All of the 
three schemes in [6]  rake as inputs the 0/1 decision pred- 
icates from neighboring sensors. The statistical approach 

computes the number of 0’s and 1’s in thc neighborhood 
and a boundary sensor is detected if its neighbors contain 
a “simdar” number of 0’s and 1’s. Here the “similarity” 
is defined based on a threshold whose value can be 
obtained based on a lookup table. The image processing 
approach computes a weighted average of all the neigh- 
boring values. The classifier-based approach computes 
an optimal classifier by sampling the neighboring area, 
The first two approaches need a threshold whose value is 
determined by multiple parameters, The classifier-based 
approach does not need a threshoId, but the fine sample 
granularity contributes a high computational overhead, 
Our boundary detection algorithm does not need the 
pre-computation of the 0/1 decision predicates. It. is 
computationally simpler than the last two approaches. 
Further, the threshold in our algorithm only depends on 
the fault tolerance requirement. 

Network health scans are also related to boundary 
detection. Residual energy scan (eScan) [28], for ex- 
ample, is proposed to identify regions with low energy 
supply. This can help users decide when to deploy new 
sensors to avoid network malfunctions caused by energy 
depletion. In eScan, a data disseminating tree rooted at 
the base station is constructed and residual energies from 
sensors along the tree are aggregated based on some 
predetermined rules, Our algorithm can obtain similar 
scans, as long as residual energies have the regional 
property. However, it is more robust, as no tree or other 
fragile structures are needed in the algorithm execution. 

111. NOTATIONS AND NETWORK MODEL 
Throughout this paper, we assume that N sensors are 

uniformly deployed in a b x b squared field located in the 
two dimensional Euclidean plane R2. A sensor’s reading 
is fadry (abnormal) if it deviates significantly from other 
readings of neighboring sensors [ 11. Sensors with faulty 
readings are called faulty sensors. In this paper, the ith 
sensor Si and its location will be used exchangeably. We 
use S to denote the set of all the sensors in the field and 
R denote the radio range of the sensors. Let Xi denote 
the reading of the sensor Si. Instead of a 0-1 binary 
variable, xi is assumed to represent the actual reading 
of a factor or variable, such as temperature, light, sound, 
the number of occurrences of some phenomenon, and so 
on. For example, a rogue node that continues to inject 
messages to the network or drop all relay messages in 
DOS attack is a misbehaving node. Therefore, xi can 
be continuous or discrete. Informally, an event can be 
defined in terms of sensor readings. An even[, denoted 
by E, is a subset of R2 such that readings of the sensors 
in E are significantly different from those of sensors not 
in E .  A faulty sensor can be viewed as a special event 
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which contains only one point, i.e., the sensor itself, A 
point x E R2 is said to be iii the boundary of of E 
if and only if each closed disk centered at x contains 
both points in I and points not in E. The boundmy of 
the event E, denoted by B(€),  is the collection of all the 
points in the boundary of 1. As an example, a circle is 
the boundary of the region bounded by the circle if the 
region is an event. 

We assume each sensor can compute' its physical po- 
sition through eilher GPS or some GPS-less techniques 
such as IS], [21], [24], [26]. Note that in this paper 
we focus on the fault tolerant event boundary detection, 
thus the delivery of the event boundaries will not be 
con sidered. 

Iv. LOCALIZED FAULTY SENSOR DETECTION 

In this seclion, we describe our algorithm for detecting 
sensors whose readings (measurements) are faulty. 

A. Derivation of Detection Procedure 
The procedure of locating a faulty sensor could be 

formalized statistically as follows. Consider how to com- 
p a e  the reading at Si with those of its neighbors. Let 
N( Si) denote a bounded closed set of R2 that contains 
the sensor Si and additional k sensors Sil, Si2, . . ., 
S&. The set N(Si) represents a closed neighborhood of 
the sensor Si. An example of N(Si) is the closed disk 

(4 (4 ( i )  centered at Si with the radius R. Let z1 , x2 , .'.,zk 
denote the measurement at &I, Si2, . . . , S;k, respectively. 

