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Abstract—Unbalanced traffic demands of different data center
applications are an important issue in designing Data center
networks (DCNs). In this paper, we present our exploratory
investigation of utilizing wireless transmissions in DCNs. Our
work aims to solve the congestion problem caused by a few
hot nodes to improve the global performance. We model the
wireless transmissions in a DCN by considering both the wireless
interference and the adaptive transmission rate. Moreover, both
throughput and job completion time are taken into account
to evaluate the impact of wireless transmissions on the global
performance. Based on this model, we formulate the channel
allocation in wireless DCNs as an optimization problem and
design a genetic algorithm (GA) based approach to address it. To
demonstrate the effectiveness of wireless transmissions as well as
our GA-based algorithm in a wireless DCN, extensive simulation
study is carried out and the results validate our design.

I. INTRODUCTION

With the development of cloud computing, more and more
data centers are built to provide various distributed appli-
cations such as search, e-mail, and distributed file systems.
As the infrastructure of data centers, data center networks
(DCNs) are constructed to provide a scalable architecture and
an adequate network capacity to bear the services.

However, current DCNs, which evolve from the Enterprise
LAN networks, come across more and more difficulties with
the growth of cloud computing. First, the rapidly increasing
size of data centers brings challenges to DCN. By the year
of 2006, Google has got over 450, 000 servers in its 30 data
centers [1]. For traditional Ethernet solutions, expensive high-
end switches and a large number of wires are necessary to
construct a DCN containing thousands of servers, which leads
to great troubles in wiring and maintenance.

On the other hand, data center applications that cause
unbalanced traffic distributions suffer from inadequate network
capacity. Based on the traffic statistics obtained from a real-
world data center, typical applications such as map-reduce [2]
usually generate a traffic demand with only a few nodes being
hot (i.e., these nodes need to transmit a high volume of traffic).
Figure 1 shows an example traffic demand matrix, where
darker points stand for higher traffic demands. Although the
matrix is quite sparse, those hot nodes cause loss on edge links
with a high probability [3] and therefore put off the completion
of a job. Furthermore, the non-deterministic distribution of hot
nodes makes it impossible to set up additional wired links for
certain nodes to alleviate their congestions.

To tackle these problems, we propose to utilize wireless
transmissions in DCNs. Compared with wired connections,
wireless links have advantages in several aspects. First, they
are free of wiring and the maintenance is relatively convenient.
Second, direct links between servers are easy to achieve with
wireless in the scale of a data center, which can avoid the extra
cost of multi-hop transmissions. Moreover, variable wireless
connections can be set up on-demand. Therefore, it is possible
to adjust the topology dynamically to provide more network
capacity for hotter nodes. In brief, the flexibility of wireless
transmissions provide a feasible approach to address the non-
deterministic unbalanced traffic distribution of data center
applications.

Nevertheless, challenges still exist in employing wireless in
DCNs. To start with, wireless transmissions should be rapid
enough to support high-speed communications. Current DCNs
are mostly built based on gigabit Ethernet, whose data rate is
highly beyond that of commodity wireless devices.

Besides, delicate wireless scheduling mechanisms are re-
quired to effectively enhance the performance of the whole
DCN. For example, wireless links should be established ap-
propriately to alleviate the congestion of hot nodes; channels
should be allocated properly to avoid interference.

Moreover, the wireless network should coordinate with
the global optimization. In other words, the performance of
wireless transmissions (typically measured by throughput) and
the global job completion time should be jointly considered.

As for data rate, the state-of-art wireless technology has met
the requirements of gigabit transmissions. Extremely highly
frequency (EHF) communications support directional high-
speed transmissions and are expected to be a feasible gigabit
wireless solution [4]. In particular, IEEE 802 has been working
on the standards of the communications at 60GHz (IEEE
802.11ad); prototype devices have also been produced [5].

With regard to the wireless scheduling, it seems to be similar
to that of multi-channel multi-radio wireless mesh networks
(WMN). However, they are different essentially. First, one of
the most important concerns in the scheduling of WMN is
the multi-hop wireless communications. Yet, in research of
wireless DCN, we focus on single hop transmissions for high
efficiency in demand. Second, while we only pay attention to
wireless links in WMN, the joint effort of wireless networks
and Ethernet infrastructure should be considered in DCN.



Fig. 1. Matrix of application demands between top of rack switches [6]

Moreover, the nodes in WMN usually execute respective tasks
while servers in a DCN cooperate with each other to complete
a common job. Therefore, it is difficult to adapt solutions for
WMN to wireless DCNs.

