
Fault Tolerant Target Tracking in Sensor Networks

Min Ding
Dept. of Computer Science

The George Washington University
Washington DC 20052, USA

minding@gwmail.gwu.edu

Xiuzhen Cheng
Dept. of Computer Science

The George Washington University
Washington DC 20052, USA

cheng@gwu.edu

ABSTRACT
In this paper, we present a Gaussian mixture model based
approach to capture the spatial characteristics of any target
signal in a sensor network, and further propose a temporally-
adaptive variant of the approach for dynamic multiple target
tracking under changing environments, with the presence of
both significant background event noises and a large por-
tion of outlying sensor readings. The target position is esti-
mated by adopting the mean-shift optimization to discrim-
inate the target signals from the background noises. Our
mixture model based algorithm is capable of fusing multi-
variate real-valued sensor measurements and its probability
nature shows fault tolerance and robustness in noisy sens-
ing environments. This consideration is practical as in real
world applications, sensor readings are multi-modal and may
contain errors. The simulation study validates our design
and the results indicate that our mixture model based al-
gorithm is an effective and capable approach for the two
most typical target signal models under consideration. De-
sirable quantitative target tracking results are also achieved
through extensive evaluations under challenging background
conditions.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Wireless
Communication, Information Processing

General Terms
Algorithms, Design, Reliability, Theory

Keywords
Target Tracking, Fault Tolerance, Gaussian Mixture Model,
Expectation-Maximization, Wireless Sensor Networks

1. INTRODUCTION
Sensor networking and the methods for efficiently in-network

processing the sensor readings have emerged as important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’09, May 18–21, 2009, New Orleans, Louisiana, USA.
Copyright 2009 ACM 978-1-60558-531-4/09/05 ...$5.00.

topical thrusts that trigger many real world applications
and research activities such as the Microsoft SensorMap [20],
Google Earth embedded sensor networks [9], and landslide
prediction [22]. In the general field of information process-
ing in sensor networks, we are facing three main challenges.
First, the scale of a sensor network can be tremendous while
often it may contain thousands of sensors deployed across
a broad geographical region. Consequently the volume of
unordered in-network sensor readings over spatial and tem-
poral domains is huge. Second, sensor readings are prone to
noise in real environments and unreliable inter-sensor com-
munications can cause further information loss. Third, each
sensor has very limited computational power, memory stor-
age and energy supply, which make computationally expen-
sive algorithms less valuable. These challenges motivate us
to design robust, efficient, distributed, and in-network infor-
mation extraction algorithms.

In this paper, we propose a robust (fault-tolerant) statis-
tic algorithm for the task of tracking dynamically moving
targets. Our design tackles the challenges faced by real time
target tracking. We first propose a novel unified solution
based on the Gaussian mixture model [6, 8, 18] with an ex-
plicit model selection to model the distribution of the target
signals. For target tracking, we adopt an adaptive Gaussian
mixture representation to handle the target mobility issue
and employ the Mean-shift [4, 15] continuous optimization
method for target localization. The nice features of the al-
gorithm are summarized as follows:

1. Our novel statistical Gaussian mixture model based
algorithm is capable of fusing multivariate real-valued
sensor signals and model the sensing data distribution
to capture the presence of one or more targets.

2. Our approach is fault-tolerant and is robust against
outlying sensor readings under complex background
noise models because an adaptive model updating pro-
cedure is employed to dynamically update the target
signature.

3. Given the estimated target mixture model, Mean-shift
iterations are employed to localize the target’s new po-
sition at the next step.

Leveraging on the fast, reliable convergence and continu-
ous optimization of mean-shift, and the probabilistic smooth-
ness of the Gaussian mixture model, our tracking algorithm
is capable of handling different types of target signal mod-
els under various noise disturbances. The issues of accuracy,
smoothness, and robustness have significant practical impor-

tance, but have not been fully addressed in previous work
[3, 11, 12, 14, 7, 25].

Extensive simulation results are also reported in this pa-
per, which demonstrate that our proposed algorithm can ac-
curately track the target motion trajectory, including single
target tracking with and without outlying sensors and mul-
tiple target tracking with trajectory overlaps, with a high
robustness under various background noise patterns and lev-
els. Though designed for sensor networks, we believe that
our algorithm can be applied to general regional data anal-
ysis in spatial data mining [19] and network traffic mining
[10, 16].