(4 (4 (4 A comparison between zi and {q : z2 . ! zk } could 
be done by checkin the difference between z; and 
the "center" of {q , ;-"xk }, Clearly, such a 
difference is 

(1) 

where medi denotes the median of the set 

equation (1) should not be replaced by the mean 

This is because the sample mean can not represent 
well the "center" of a sample when some values of 
the sample are extreme. However, median is a robust 
estimator of the "center" of a sample. If di is large or 
large but negative, then it is very likely that S; is faulty. 
Now we start to quantify the degree of extremeness of 
di. To do this. the differences d from sensors near Si 
are needed, 

Consider another bounded closed set N*(Si) c R2 
that contains Si and additional IZ - 1 sensors. This set 
" ( S i )  also represents a neighborhood of Si. Among 
many choices of " ( S i ) ,  one could select N*(Si)  = 

(8 p (4 

(q (4 ,z2 (2) ,...,xf)}, we note that medi in 

( x j i ) + z ~ ) + - .  .+&k of the set {xi"',zp,. . . , X k  (4 ). 

di = zi - me&, 

Fig. 1. A-" neighborhood N*(,%) of sensor Si and .Af neighbor- 
hoods of sensors inside *u4(Si). h c h  Id neighborhood is used to 
compute d; .  while the N* (Si) is used to compare the di's. 

N(S,). We denote the n sensors in N*(Si)  by 4, 
Sz, - . - ,  ST,. S e e  Figure 1 for an illustration of N 

and N*. According to equation (1)  sensors in N'(S,)  
yield &. . .., cl;, I . . ,  d,. Now if d i  is extreme in 
D = { d l ,  ~ .. di !  f .  a I &}, Si will be treated as a faulty 
sensor. The decision can b? made vigorously using the 
following procedure. Let ji and 6 denote, respectively, 
the sample mean and sample standard deviation of the 
set D, i.e.. 

2 di, 1 
b = ; ,  

2=1 

DECISION: If 1yil 2 9, treat Si as a faulty sensor. Here 
e(> 1) is a preselected number. 

We now start to justify the above decision making 
procedure under certain assumptions. For this purpose, 
we first need some result of the median. Given N(Si),  
assume z1 , x2 , . . ., xr) form a sample from a popu- 
lation having a continuous distribution function F. Let 

greatest and let the ordered values be zyZ), x ( ~ ) ,  . . ., z ( ~ ) ,  

where xii) 5 xii) < ' .  ' 5 XI?). Then equation (1)  can 
be rewritten as 

(2) (4 

ii) , x2 ( a )  , . . ., xt) be rearranged in order from least to 
(4  (2) (4 

(1) (2)  - 

Assuming that the median of the distribution F is f i  and 
F ( b )  = 0.5 has a unique solution, we have the following 
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PROPOSITION: As I ;  4 00, medi converges in proba- 
bility to ji. 
To prove, we first note the following special case of 
Theorem 9.6.5 in [25j: if k p k  is a positive integer such 

converges 
in probability to f i ,  For any real number a. let La.] denote 
the largest integer less than or equal to a and let (U) 
denote the difference a - io.]. 'Then 0 5 (a) < 1. Set 
P?k = c 

thatps = o.F~+o(I/~), then'as k --+ 00, z(kpk) (2) 

i0.5LJ . Then 

0 5 k  - (0.51;) + 1 1 
Plk = k = 0 . 5 + 0 ( ~ ) .  

Let p21; = - l /k .  Then p 2 k  = 0.5 + O(l/k). There- 
fore, both X(kPlk) (4 and x[2p2kl converge in probability to 
ji Now the proposition follows from the observation that 
equation (3) is equivalent to the following 

The above property of median is established for a quite 
general class of F .  Deeper results of median arc also 
available. For example, an asymptotic normal distribu- 
tion of median can be obtained under some general 
conditions [Z]. 

Now consider the following simple scenario where 
i> readings of sensors in N*(Si),  i.e., 2 1 ,  .... z,, 
are independent; ii) for each sensor Sj in Jz/*(Si), the 
readings from the sensors in hr(Sj) form a sample of 
a normal distribution; iii) all the variances of the above 
mentioned distributions are qua l .  Since the median is 
equal to the mean for any normal distribution, it follows 
from the proposition and i)-iii) that as IC becomes large, 
the sequence d l ,  a . -, d, form approximately a sample 
from a normal distribution with mean equal to 0. This 
implies that as b is large, the sequence from standard- 
ization, i.e., 91, ' . ., p n ,  can be treated as a sample 
from a standard normal population N(0,l). When xi is 
particularly large or small, compared with all the other 
12: values, di will deviate markedly from all the other d 
values. Consequently, Iyil will be large, which implies 
that will fall into the tail region of the density of the 
standard normal population. However, if I;yil is large, the 
probability of obtaining this observation yi is small and 
thus Si should be treated as faulty. When 6' = 2, the 
probability of observing a pi with lyil 2 2 is about 5%. 