In this paper, we focus on utilizing wireless transmissions
in DCNs. We propose a hybrid DCN architecture in which
wireless networks work as a supplementary to Ethernet in-
frastructure to address the congestion of hot nodes. To the
best of our knowledge, this is the first work that provides
detailed technical approach of wireless DCN. The contribution
of this work is multi-fold. First, we perform a novel problem
formulation for wireless DCN. A realistic interference formal-
ization and the adaptive transmission rate are considered in the
model. Furthermore, we pay attention to the joint optimization
of the throughput of wireless networks and the global job
completion time. Second, we introduce a genetic algorithm
(GA) to tackle the channel allocation problem. The GA-based
approach can find the solution efficiently, especially when em-
ploying inheriting search. Third, we conduct simulation-based
performance evaluation. The simulation is carefully designed
to mimic the scenarios of data center applications. Various
experiments are performed to demonstrate the effectiveness of
wireless transmissions as well as our GA-based algorithm.

The rest of the paper is organized as follows. Section II de-
picts the most related work. Our system model is elaborated in
Section III and Section IV describes the centralized scheduling
mechanism, including the details of the GA-based algorithm.
Simulation methods and results are presented and analyzed in
Section V. Section VI concludes the paper.

II. RELATED WORK

There has been a lot of research on the interconnection
architectures and the routing mechanisms of DCNs. Some
of them extend existing tree-based topologies to improve
scalability and throughput. Fat-tree [7] groups servers into
pods and establishes multiple paths between the core layer
and the aggregation layer of a typical tree-based data center
architecture. Based on the fat-tree topology, Portland [8]
is proposed to support various requirements of data center
applications such as virtual machine migration. VL2 [9] is
based on Clos Networks, in which new addressing and rout-
ing mechanisms are designed to provide high capacity and
performance isolation between different services.

Moreover, researchers also try to develop new topologies
rather than extend existing ones. DCell [10] takes a structure

composed of one switch and k servers as a basic unit and con-
structs high level topologies recursively by connecting basic
units together with direct links between servers. FiConn [11]
is an extension of DCell but it only utilizes the backup port of
each server rather than add new NICs. BCube [12] introduces
more switches to improve the bottleneck problem of DCell
and develops a modularized data center solution. It achieves
load balancing and a graceful performance degradation under
various faulty conditions.

Besides the schemes based on Ethernet, work has also
been done to make use of other transmission media. K.
Ramachandran et al. first propose to employ 60GHz com-
munications in DCNs [13]. This work designs a clean-slate
wireless-based DCN architecture and presents a lot of relevant
challenges. However, it does not provide detailed technical
approaches. Flyway [6] is the first one that combines wireless
networks with existent Ethernet-based DCNs. Yet, it only
performs an initial problem formulation and many important
factors, including interference and number of radios, are not
considered in the scheduling mechanism. Therefore, a lot of
problems remain to be investigated to substantiate a wireless
DCN. Another work [14] proposes to utilize optical circuit
switches for high-speed direct communications between racks.
The optical switch is scheduled based on the traffic demands
to maximize throughput, which is similar to Flyway.

GA-based approaches have been proposed to handle the
channel allocation problem in various wireless networks.
Zomaya et al. [15] highlight the potential of using GA
to deal with wireless resource allocation and design a GA
method with an improved mutation operator to address the
problem efficiently. Patra et al. [16] improve the algorithm
by introducing a new pluck operator. Ding et al. [17] utilize
GA to assign partially overlapping channels in WMN. Our
approach is different from the existing ones in that the channel
allocation problem in a wireless DCN is different from those
in conventional wireless networks (as mentioned in Section I)
and we design our own crossover and mutation operators to
improve the performance of the GA algorithm.

III. SYSTEM MODEL

A. Wireless Transmission

In this paper, we propose a generic approach to utilize wire-
less in DCNs such that the adoption of wireless transmissions
is independent of the implementation of a DCN. Therefore,
the basic unit of a wireless DCN should not be restricted to
be a server or a rack. Instead, we formalize it as an abstract
concept with the following definition.

Definition 1: A wireless transmission unit refers to a group
of servers that uses the same set of antennas to transmit data
to other servers outside the group.

Typically, a rack is taken as a unit. For solutions that
does not adopt traditional tree-based topologies, we can treat
certain specific structures in the corresponding architectures
as wireless transmission units. For example, the BCube0
structure in BCube is an reasonable candidate for a wireless
transmission unit [12].



Based on Definition 1, we classify the traffic in the network
into two categories: one is the inter-unit traffic and the other
is the intra-unit traffic. Note that wireless links are employed
for transmitting the inter-unit traffic. Assume v1 and v2 are
two units. Let t(v1, v2) denote the traffic demand from v1 to
v2. The distribution of inter-unit traffic can be illustrated with
a wireless transmission graph as defined in Definition 2.

Definition 2: A wireless transmission graph is a directed
graph G = (V,E), where V denotes the set of units and E
denotes the set of transmissions.