The remainder of the paper is organized as follows. In
section 2, we briefly review the most related work on tar-
get tracking. Then an introduction on several important
aspects of the finite Gaussian Mixture Model is given in sec-
tion 3. Next our newly proposed target tracking algorithm is
described in detail, followed by a comprehensive simulation
evaluation in section 5. We also discuss the computational
complexity and implementation issues of our algorithm in
section 6 and finally conclude this paper in section 7.

2. RELATED WORK
Target tracking has emerged as an interesting problem

representing a very important class of sensor network appli-
cations [3, 11, 12, 14, 25]. In this section, we briefly survey
the most related research.

Refs. [3, 14, 25] treat the sensor readings as multimodal
feature vectors, where the mixture of multivariate Gaussian
density functions or the mixture models are used to capture
the target’s statistical properties. Based on either the prob-
ability density values or the (Mahanabolis) distances from
the sensors influenced by the target, [3, 14, 25] train a k-
Nearest Neighbor (KNN) or other types of classifiers to track
the target by classifying the sensor readings in its predicted
area at time t from t− 1. In this paper, we leverage on the
adaptive Gaussian mixture model to capture the dynamic
target appearance and adopt the continuous Mean-shift op-
timization for target localization over time. Our algorithm
can successfully track the target moving trajectory under
complex background noise scenarios. Compared with the
pure nonparametric treatment of KNN type classifiers, our
density evaluation is also more efficient.

A real-time target tracking system using wireless sensor
networks is designed and implemented in [11, 12]. A power
management protocol is adopted to set the sensor nodes ei-
ther in active or in sleep state for prolonged network lifetime.
In addition, some wake-up strategy and group aggregation
schemes are designed and analyzed for target detection, clas-
sification, and tracking tasks. The trade-off between energy
saving and time delay in each phase is analyzed to guarantee
the end-to-end tracking deadline in real applications. These
works focus on the system design to achieve real-time target
tracking in a timely and energy-efficient manner while our
paper focuses on the algorithmic aspect of accurately track-
ing moving targets under simple and complex background
noise models.

The authors in [23] also explore the trade-off between en-
ergy consumption and tracking quality in a networked sen-
sor system. A quality-aware information collection protocol
is proposed to determine which sensor is in active state by
considering the tracking error tolerance of triangulation es-
timations. In [24] a spanning tree rooted at the sensor node

close to a target is used for target tracking, with the target
position estimated by the location of the root sensor. In this
paper, we propose more statistically-oriented algorithms for
mobile target identification and localization, which allows
us to directly model the distributional properties of sensor
signals.

3. MOTIVATION AND MIXTURE MODELS
The mixture model has a wide variety of applications in

practice, ranging from spatial data mining [19], to large scale
network dataflow monitoring and fault detection in complex
network systems [10, 16], and to effective face tracking [17].
In this paper, we will explore the statistical modeling prop-
erty of the finite mixture model [6, 8], especially the Gaus-
sian mixture model (GMM), and adopt it into the scenario
of distributive (sensor network) sensing data processing and
mining. We propose to investigate target tracking based
on adaptive GMMs for target signal modeling and iterative
mean shift optimization for target location estimation.

3.1 Finite Mixture Models and Gaussian Mix-
ture Models

Given a collection of data samples X = {x1, x2, ..., xm},
with each xi representing a D-dimensional random (column)
vector, assume that X follows a k-component (or mode) fi-
nite mixture distribution as

p(xi | θ) =

k∑
j=1

αjp(xi | θj), j = 1, 2, .., k; i = 1, 2, .., m

subject to :

k∑
j=1

αj = 1

(1)

where αj is the mixing weight and θj is the set of param-
eters of the j-th mixture component p(xi | θj). We de-
note θ = {α1, θ1, α2, θ2, ..., αk, θk} as the complete set of
parameters defining a specific finite mixture model. The ob-
jective function of estimating θ from X is to maximize the
log-likelihood criterion

logp(X | θ) =

m∑
i=1

log

k∑
j=1

αjp(xi | θj). (2)

Then the maximum likelihood estimator of θ is

θ̂ML = arg max
θ
{logp(X | θ)}. (3)

It is well known [6, 8, 18] that θ̂ML can not be computed
analytically from Eq. (3). Instead, the expectation maxi-
mization (EM) algorithm [6] is applied as its general solver
for such a problem. EM is an iterative parameter optimiza-
tion procedure of finding the maximum likelihood solution
θ̂ML.