B. Algoritlm 
Let C1 denote the set of sensors with I yi I 2 8. The set 

C1 is viewed as a set of sensors that are claimed as faulty 
by the above procedure. Note thak when an event occurs, 

a sensor Si E C1 may be close to the event boundary but 
is not faulty (See Figure 2(a)). The procedure in part IV- 
A can be summarized into the following algorithm, 

ALGORITHM 1 
Construct {N) and {W}.  For each sensor Si, 
perform the following steps, 
Use {N(Si ) )  and equation (1) to compute di for 
sensor Si. 
Use {"(Si)} and quation (2) to compute gi for 
sensor Si. 
If Ipil 2 13, where 0 > 1 is predetermined, assign 
Si to C1. Otherwise, Si is treated as a normal 
sensor. 

Clearly, IC1 1, the size of C1, depends on 0. Assuming 
the ;y values in equation (2) constitute a sample of a 
standard normal distribution and the decisions are made 
independently, then if 8 is such that the right tail area of 
the density of IV(0,l) is CY,  

In practice, a sensor becomes faulty if i) data mea- 
surement or data collection makes errors, or ii) some 
variability in the area surrounding the sensor has changed 
significantly, or iii) the inherent function of the sensor i s  
abnormal. In any of the three cases, readings from faulty 
sensors do not reflect reality, so that they can be dis- 
carded before further analysis on sensor data. However, 
faulty readings may contain valuable information related 
to events and provide help in detecting the events. For 
this reason, issues concerning event region detection will 
be addressed in the presence of data from faulty sensors. 

will be about Q x N .  

v. LOCALIZED EVENT BOUNDARY DETECTiON 

In this section, we describe our procedure for local- 
ized event region detection. To detect an event region, 
it suffices to detect the sensor nodes near or on the 
boundary of the event. As mentioned above, C1 may 
contain some normal sensors close to the event boundary. 
However, Algorithm 1 usually does not effectively detect 
sensors close to the boundary of the event. To illustrate 
this point, let us consider the simple situation where 
the event lies to one side of a straight line. Suppose 
that readings of sensors in the event (region) E form a 
sample from a normal distribution N(p1, cr2) and sensor 
readings outside & form another sample from N(y2,  u2).  
where 1.11 # p a ,  and IT is small compared to 1/11 -pa ] .  
{ N )  and {ni'} are constructed using closed disks. 
Consider sensor Si. Assume that readings of sensors 
in a neighborhood of Si are within 20 distance from 
the means of their corresponding normal distributions. 
Take each N neighborhood of sensors in w ( S i )  to be 
sufficiently large. Due to uniformity of h e  deployment 
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Fig. 2. 
the ellipse i s  the event region. A sensor becomes faulty with probability p = 0.2. A 
A o in (b], (c).  and (d) represents a node in C1, C2, and Cs, respectively. 

Illustration of C1. Cz. and C3. Dah in (a) are obtained from one run of the experiment leading ro Figs 13 and 14. The interior of 
represents a sensor and a + represents a faulty sensor. 

\ 

Fig. 3. Event E is the union of line 1 and the portion on the left 
hand side of 1 .  Si is a sensor located on B(E) and SI is a sensor 
inside Ap'(Si). Both N * ( S i )  and ?V(S,) are closed disks. 

of sensors, cdculation based on equation ( I )  shows that 
each d follows N(0:  a2) approximately. For example, at 
sensor SI shown in Figure 3, d l  follows approximately 
N ( 0 7 a 2 ) .  The reasoning is as folIows. Let RI denote 
the portion of N(S1) that lies on the right hand side 
of the event boundary, and El2  denote the remaining 
portion of N(S1). Then the area of RI is larger than 
that of R2. Since the sensors are uniformly distributed, 
the expected number of sensors in R1 is larger than the 
expected number of sensors in R2. Then medl will be 
obtained using the sensor readings from R I .  When cr 
is small compared to Ip1 - pal, medl is about p 2 ,  so 
that d l ,  which is about z1 - p2, follows approximately 

Furthermore, it is seen that y1; . ., yn from (2) form 
approximately a sample of N(0,l) where each member 
of the sample is within distance 2 of 0. This shows that 
Si can not be detected if 19 = 2. 