Each node v in the graph corresponds to a physical unit
with antennas. We use ω(v) to denote the number of antennas
belonging to v. An edge e = (v1, v2) presents in the graph if
and only if the volume of the traffic from v1 to v2 is more
than 0.

B. Channel Allocation and Interference

For a given wireless transmission graph, channels should be
assigned to the edges to carry out wireless communications. In
this work, we assume different channels are orthogonal. Let C
denote the set of channels. When allocating channels, we as-
sign each edge e ∈ E with an integer c(e) ∈ {0, 1, . . . , |C|}, in
which each non-zero integer corresponds to a certain channel
and 0 means assigning no channel to e. Note that not all the
wireless transmissions should be carried out simultaneously
because some of them may cause serious interference to
others and therefore have a negative impact on the global
performance. If an edges is assigned a channel, it is called
an active edge; otherwise, it is an idle edge.

The set of channels allocated to all the edges form a channel
allocation scheme of the wireless transmission graph. Assum-
ing |E| = n (we follow this assumption in the remaining
sections of this paper), the channel allocation scheme can be
expressed by a vector X = (x1, x2, · · · , xn), in which each
element xi stands for the channel assigned to a specific edge
ei.

One of the problems in channel allocation is that the
transmission on an edge is possibly interfered by the nearby
transmissions working on the same channel.

Definition 3: The conflict edge of an edge e in a wireless
transmission graph is the edge whose transmission causes
interference on the transmission of e.

The decision of a conflict edge involves the physical po-
sition of the nodes and the assigned channels. With regard
to physical position, we adopt the interference range model,
in which a sender node causes interference on all the nodes
within its interference range. Note that our model does not
rely on certain antenna techniques. The interference range of
a node with an omni-directional antenna is usually defined as
a unit disk while that of a directional antenna depends on the
relative position of the two endpoints and the beam-forming
patterns. Whichever antenna techniques is employed, we just
adopt the corresponding interference range model.

Data transmissions in DCNs should be reliable so acknowl-
edgment is required. We transmit data packets and acknowl-
edgment packets at reversed edges. Thus, the transmission on

an edge e = (v1, v2) is unidirectional, i.e. packets are only
sent from v1 to v2. Based on the interference range of a
node, we can induce the interference range of an edge: An
edge e = (v1, v2) is in the interference range of another edge
ē = (v̄1, v̄2) if v2 is in the interference range of v̄1.

If e is in the interference range of ē, we consider ē as a
potential conflict edge of e. If ē is a potential conflict edge
of e and c(ē) = c(e) 6= 0, then ē is the conflict edge of e.
Let Γ(e) denote the conflict edge set of e and Γ0(e) be the
potential conflict edge set.

Since all the nodes are static, potential conflict edge sets
can be precomputed for a given wireless transmission graph.
The interference relationship can be illustrated with a conflict
graph, in which each node denotes a transmission and a
directed edge (v1, v2) indicates that v1 potentially interferes
v2.

C. SINR and Data Rate

In the research on wireless networks, the protocol inter-
ference model and the physical interference model are often
used to determine the effect of interference [18]. In the
protocol interference model, the transmission of an edge is
blocked if one of its conflict edges is active. On the other
hand, simultaneous transmissions are admitted in the physical
interference model as long as the signal to interference and
noise ratio (SINR) at the receiver is larger than a threshold
TSINR. We adopt the latter model in this work. Thus, the
transmission on e = (v1, v2) is successfully performed if and
only if:

SINR(e) =
PS(e)∑

ē∈Γ(e) PI(ē) +N0
≥ TSINR (1)

where PS(e) denotes the signal power received by v2, N0

is the environment noise, and PI(ē) denotes the interference
power caused by ē and received by v2.

For a given edge e, the edges in Γ(e) may cause interfer-
ence of different intensity on e. We define the intensity of
interference as follows.

Definition 4: If ē is in the potential conflict edge of e, the
interference factor between ē and e is the ratio between the
power emitted from the transmitting antenna of ē and the
power received by the receiving antenna of e on the same
channel.

The interference factor can be computed according to Friis
transmission equation as shown in (2), where Pr

Pt
is the ratio

of the power received by the receiving antenna Pr and power
emitted from the transmitting antenna Pt; Gt and Gr are
the antenna gains of the transmitting and receiving antennas,
respectively; λ is the wavelength and R is the distance; and the
exponent α is typically in the range of 2 to 5 as an estimation
to the pass-loss effect.

Pr
Pt

= GrGt(
λ

4πR
)α (2)

For simplicity, we assume that all the antennas have the
same gain and the same transmit power. If ē = (v̄1, v̄2) is the



conflict edge of e, the power of interference caused by ē is
expressed with (3), where R(e, ē) denotes R(v̄1, v2).