The Gaussian mixture model (GMM) is perhaps the most
important class of finite mixture densities [8] because the
Gaussian function is the most commonly used function in
statistics as an approximation to real world signals. GMM
offers flexible and comprehensive unsupervised data model-
ing capacity and is capable of approximating any underlying
density distribution in theory. It is formulated by using a
Gaussian density G(xi | µj , Σj) with its mean vector µj and
covariance matrix Σj to replace the general probability den-

sity function p(xi | θj) in the finite mixture model

p(xi | θ) =

k∑
j=1

αjG(xi | µj , Σj), (4)

where a D-dimensional multivariate Gaussian distribution
is defined as

G(x | µ, Σ) =
1

(2π)D/2|Σ|1/2
exp

{
− 1

2
(x− µ)′Σ−1(x− µ)

}
.

3.2 Expectation Maximization Algorithm
The EM algorithm was originally presented for mixture

model parameter estimation in Dempster’s paper [6] under
the incomplete data condition. It was then extensively de-
veloped in the last three decades [8, 18] and remains one of
the most fundamental and important data modeling meth-
ods. EM algorithm is an iterative method on estimating the
free parameters of finite mixture models, or more specifi-
cally, the mean vectors µj , covariance matrices Σj and prior
weights αj in GMMs.

The EM algorithm includes iterations of two steps as fol-
lows [18, 8]. At each iteration t, both the E-step and the
M-step are executed.

E-step: Estimate the posterior probability γt
ij that the

j-th component generated xi using the estimates of the pa-
rameters from the last M-step

γt
ij =

αt−1
j G(xi | µt−1

j , Σt−1
j)

∑k
j=1 αt−1

j G(xi | µt−1
j , Σt−1

j)
(5)

M-step: Compute the parameters using γt
ij

αt
j =

∑m
i=1 γt

ij∑k
j=1

∑m
i=1 γt

ij

(6)

µt
j =

∑m
i=1 γt

ijxi∑m
i=1 γt

ij

(7)

Σt
j =

∑m
i=1 γt

ij(xi − µt
j)(xi − µt

j)
′

∑m
i=1 γt

ij

. (8)

The EM algorithm generates a sequence of model param-
eter estimates θ̂t

ML, t = 1, 2, .., until convergence, by alter-
natively iterating E-step and M-step from an initialization
of θ0. The most common initialization is to set αj = 1/k,
Σj = I(D) where I(D) is a D-dimensional identity matrix,
and µj = random({x1, x2, · · · , xm}) for any mixture model
component j. Convergence of the EM algorithm is guaran-
teed since the objective function is monotonically increasing
for each incremental iteration and the global optimum is
bounded [18].

3.3 Model Selection
The EM algorithm does not provide any information re-

garding the selection of the number of mixtures from the
data. Clearly, such a selection is an important and unavoid-
able computational issue for GMM and EM. The correctly
estimated number of mixture components k also indicates
important statistical structures of the underlying distribu-
tion of the data, such as single resource (k = 1) or multiple
resource (k > 1).

Akaike’s information criterion (AIC) [1] and Bayesian in-
formation criterion (BIC) [21] are the two most popular
model selection criteria based on penalty terms of model
complexity. AIC and BIC intend to compute the model that
best represents the data (i.e., data likelihood term), with a

minimum number of free parameters to be estimated (i.e.,
model complexity term). Given θ as a finite mixture model
and X as data, AIC is defined

AIC(θ) = −2log(p(X|θ)) + 2K (9)

where K refers to the total number of parameters to be es-
timated in GMM.