So that sensors near and on B(E) can be detected ef- 
ficiently, the procedure described in Algorithm 1 should 
be modified. As motivated above, when Si close to the 
boundary can not be detected, we should select a special 
neighborhood "(Si)  such that I&, compared with d 
values from surrounding neighborhoods, is as extreme 

N ( 0 ,  a'). 

Fig. 4. 
containing PI, P2. B. and Si. 

Illustration of random bisection. " ( S , )  is the half disk 

as possible. There are many options in doing this. Here 
we describe two of them: random bisection and random 
trisection. 

1 )  Random Bisection: Consider an Si from the set 
S - CI. Place a closed disk centered at Si. Randomly 
draw a line through Si, dividing the disk into two halves. 
Calculate di in each half. Use NN( Si) to denote the half 
disk yielding the largest Idil. For an illustration, consult 
Figure 4. In the figure, the h e  randomly chosen meets 
the boundary of the disk at points PI and P2, and the 
boundary of the event meets the boundary of the disk at 
points A and B. Due to uniformity of sensor diployment, 
we see that ldil from the half disk containing PI,  P2, B,  
and Si is the largest, and hence this half will be used as 

After "(Si) is found, the resulting di will be used 
to replace the old d i ,  keeping unchanged all the other 
d values from N*(Si). Then perform calculation in (2)  
and make a decision on Si. 

2) Random Trisection: Consider a closed disk cen- 
tered at Si E S - CI. Randomly divide the disk into 
three sectors with an equal area. Number the sectors as 
i, ii, and iii, as shown in Figure 5. Form a union using 
any two sectors and calculate d i  in each union (total =3). 
The union resulting in the largest 141 is "(Si) .  It is 

"(Si). 
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and C3 into the following algorithm. 

ALGORITHM 2 

Fig. 5. Illustration of random trisection. Sectors PlPlSi. P'SiP3, 
and P3SiPl are numbered as i. U. and iii. respectively. Each sector 
contains an angle equal to 2 ~ / 3 .  " ( S a )  is the union of sectors i 
and iii. 

easy to see that in Figure 5 ,  NM(Sz )  is the union of 
sectors i and iii. The d, with the largest ldzl will replace 
previous d,, keeping unchanged all the other d values 
from N'(S , ) ,  and subsequently a decision will be made 
on S,. 

There are two options of the decision on S,, based on 
NN(S,). If 1yt/21 < 6, S, would be treated as a normal 
sensor. If lg%l 2 8, the sensor S, can be close to or far 
away from the boundary B(&). Let C2 denote the set of 
all the sensors with lyzl 2 6. The set C2 is expected to 
contain enough sensors close to the event boundary (See 
Fig. 2(c)). In general, C;! catches more sensors near the 
event boundary than C1 does, Now we discuss how to 
combine C1 and C2 to infer the event boundary. 

As seen in the denvation of C1 and Cz, the set Cl is 
expected to contain faulty sensors and CZ is expected to 
contain sensors close to the event boundary. However, in 
general, C1 also contains some sensors near the boundary 
that are not faulty, and C2 contains some sensors that are 
not close to the boundary. We now present a method 
to combine C1 and Ca to form a set of sensors that 
can be used to infer the outline of the event boundary. 
Consider how to select sensors from the union C1 UC2 
Lo approximate the boundary. For a sensor St E C1 UC2, 
draw a closed disk D(S2; e) with radius c centered at S,. 
The expected number of sensors falling into the disk is 
M = T .  Since sensor readings are usually correlated 
and C2 mainly contributes to the set of sensors near 
the event boundary, S, is expected to be close to the 
boundary if D(Sz;c)  contains at least one sensor from 
C2 that is different from S,. For any positive integer m. 
let &(m) denote the subset of C1 UC2 such that for 
each S, E Cs(m), the disk D(Sz;  ) contains at 
least one sensor from Ca that is diferent from S,. The 
set Ca(m) will serve as a set of sensors used to infer 
the event boundary ( S e e  Figure 2(d)). For convenience, 
sometimes we will write C3 for CZ(m). 