PI(ē, e) =
GtGrλ

α

(4π)α
Pt

R(e, ē)α
(3)

Let CI = (GtGrλα)/(4π)α. The interference factor be-
tween ē and e can be expressed with (4).

I(ē, e) =
CI

R(e, ē)α
(4)

Similar to the computation of the interference factor, the
signal power received by v2 can also be computed based on
the Friis equation. In short, the SINR of e can be computed
with (5), where R(e) is equal to R(v1, v2).

SINR(e) =
CIPt/R(e)α∑

ē∈Γ(e) I(ē, e)Pt +N0
(5)

SINR is not only the necessary condition of successful
transmissions but also an important factor that influences the
data rate of wireless links. For example in 802.11, coding
and modulation are selected based on SINR and thus lead
to different data rates. This mechanism is based on Shannon
theorem, as given in (6), where Capacity is the upper bound
of the data rate and B is the channel bandwidth.

Capacity = B log2(1 + SINR) (6)

In this work, we assume the data rate is proportional to the
capacity. Assuming all the channels have the same bandwidth
B and the rate between the data rate and the capacity is β,
the date rate of e can be expressed with (7).

r(e) = βB log2(1 + SINR(e)) (7)

With (5) and (7), we can compute the data rate of each
transmission as long as the channel allocation scheme and the
interference relationships are specified.

IV. SCHEDULING MECHANISM

Based on the model of wireless data center networks,
we propose a centralized scheduling mechanism for wire-
less transmissions, in which a central controller periodically
gathers the information about traffic demands from all the
units as well as schedules wireless links for the inter-unit
transmissions. The scheduling consists of two steps: the first
step is to construct a wireless transmission graph based on the
traffic information; and the second step is to perform channel
allocation in the wireless transmission graph. We provide the
details of the two steps in this section.

A. Constructing A Wireless Transmission Graph

1) Selecting Transmissions: When constructing a wireless
transmission graph, the central controller converts the traffic
demands to a wireless transmission graph for latter scheduling.
Although the converting itself is quite easy, the problem lies
in the large number of transmissions. As a well-known NP-
hard problem, channel allocation is usually handled by using
heuristic algorithms, whose time cost grows with the increase

of the number of scheduled objects. For DCNs, the huge
number of transmissions leads to an excessively high cost.
Therefore, efforts should be made to decrease the size of the
channel allocation problem.

A feasible approach is to select a part of the transmissions
to construct the graph rather than involve all the transmissions.
As for this approach, the key problem is to determine which
transmissions to select. Recall the motivations to introduce
wireless transmissions into DCNs. It is the high traffic of
sparse hot nodes that causes congestion and put off the
completion of a job. Therefore, limited wireless channel re-
sources should be used to serve those nodes. In other words,
transmissions belonging to the hot nodes should be selected
with a high priority.

Furthermore, as mentioned before, the scheduling is a
periodical mechanism which means that the channel allocation
scheme will be carried out for a period after each allocating
operation. Therefore, if the traffic of a transmission is so low
that the corresponding wireless link keeps idle for the most of
the period, the transmission should be assigned to wired links
rather than occupy wireless channel resources.

Besides, a wireless transmission is restricted by the valid
transmission range. As for 60GHz communications, the range
is about 10m. For e = (v1, v2), if the distance between v1 and
v2 exceeds the valid transmission range, the corresponding
edge should be removed from the graph as it is impossible
for the antennas to carry out the corresponding wireless
transmission.

2) Weighting Transmissions: In conventional wireless
scheduling approaches, the total throughput is often taken as
the metric of performance. However, it is not the case for
our problem. As discussed above, nodes with a higher volume
of traffic usually finish their transmissions later due to the
limit of bandwidth and consequently, put off the global job
completion time. Another example is that some flows are
expected to experience much longer delay than others via
Ethernet transmission because of the static topology and the
routing mechanisms. Under either condition, it is obvious that
setting up wireless links for certain transmissions is more
profitable even if the corresponding data rate is not as high as
that of wired links.

We formalize this property as the utility of the transmission,
which reflects the contribution to the global performance made
by transmitting the traffic via wireless links. In a wireless
transmission graph, each edge e is associated with a weight
u(e) that denotes the utility of the corresponding transmission.

In this work, we employ the network delay to estimate the
utility of a transmission. Intuitively, a transmission with a high
network delay, caused by either congestion or a long transmis-
sion path, is suitable to be assigned to wireless transmissions.
Therefore, the utility should be directly proportional to the
network delay. We define the utility as (8), where d(e) is the
network delay of e and µ is a positive coefficient. Note that
utility is a scalar variable.

u(e) = µd(e) (8)



Generally speaking, the network delay can be estimated
based on the traffic distribution and the Ethernet architecture.
Yet, this work does not focus on how to perform the estima-
tion. In fact, our channel allocation algorithm does not rely on
how utility is computed. As long as each edge of the wireless
transmission graph is assigned a weight, our scheduling ap-
proach can be applied to generate the corresponding channel
allocation scheme.