Nevertheless, AIC has the tendency of obtaining an es-
timated model with a negative bias towards the true data
distribution when the data sample number m is in the same
magnitude as K [13]. On the other hand, the model com-
plexity term of BIC is better formulated as Klog(m) by con-
sidering both K and m, compared with 2K in AIC. Thus in
this paper, we use the following BIC [21]

BIC(θ) = −2log(p(X|θ)) +Klog(m) (10)

for GMM model selection. To use BIC for model selection,
we simply choose the model that leads to the smallest BIC
over the set of possible models. This is equivalent to achieve
the minimum of Eq. (10).

There is another body of work on finite mixture models [8]
that are capable of selecting the number of mixture modes k
during EM optimization. For details, we refer the interested
readers to [8]. We leave this issue for future work.

4. ALGORITHM
In this section, we describe our algorithm for dynamic

target tracking under noisy sensing environment. Our algo-
rithm is based on the general concept of modeling a collec-
tion of data samples using finite mixture models, especially
GMMs. When a target enters into the monitored area, a
group of sensors may detect the presence of the target. Many
researches have explored collaborative information process-
ing techniques [14, 25] to in-network process the readings of
the group of sensors to achieve more accurate target detec-
tion and localization results. Our approach is in the same
spirit, but we propose a dynamic, adaptively updated Gaus-
sian mixture model to capture the data distribution from
the group of sensors (which detect the target) over time.
Our temporally adaptive version of GMM presents the tem-
poral appearance of the target (in terms of sensing data dis-
tribution) and reflects their changes more effectively than
the original “calibrated-then-fixed” GMM approach in [14,
25]. To locate the target, the mean-shift algorithm [4, 15] is
adopted to find the group of sensors having the highest total
probability density responses to the previous target distri-
bution (parameterized by adaptive GMM). The mean-shift
method continuously optimizes the location of the target in
an iterative fashion, and provides fast and reliable conver-
gence [4].

In summary, this paper tackles the target tracking prob-
lem with a two-step approach: using adaptive GMM to cap-
ture the distributional appearance of the target across both
the spatial domain and over time; and then employing the
mean-shift algorithm [4, 15] to find the new target location.

4.1 Model Initialization for Target Appearance
Distribution

Given a sensor network G, we assume that the set of sen-
sors {Si} in G are moderately densely-deployed in the spa-
tial domain and the spatial distribution of sensing signals
is smooth within the network region. From a mathematical
perspective, sensor readings provide a dense, but discrete

samplings of the underlying continuous signal distribution.
Furthermore, xi, the reading of Si, is considered as a D-
dimensional random variable or vector. In our approach,
the pairwise correlations among multi-modality sensor read-
ings such as temperature, humidity and others, are natu-
rally formulated by the elements of covariance matrices of
finite/Gaussian mixture models. The sensor nodes may be-
come outlying1 due to hardware failures or harsh environ-
ment. Suppose that the outlying readings are uncorrelated
in the network.

To save network energy, we assume some power manage-
ment protocols [11] are employed to put some of the sensor
nodes in “sleep” state when there are no targets in the net-
work field. The sensing coverage is guaranteed that there is
at least one sensor node in “active” state which can detect
the target when a target presents in the monitored area.
Then a group of sensor nodes will be waked up to collabo-
ratively detect and locate the target. We call these sensor
nodes event sensors. Thus a static target can be initially
defined as the sensor readings of event sensors, and these
readings form a specific statistical model.

We adopt the Gaussian mixture model to describe the
distribution of the sensing signals capturing the existence of
a target. These signals are called target signals and they
jointly define the “appearance” of the target “seen” by the
sensors. GMM is adopted for its modeling capacity and
flexibility [18, 8]. Suppose the target signals can be mod-
eled as the weighted sum of some Gaussian functions, ie., a
Gaussian mixture model as Eq. (4). Then the target can be
parameterized by the set of parameters of the Gaussian mix-
ture model using the EM algorithm. We denote this model
as the target’s appearance model A. To initialize the pa-
rameters of A, we plug the readings of the event sensors in
the EM algorithm and employ the BIC criterion for model
selection, as discussed in subsection 3.2 and 3.3. We assume
that there is a leader node or cluster head among the group
of event sensors that implements the model initialization.
All the event sensors transmit their measurements and lo-
cations to the leader node. The target’s initial location and
effective spatial coverage is also known at the time frame 0
before tracking is employed.