Now we summarize the above procedure of finding C2 

iw2 N 

Construct { N )  and {N*}. Apply Algorithm 1 to 
produce the set C1 (0 = 01). 
For each sensor Si E S-C1, perfom the following 
steps. Obtain NN(Si) and update di  from step 1) 
to the new di from "(Si), keeping unchanged 
all the other d values from N*(Si) obtained in 
step 1). Use equation (2) to recompute pi. If Iyil 2 
8 ,  assign Si to set C2 (0 = 82) ;  otherwise, treat Si 
as a normal sensor. 
Obtain Cs(m), where m is a predetermined posi- 
tive integer. 

We stress on the following points on the use of the 
algorithm. First, the updated di  in step 2) is only needed 
when making a decision on sensor Si. Once such a 
decision is made, this new di will have to be changed 
back to the original one obtained in step 1). Second, 
assuming the y values in equation (2) constitute a sample 
of a standard normal distribution and the decisions are 
made independently, then if 191 and 8 2  are such that the 
right tail areas of the density of N(0,l)  are a1 and cyz, 
respectively, the size of C2 is about (1 - a1) x a2 x N .  
Third, unlike Algorithm 1, which utilizes the topological 
information of sensor locations to find C1, Algorithm 2 
uses the geographical information of locations to locate 
C2 and Cs, 

VI. PERFORMANCE EVALUATION 
Evaluation of the proposed algorithms include two 

tasks: evaluating C1 and evaluating C3. In this section, 
we first define metrics to evaluate C1. Then we examine 
what type of sensors could be detected as being in C2 by 
Algorithm 2. The finding is then used to define metrics 
to evaluate the performance of C3. 

A. Evaluation of C1 

To evaluate the performance of C1, we compute the 
detecrion accuracy a(Cl), defined to be the ratio of 
number of faulty sensors detected to the total number of 
faulty sensors, and the false alarm rate e(Cl), defined 
to be the ratio of number of non-faulty sensors that 
are claimed as faulty to the total number of non-faulty 
sensors. Let U denote the set of faulty sensors in the 
field, then 

If .(Cl) is high and e(C1) is low, Algorithm 1 has a good 
performance. 
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I I containing PI,  has an area 

TR2 1 2  AI = -w - -R  sinw, 
27T 2 

Fig  6. The event boundary intersects the disk D(S,; R)  in WO 

seclors I and iu. A and B are two intersection points between the 
event boundary and the boundary of the disk. r‘ is the distance from 
sensor S, to the event boundary. 

I 

Fig. 7. The event boundary intersects the disk D(S,: R) in three 
sectors i, ii, and U]. A and B are fwo intersection points between the 
event boundary and the boundary of the disk. T is the distance from 
sensor Si to the event boundary. 

B. When Could Sensors be Assigned fo CZ? 

Here we present a brief examination on what kind of 
sensors have the potential to be detected by Algorithm 2 
as belonging to Ca. Let T denote the distance from the 
sensor Si to the event boundary. We now informaliy 
show that if T is larger than R/2. then the chance that 
Si will not be detected by Algorithm 2 is high. We first 
consider the cae  where the random trisection method is 
used in obtaining {NN}.  

Let D(Si; R )  denote the closed disk of radius R cen- 
tered at Si. Without loss of generality, we may assume 
that the portion of the boundary falling into D(S,;R)  
is a line segment. Clearly, if B(&) does not intersect 
D(Si; R )  or intersects D(&; R) only in one sector. it 
is very likely that di from the resulting neighborhood 
NN( Si) will not become extreme among d values from 
JV* (Si) so that Si may not be detected as a sensor in Ca. 
Therefore, we only need to consider two cases shown in 
Figure 6 and Figure 7, where B(&) intersects D(&; R) 
in at least two sectors. 

Consider Figure 6, where B(C) intersects D(Si;  R) in 
two sectors. Clearly, AbV(S,) should be the union of 
sectors i and iii. The event boundary cuts N M ( S i )  into 
two parts. The part occupied by the event, i.e., the part 

where LL‘ E (0:7i] is the value of LASiB. And conse- 
quently, the area of the other part is 

r R 2  47r 
A2 = -(-) - .41. 

271 3 
So that d, from NN(S,) becomes extreme, we require 
A I  2 A*, which implies 

x R 2  47r 
27i 2 zll 3 

2(-w 7iR2 - -R  1 2  sinw) 2 -(T). 