B. Allocating Channels

After constructing the wireless transmission graph, channel
can be assigned based on the graph. In this subsection, we first
formulate the channel allocation problem and then propose a
genetic algorithm to handle the problem.

1) Formulation of the Channel Allocation Problem: We
formalize channel allocation as an optimization problem and
the channel allocation scheme is taken as the variable of
the problem. As for the objective of channel allocation, we
propose Definition 5 to estimate the impact of a wireless
transmission on the global performance based on the definition
of utility. The objective function of the optimization problem is
the total weighted throughput of all the wireless transmissions.

Definition 5: The weighted throughput of a transmission is
the product of its throughput and its utility.

Several constraints should be considered in channel alloca-
tion. First, the number of active edges belonging to a node
should not be more than the number of antennas of that
node. Second, the assigned channels should be in the available
channel set C. Third, for each active edge, its SINR should
be higher than the threshold as shown in (1).

Let Es(v) denote the set of edges whose source node is v
and Ed(v) be the set of edges whose destination node is v.
Based on the above analysis, the channel allocation problem
can be expressed with (9). The optimal solution of the problem
is the channel allocation scheme that meets the constraints in
(9) and maximizes the total weighted throughput.

max
∑
e∈E

u(e)r(e) (9)

subject to
|{e|e ∈ Es(v) ∪ Ed(v) ∧ c(e) > 0}| ≤ ω(v), ∀v ∈ V
c(e) ∈ {0, 1, 2, · · · , |C|}, ∀e ∈ E
SINR(e) ≥ TSINR, ∀e ∈ {ē|ē ∈ E ∧ c(ē) > 0}

2) Genetic Algorithm: In this work, we tackle the channel
allocation problem with a GA-based scheduling algorithm. The
concept of genetic algorithm is to simulate the process of
natural evolution, in which the individuals with higher fitnesses
are more likely to survive.

GA is advantageous in solving the channel allocation prob-
lem. First, the delicate design of GA enables it to achieve
a better performance in handling NP-hard problems than
simple heuristics, such as naive greedy search. Second, the
channel assignment problem has inherent local optimization
property [17]. An allocation scheme for a subnetwork with
less interference locally is more likely to be part of the

global allocation scheme because the interference range of
wireless transmissions is limited. The property fits well into
GA because the selection operator and the crossover operator
of GA can reserve optimal local allocation schemes. Third,
GA does well in handling the traffic demand evolution. The
traffic distribution of a period is strongly correlated to that
of the previous period. Therefore, the optimal scheme for
the previous period is expected to yield an ideal solution
for the current period. The convergence can be accelerated
considerably by taking the final generation of previous period
as the initial generation of current period. We define this
approach as inheriting GA search.

Before presenting the scheduling algorithm, we first de-
scribe the problem mapping and our design of the main
operators (selection, crossover and mutation) of GA.

a) DNA, Individual and Generation: In the channel allo-
cation problem, we denote the channel assigned to a wireless
link as a DNA. A channel allocation scheme is taken as an
individual. A group of channel allocation schemes form a
generation.

According to the problem mapping, the DNAs of an in-
dividual can be encoded as an integer string. An important
issue in DNA encoding is whether it can coordinate with
the crossover operator to preserve the merits of the parent
individuals. Usually, the merits of a scheme involves the
channels assigned to a group of interfering transmissions. In
this work, we adopt the single-point crossover. Therefore, the
DNAs corresponding to the interfering transmissions should
be arranged together so that the channels of these edges are
easily preserved during crossover. A feasible approach is to
perform depth-first-search in the conflict graph and number
each transmission in order [17]. The DNAs of the scheme can
be encoded in the ascending order of the number.

b) Selection: The basic idea of selection is to evaluate
the fitness of all the candidate individuals, which is done
by computing the fitness function of each individual. In our
channel allocation problem, the fitter individual stands for
the scheme that achieves a higher total weighted throughput.
Therefore we simply take the total weighted throughput as the
fitness function f .

We adopt the roulette wheel selection as the selection oper-
ator, where the selection probability ps(X) of an individual X
in a generation X is calculated based on (10). The interval [0, 1]
is divided into subintervals in such a way that each individual
corresponds to a subinterval with the length proportional to its
selection probability.

ps(X) =
f(X)∑
X̄∈X f(X̄)

(10)

When selection is executed, random numbers ranging from
0 to 1 are generated to select individuals. For each random
number, the individual that corresponds to the interval includ-
ing the random number is selected. Each individual can be
selected multiple times. Thus, candidate individuals with lower
fitness are more likely to be eliminated. The selection operator
is detailed in Figure 2.