Simplification leads to w - 9 2 sinw. We see that 
w 2 %, since sinw 2 0. Then 

Now consider Figure 7, where B(E) intersects 
D(Si; R)  in all three sectors. Let w E (0,7r] be the value 
of LASiB. Then w 2 2n/3. So r = Rcos: 5 f. 
Summarizing the above shows that r < $. 

Similarly, when the random bisection method is used 
in obtaining {UN},  we can also show that T < 5.  

Due to the above property of R, we call R/2 the 
tolerance radius. 

C. Evaluation of C3 

Here we first describe a quantity to judge how well 
Cs can be used to fit the boundary. Then we present 
a quantity to examine how many sensors that are “far 
away” are included in CB. We begin with the following 
definition. 

DEFINITION: For a positive number T ,  let BA(&;r) 
denote the set of all points in R2 such that the distance 
of each point to the boundary B(E) is at most r .  The 
degree of $tfing of C3 is defined to be 

Intuitively, BA(€; T )  is a strip with width 277 centered 
around the event boundary. The quantity a(C3,r) is 
expected to provide valuable information on whether or 
not the detection algorithm performs well in det.ecting 
the boundary of the event. The reasoning is as follows. 
Suppose BA(€; T )  is such that all the sensors in BA(€; T )  

provide a good outline of the boundary I?(€). If a(C3, T )  

is large, say, above 90%, then all the sensors in BA(&; T )  

that are detected by an event detection algorithm are also 
expected to provide a good outline of the boundary of 
the event. 

909 



1 BAIE: r) 
I 

Fig. 8. An illustration of the square Q fitted into the boundary area. 

The value of T pIays an important role in interpreting 
BA(E;r) and a(Cs,r). If t’ is large, say, above R/2, 
then the above Section VI-B shows that many sensors 
within BA(&;r) will not be detected so that a(C3,r) 
can be very low. On the other hand, if r is very small, 
BA(&; T )  may become a strip containing few sensors so 
that BA(€; T )  does not present a good description of the 
boundary B(E).  A natural question is then: how can one 
choose an appropriate T such that BA(&;r) provides a 
good outline of the boundary and a(C3, r )  is informative? 

To get an answer, we first note that if these N sensors 
are placed into the field using the standard grid method, 
then a typical grid is a square with width equal to b / n ,  
Given BA(&;r), randomly draw a square Q “inside” 
BA(&;r) such that i) its width is 2r; ii) two sides of 
the square are “perpendicular” to the boundary B(&). 
See Figure 8 for an example of Q, 

Set 2r = c x  b, where c is to be determined. That is, fl 
the width of the fitted squae Q equals c times the width 
of a typical grid square. Clearly, the expected number of 
sensors caught by Q is 

area of Q N x ( e  x q2 
= c2. 

(area of sensor field ) =  b2 
For BA(€; T )  to provide a good outline of the boundary, 
intuitively, we could choose T such that c2,  the expected 
number of sensors inside Q, equals 1. When c2 = 1, T 

has the following value 
1 b  

= A-). 
L Z / l V  

Note that T I  equals half width of a typical grid, 
We now turn to examining how many sensors not 

close to the boundary are contained in C3. Motivated 
by Section -VI-B, we only check those sensors whose 
distances to the boundary are at least R/2.  Let A(&; R )  
denote the set of all points in R2 such that the distance of 
each point to the boundary B ( € )  is at least R/2.  Define 
thefalse defection rate of C3 to be the following quantity 

If e(C3,R) is small, sensors far away from the event 
boundary are not likely to be contained in Cy. 

VII. SIMULATION 
A. Sin~ularioii Set-IJp 

MATLAB is used to perform all sitnuiations. The 
sensor network contains 1024 nodes in a square region of 
size 32 x 32 units with one sensor randomly placed within 
each unit grid. Without loss of generality, we assume 
the square region resides in the first quadrant such that 
the lower-left comer and the origin are co-located. Sen- 
sor coordinates are defined accordingly. Normal sensor 
readings are drawn from N(,uI! Q,”) while event sensor 
readings are drawn from N (  pa ~ CT,”). In the simulation we 
choose p1 = 10, 112 = 30, 01 = 0 2  = 1. Note that these 
means and variances can be picked arbitrarily as long as 
[PI- p21 is large enough compared with CTI and 0 2 ,  We 
choose u1 = 02 = 1 because they represent the system 
calibration error which should be small for a sensor that 
is not faulty. 

In all the simulation scenarios, we choose N = N*, 
and N(Si )  contains all one-hop neighbors of Si. Increas- 
ing the size of N requires increasing either transmission 
range to enlarge, the one-hop neighbor set, or the hop 
count. But multihop neighborhood information implies 
high communication overhead, Since our simulation 
focuses on the evaluation of the proposed algorithms, 
we choose to increase transmission range and thus N 
always contains one-hop neighbors. Therefore, we call 
the average number of sensors in N the densily of the 
sensor network, 

Note that both algorithms I and 2 need thresholds 
(6’ = 81 to compute C1 and 6’ = 192 to compute C,) 
to make decisions. In all the simulation scenarios for 
event boundary detection. we choose 6’ = 81 = 82. 
The settings of the threshold, listed in Table I ,  depend 
on p ,  the probability that a sensor becomes faulty. If 
p = 0, we simply set I9 = 2 in order to detect the event 
boundary. The 8 values are obtained from a standard 
normal distribution, as shown in Sections IV and V. Note 

P I  5% I 10% I 15% I 20% 
0 I 1.96 I 1.65 I 1.44 I 1.28 

TABLE I 
THE SETTINGS OF THRESHOLD 8 .  

that in general p is not a priori for a sensor, but its 
empirical value may be available based on the elapsed 
time after deployment. On the other hand, sensors can 
obtain information of the false alarm rate from base 
stations and adaptively adjust the settings of thresholds. 
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In our simulation we choose to use the values listed in 
Table I for simplicity. 

To simulate Algorithm 1 for faulty sensor detection, 
no event is generated in the region. AI1 faulty values are 
drawn from N(30)  1). In the simulation of event bound- 
ary detection, an event region with different boundary 
shapes, such as a rectangle, a triangle, a circle, an ellipse, 
a straight line, a sine curve, and so on, are considered, 
A sensor in the event region gets a value from N(10,l) 
with probability p and a sensor out of the event region 
gels a value from N ( 3 0 ,  1) with probability p. These 
settings are selected to make readings from an event 
region and readings outside the region largely interfere 
with each other. When inputs are binary decision pred- 
icates, a sensor flips its value from 1 to 0 or from 0 to 
1 with probability y. 

We will report the results for event regions with 
ellipses or straight lines as the boundaries. Straight lines 
are selected because when the network area is large, the 
view of the boundary of one sensor near the boundary is 
approximated by a line segment in most cases. An ellipse 
represents a curly boundary. Our simulation produces 
similar results for event regions with other boundary 
shapes. 

The event regions are generated as follows. For a 
linear boundary, a line y = kx + b is computed, where 
k = tan  8 is the slope, with 8 drawn randomly from 
(O,;), and b is the intercept, drawn randomly from 
(-16,lc). The area below the line is the event region. 
For a curly boundary, the event region is an ellipse that 
can be represented by E(a,  b, 20, yo, 8) = 0 [6] .  Here 2a 
and 2b are the lengths of the major and minor axes of 
the ellipse, with a, b drawn randomly from [4,16]. The 
center of the ellipse is (rc~,yo), where 20 and go are 
randomly chosen from [a,  32 - a] ,  8, the angle between 
the major axis of the ellipse and the x-axis, is a random 
number between 0 and 7i. 

B. Sirnitlation Results 
In this suhsection, we report our simulation results, 

each representing an averaged summary over 100 runs. 
The performance metrics include the detection accuracy 
and false aIarm rate for faulty sensor detection, as defined 
by equation (4) in Subsection VI-A for the evaluation of 
C1, and the degree of fitting and false detection rate for 
event boundary detection, as defined by equations (3, 
(6) ,  and (7) in Subsection VI-C for the evaluation of Cs. 
Note that the two sets, C1 and CY, contain the detected 
faulty sensors and boundary sensors, respectively. 

Figs. 9 and 10 plot the detection accuracy and false 
darm rate vs. p ,  the probability that a sensor reading 

Fig. 9. R u t t y  sensor detection accuracy v s .  p .  

z 

Fig. 10. False alarm rate i n  faulty sensor detection vs. p .  

becomes faulty, under different network densities for 
faulty sensor detection. In Fig. 9, it is observed that 
the higher ihe p ,  the lower the detection accuracy. From 
Fig. 10, we observe that the false alarm rate decreases 
with p when density equals 20, 30, 40 and 50. By 
carefully tracing back the intermediate results, we find 
that the current settings of thresholds help to decrease the 
false alarm rate. From both graphs, we also observe that 
a higher network density often leads to a higher detection 
accuracy and lower false alarm rate. This is reasonable 
because more sensors in N and AP together bring more 
information for better results. Note that when p 5 0.2 
and density 2 30, the detection accuracy is above 94% 
and false alarm rate is around 1%. For density = 20, we 
achieve a detection accuracy of around 90% and false 
alarm rate < 2%. From both graphs, we observe that a 
smaller number of sensors in Af with density = 10 may 
not be a good choice for Algorithm 1. 