Input: m individuals X = {X1, X2, · · · , Xm}
Output: m selected individuals Y = {Y1, Y2, · · · , Ym}

1: Y← ∅
2: ps(Xi)← f(Xi)∑

X̄∈X
f(X̄)

, for i = 1, 2, · · · ,m

3: bi ←
∑i
j=1 ps(Xj), for i = 0, 1, · · · ,m

4: for j = 1 to m do
5: Generate a random number in [0, 1), denoted as δ
6: Find i such that bi−1 ≤ δ < bi
7: Y← Y +Xi

8: end for
9: return Y

Fig. 2. Selection algorithm

c) Crossover: We adopt the single-point crossover in our
algorithm, in which two parent individuals are cut off at the
same point and the offsprings are produced by combing differ-
ent parts of the parent individuals together. In order to speed
up convergence, we introduce a greedy heuristic rule, which
tends to select the point that can generate offsprings with the
highest fitness. Note that not all the offsprings generated by the
single-point crossover are feasible solutions. The crosspoint
is admissible only if both offsprings are feasible solutions.
Figure 3 details the procedure of crossover. For each pair of
parent individuals, it takes O(n) time to find the best crossover
point.

Input: two parent individuals X1, X2

Output: two offspring individuals Y1, Y2

1: fm ← 0
2: Y1 ← 0, Y2 ← 0
3: for i = 0 to n do
4: (Y ′1 , Y

′
2)← single-point crossover of X1 and X2 at i

5: if Y ′1 , Y ′2 are feasible and Max{f(Y ′1), f(Y ′2)} > fm
then

6: fm ← Max{f(Y ′1), f(Y ′2)}
7: Y1 ← Y ′1 , Y2 ← Y ′2
8: end if
9: end for

10: return Y1, Y2

Fig. 3. Crossover algorithm

d) Mutation: In GA, each generated offspring mutates
at a certain probability to turn into a new individual. The
mutation usually changes part of the DNAs. In this work, we
take the optimal solution in the neighborhood of the original
individual as the new individual so that the mutation can
encourage the convergence of the iteration.

The concept of neighborhood is given in Definition 6.
Definition 6: Given a wireless transmission graph G =

(V,E), the k-neighborhood (k ∈ {1, 2, · · · , n}) of a solution
scheme X is the set of solutions in which each solution has
at most k elements that are unequal to the corresponding
elements in X

Let N(X, k) denote the k-neighborhood of X . Assuming

X is optimal in N(X, k), the larger the k, the higher the
possibility of X being the global optimal solution; if k = n,
X is definitely the global optimal solution. It is obvious that
it takes a huge cost to find the optimal solution in a large
neighborhood. However, we only need to search in a relatively
small neighborhood (typically k = 1 or 2) in mutation.
Therefore the time cost is tolerable.

Input: origin individual X; mutation probability pm; neigh-
borhood size k

Output: new individual Y
1: Y ← X
2: Generate a random number in [0, 1), denoted as δ
3: if δ < pm then
4: for all Y ′ in N(X, k)−X do
5: if Y ′ is feasible and f(Y ′) > f(Y ) then
6: Y ← Y ′

7: end if
8: end for
9: end if

10: return Y

Fig. 4. Mutation algorithm

Figure 4 details the procedure of mutation. We traverse
the k-neighborhood of the original individual and find the
best one, which takes O(

(
n
k

)
|C|k) time. Similar to crossover,

we should also ensure the feasibility of the new solution in
mutation.

e) GA-based scheduling algorithm: Based on the prob-
lem mapping and the designs of selection, crossover, and
mutation, we depict the GA-based scheduling algorithm in
Figure 5.

Input: m initial individuals X = {X1, X2, · · · , Xm}; mu-
tation probability pm; neighborhood size k; termination
threshold l

Output: the optimal solution Y
1: repeat
2: X1 ← Selection(X)
3: Divide the individuals in X1 into pairs randomly; denote

the set of pairs as Xp
4: X2 ← {Crossover(Xi, Xj)|(Xi, Xj) ∈ Xp}
5: X3 ← {Mutation(X, pm, k)|X ∈ X2}
6: until No evolution occurs for l generations
7: Y ← arg maxX∈X f(X)
8: return Y

Fig. 5. GA-based scheduling algorithm

In the algorithm, m feasible schemes are taken as the
initial generation. Typically, these schemes can be randomly
generated. Taking the final generation of the previous period as
the current initial generation is an alternative optimization. For
each generation, we first compute the selection probability of
each individual in the current generation based on their fitness.
After that, selection is executed based on the selection prob-
ability to get m new individuals. These selected individuals
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Fig. 6. Experiment DCN architecture

are randomly paired and crossover is performed over each
pair. Each offspring individual experiences the mutation at
the probability of pm. Then, these offspring individuals are
taken into the next iteration. The iteration is terminated if
no evolution occurs during the last l generations, where a
generation is considered evolutionary if the highest fitness of
its individuals is higher than that of the previous generation.
At last, the individual with the highest fitness in the final
generation is taken as the solution.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algo-
rithm and the effectiveness of wireless transmissions with a
series of simulations. We first describe the details of the sce-
nario and the methodologies, and then analyze the experiment
result.

A. Evaluation Setup and Methodologies

1) Experiment Setup: The experiments are performed in a
simulating data center composed of 64 racks. Typically, each
rack is equipped with 20 servers so there are in total more
than 1000 servers. The racks are connected to 8-port switches
and form a 3-layer tree structure. Figure 6 illustrates the DCN
architecture used in the simulation study.

The data rate of wired links is set to 1Gbps and the
propagation delay is set to 2µs. As for wireless networks,
since no standard has been published to specify the parameters
of 60GHz communications, we just follow the specifications
of existing prototype devices. According to [5], the channel
bandwidth of 60GHz is 2.5GHz and the running frequency
ranges from 57GHz to 66GHz. Thus, we assume |C| = 4.

2) Experiment Design: Our experiment consists of two
parts. In the first part, we use the QualNet simulator to
establish the experiment DCN structure illustrated in Figure 6
and simulate the data transmissions in a real DCN.

With regard to the input to the network, we generate inter-
rack TCP traffic, whose distribution follows the property that
a few racks account for the majority of the traffic, to mimic
a real data center application. Specifically, we mainly refer to
two traffic demand matrices. In the first matrix (denoted by
M1), the traffic of hot nodes are dominant (10 racks with 95%
of the total traffic); it is a typical unbalanced traffic demand
matrix [6]. The distribution of another matrix (denoted by M2)
is slightly more balanced, with 20 racks generating 70% of the
total traffic. By employing different traffic matrices, we aim
to investigate the impact of the traffic distributions.

For each input matrix, we prepare different cases as shown
in Table I. Test Case WIRE is taken as comparison to
demonstrate the impact of wireless transmissions; besides, the
utility of the transmissions are computed according to their
delay in Test Case WIRE. For the cases that enable wireless
networks, we run the GA-based scheduling algorithm and set
up wireless links based on the channel allocation scheme. By
comparing the cases with different ω, we inspect the perfor-
mance improvement as the number of wireless links increases.
We also test the case that only throughput is considered in
scheduling (the utilities of all the transmissions are treated as
1) to examine the effectiveness of considering utility.

As for the second part of the experiments, we study the
performance of the GA-based scheduling algorithm, which
involves the optimality of the solution and the convergence
speed. The former corresponds to the fitness of the solution
while the latter is measured by counting the bred generations
when terminating the search. By running the algorithm 20
times for each scenario, we obtain the average values of the
two metrics. Note that it does not make sense to compare
fitness of the schemes for different traffic demand matrices
directly. Therefore we turn to normalized fitness, which is
computed by dividing the fitness by the largest fitness we have
obtained for the same matrix.

Another problem about GA is the impact of the mutation
operator. We investigate the problem by comparing the perfor-
mance of the algorithm with different mutation probabilities.

Moreover, we also test the ability to handle the traffic
demand evolution. A traffic demand matrix sequence with a
strong time correlation is taken as the input. More specifically,
a new traffic matrix is generated by adjusting the previous
matrix in a small range. In addition to the basic matrix
sequence, we also randomly select new hot nodes in generating
new demand matrices to mimic the condition of outburst
traffic. By comparing the performance of the inheriting GA
search and the normal GA search, we reveal the advantages
of GA in traffic-based scheduling.

B. Simulation Results

1) Impact of Wireless Transmissions: Figure 7a and Fig-
ure 7b illustrate the job completion time under different input
traffic demands. All the nodes are arranged in the descending
order of the individual completion time and that of the fist
node is considered as the global job completion time. For the
sake of visual clarity, we only involve the top 20 nodes in
Figure 7a as the completion time of the remaining nodes is
quite small.

TABLE I
PARAMETERS OF THE TEST CASES

Test Case Wireless Enabled No. of Antennas Utility Considered

WIRE No / /

W4U Yes 4 Yes

W2U Yes 2 Yes

W4 Yes 4 No



As shown in these figures, utilizing wireless transmissions
reduces the job completion time significantly; the increase of
the number of available antennas can further shorten the time
as more antennas lead to more wireless links.