For event boundary detection described in Section V, 
we report the degree of fitting and the false deiection rate 
vs. network density and vs. p ,  respectively, in Figs. 11-14. 
Note that in transition from C1 and C:! to C3, we need to 
set m, defined in Section V. Through simulation studies 
we observe that a larger m usually results in a higher 
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Fig. 11. Degree of fitting vs. network density when p = 0. 

degree of fitting and a higher false detection rate, when 
the network density and p are fixed. In the following we 
fix mr = 4 since this setting in general achieves a good 
degree of fitting and a low false detection rate. 

A general observation from Figs. 11-14 is that for both 
linear and elliptical boundaries, the random trisection 
method outperforms the random bisection method. This 
is because random trisection induces a larger NN. 
Besides, the degree of fitting for the linear boundary is 
higher than that of the elliptical curve. Now we examine 
each pair of figures in detail. 

Figs. 11 and 12 demonstrate the performance of CB 
with variable densities when p = 0. We observe that 
increasing density in general can increase both the degree 
of fitting and the false detection rate. This increase can be 
explained as follows. When we increase the density, i.e., 
the number of sensors in N and N', we actually increase 
the transmission range R in our simulation. Thus the 
tolerance radius (f) is increased, which means more 
sensors close to the boundary will be assigned to C2. 
Then the size of C3 will be increased and thus the degree 
of fitting and the false detection rate will be increased 
accordingly. From the figures, we see that when the 
density is large enough (density 2 30), both the degree 
of fitting and the false detection rate increase slightly. 
This indicates that a density larger than 30 might affect 
the degree of fitting and false.detection rate in about the 
same way as a density of 30. 

We also observe several deviations from the "increas- 
ing trend" in Figs. 11 and 12. This is mainly due to the 
limited size of the simulation region, which becomes 
too small (compared with xR2)  when we increase the 
transmission range. Note that the unit of the y-axis also 
amplifies the deviation in Fig. 12. 

When the sensor fault probability increases, the per- 
formance of CJ usually decreases, as shown in Figs. 13 
and 14. Compared with Fig. 11, the degree of fitting 
is low when p > 0 for the same network density. This 

Fig, 12. False detection rate 10. network density when p = 0. 

Fig. 13. Degree of fitting vs. p when density = 30. 

Fig. 14. False detection rate ICF. p when density = 30. 

is obvious since faulty sensors ' interfere with boundary 
nodes. Note that a low degree of fitting does not mean 
that the boundary can not be detected. It means that more 
sensors close to the boundary escape the detection. As 
shown in Fig. 2(d), with degree of fitting as low as 55% 
when p = 0.2, the elliptical boundary is still clearly 
identified. In this scenario, the faulty sensor detection 
accuracy is 91%. 

We have also-conducted simulations when input data 
are binary decision predicates and obtained results close 
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to those reported in Figs. 13 and 14. This indicates 
that our algorithms are applicable to both 0/1 decision 
predicates and numeric sensor readings. 

VIII. FUTURE WORK DISCUSSION 

We believe that our ideas in detecting faulty sensors 
and event boundaries can be extended to multi-modality 
sensor networks. and the data aggregation can be done 
along both temporal and spatial dimensions for decreas- 
ing the false alarm rate in faulty sensor detection and 
the false detection rate for boundary detection. Thus 
we propose to explore along these directions in the 
future. The current algorithms are sensitive to the settings 
of thresholds, which are dependent on the sensor fault 
probability. By exploiting the false alarm probability 
obtained from base stations. an adaptive threshold that 
better fits the application context can be designed. We 
also target this as a future work. Besides, in our future 
work, we will explore the technique of curve fitting, 
instead of the metrics of degree of fitting and false 
detection rates. in order to evaluate the performance of 
our algorithm in detecting the event boundary. 
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