For different traffic distributions, the effect raises as the
distribution gets more unbalanced. Yet, wireless networks still
decrease the completion time by up to 30% for a relatively
balanced distribution (M2). Especially, the racks other than
hot nodes can also benefit from wireless transmissions even if
there is no wireless links attached to them, which is because
wireless transmissions decrease the traffic load on the Ethernet.

It is noteworthy that the global job completion time de-
creases for M1 if we take the utilities of different transmissions
into consideration. More specifically, the completion time of
the hottest node in the Test Case W4U is shorter than that in
the Test Case W4 while other nodes are likely to experience
longer transmission times in the Test Case W4U. The re-
sults indicate that optimizing weighted throughput outperforms
merely optimizing the throughput in terms of allocating the
limited wireless channel resources to alleviate the congestion
of the hottest nodes. As a side effect, other nodes would get
fewer opportunities to utilize wireless transmissions, which
lengthens their completion time. On the other hand, the two
test cases achieve similar completion times for M2 because
the utilities of different transmissions are close to each other
under a relatively balanced traffic distribution.

In addition to the job completion time, we also take through-
put as another metric of the global performance. Since differ-
ent transmissions have different completion times, measuring
the throughput of a node is meaningless. Therefore, we pay
attention to the throughput of each transmission. Figure 7c
and Figure 7d illustrate the distributions of the throughput
of all the test cases, where transmissions are arranged in
the descending order of the throughput. We only involve the
top 150 transmissions in the figures as the throughput of
other transmissions is negligible. Table II records the total
throughput of all the test cases.

Generally speaking, the total throughput benefits a lot from
wireless transmissions. Increasing the number of antennas
improves the throughput considerably as the raise of the
throughput mainly results from the additional capacity pro-
vided by the wireless links

Figure 7c and Figure 7d indicate that optimizing the
weighted throughput based on utilities has a significant impact
on the network throughput, especially for an unbalanced traffic
distribution. By considering the delay of different transmis-
sions, our approach alleviates the congestion of hot nodes
effectively. Consequently, all the transmissions benefit and
maximizing weighted throughput does better in improving the
overall throughput than merely maximizing the throughput.

2) Scheduling Algorithm Performance: Table III shows
the performance of our GA-based scheduling algorithm over
different mutation probabilities. As the probability increases,
the convergence speed also increases while the fitness of the
solutions falls. This is caused by the local optimal property of
the mutation. In mutation, we traverse a small neighborhood to

find a better scheme. Therefore, as the frequency of mutation
grows, the probability that the scheme becomes a local optimal
solution also increases. Consequently, although it speeds up
the convergence, converging to local optimal solution rapidly
probably result in unsatisfactory solutions. As an extreme
example, if pm is 1, the algorithm turns to a greedy heuristic.
In short, selecting a proper mutation probability is a trade-
off between the convergence speed and the optimality of the
solution.

Figure 8 shows the performance of our algorithm in han-
dling traffic demand evolution. Compared with the normal
GA search, inheriting GA search not only takes a shorter
convergence time but also achieves a higher fitness. Even
if a few nodes randomly generate outburst traffic, the GA-
based algorithm with inheriting search can still maintain
high performance. The results indicate that inheriting search
benefits from the solutions of the previous search as those
solutions provide optimized channel allocation schemes for
evolving traffic demands. As a result, inheriting GA search
usually leads to a higher fitness and a shorter convergence
time than the normal GA search.

VI. CONCLUSION

In this paper, we present an exploratory investigation on
utilizing wireless networks in DCNs. Different from existing
works, we take wireless interference and SINR-based date rate
into consideration to build a generic model for wireless DCNs.
Besides, we take into account the coordination of the through-
put of wireless networks and the global performance. A new
metric is proposed to measure the contributions of wireless
transmissions. Based on these considerations, we study the
channel allocation problem and design a GA-based schedul-
ing algorithm by implementing the procedures of selection,
crossover, and mutation. We perform elaborate simulations to
evaluate the effectiveness of wireless transmissions in a DCN.
According to the simulation results, the global performance
of a wireless DCN is improved considerably in terms of both
throughput and job completion time. Moreover, we analyze the
performance of the GA-based algorithm based on a series of
experiments and demonstrate that it is an excellent approach
to tackle the channel allocation problem in wireless DCNs.

TABLE II
TOTAL THROUGHPUT OF ALL THE TEST CASES

Test Case WIRE W4U W2U W4

M1 26.2Gbps 47,7Gbps 40.6Gbps 40.7Gbps

M2 27.7Gbps 48.4Gbps 42.8Gbps 46.2Gbps

TABLE III
PERFORMANCE OF GA vs. MUTATION PROBABILITY

Mutation Probability 0.1 0.3 0.5 0.7 0.9

Generation Count 7.6 5.9 6 5.2 4.1

Normalized Fitness 1.00 9.55 8.96 8.62 8.05
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