4.2 Mean-shift Optimization for Target Local-
ization

After we initialize the target appearance model A, our
next step is to track the target trajectory. We adopt the
mean-shift optimization to discriminate the target signals
against the general background noise and estimate the target
position. Let L(t− 1) denote the location of target event at
time (t − 1). R(t − 1) is the set of event sensors that will
be used to update model A(t− 1) at time (t− 1). R(t− 1)
is geometrically reconstructed as a sensor neighborhood set
around L(t − 1). For simplicity, we assume that all sensors
in R(t − 1) reside in a disk centered at L(t − 1), denoted
by D. Or, we can intuitively consider R(t − 1) as a “disk”
centered at L(t − 1). We further assume that the ship and
size of D remains unchanged though the target is keeping on
moving. To track the moving target in the next time frame
t, more sensor nodes around the predicted target location at
the current time slot need to be waken up.

In our design, we activate all the sensor nodes located in

1A sensor’s reading is outlying if it deviates significantly
from other readings of neighboring sensors [2].

Algorithm 1 Target Tracking by Adaptive GMM and
Mean-Shift Optimization

Inputs: The readings of the initial event sensor setR(t = 0)
and its center location L(0) and the size of RR(t).
Outputs: A sequence of estimated target locations L(t)
(t = 1, 2, ...).

1. Model Initialization: Fit A(t = 0) using the EM algo-
rithm, the BIC criterion, and the readings {xi(0)} of
event sensors where Si ∈ R(t = 0). Center RR(t = 1)
at the initial target location L(0) and set t = 1.

2. Density Evaluation: For each sensor Si ∈ RR(t),
evaluate the value of the probability density function
p(xi(t) | A′(t− 1)) using Eq. (4).

3. Mean-Shift Optimization for Tracking: Use the mean-
shift iterative process to find the new event location
L(t) according to the iteration Eq. (11).

4. Incremental Model Updating: Update A(t) using the
incremental EM algorithm [17], given the new event
sensor set R(t).

5. Wake up the next active sensor set RR(t+1) centered
at the new target location L(t). Set t = t + 1, and go
to step 2.

a disk region that is 4 times larger than D (ie., expanding
D by two times in both x and y coordinates), but has the
same center as D. Denote the set of active nodes for target
tracking at time frame t as RR(t). Suppose that the leader
of R(t − 1) can predict the target location for next time
frame based on the historical trajectory of the target, and
we can employ more sophisticated principles (Kalman filter
or Particle filter) to model the spatial dynamics of the tra-
jectory. How to choose the optimal RR(t) according to the
target moving velocity and direction is left as future work.
Figure 1 (a) shows a scenario to illustrate the set of event
sensors R(t−1) and the set of active sensors RR(t) awaken
to monitor the target movement in successive time frames.

When the target moves to a new position at time frame t,
some active nodes in RR(t) can detect the target. Now the
problem is how to define and localize the target’s new loca-
tion L(t). Below we describe the computational procedure of
acquiring L(t) based on the evaluation of the mixture mod-
els A(t− 1) and the mean-shift algorithm [4]. In addition,
to indicate the dependence on time, we use xi(t) to denote
the reading of sensor Si at time t. Given A(t− 1), we com-
pute the value of the fitness by evaluating the probability
density functions of the target appearance model A(t − 1)
for the reading xi(t) of each sensor Si in RR(t). These val-
ues, denoted by {p(xi(t) | A(t − 1))} and appearing as a
target-conditional response map (conditioned on A(t − 1)),
can then be used to form an estimate of L(t) using the mean-
shift algorithm. Specifically, the mean-shift algorithm is an
iterative process

L̂(t, (it + 1)) =

∑
Si∈R̂(t,it) p(xi(t) | A(t− 1))Li∑

Si∈R̂(t,it) p(xi(t) | A(t− 1))
, (11)

where Li denotes the location of sensor Si ∈ R̂(t, it). Here

R̂(t, it) is the set of “event” sensors that contribute to the

newly estimated target location at each iteration it. R̂(t, (it+

1)) is then updated using L̂(t, (it + 1)), in the same way as
obtaining R(t − 1) from L(t − 1), or simply, by “moving”

R̂(t, (it)) to the new location of L̂(t, (it + 1)). Note that

L̂(t, (it + 1)) is the estimated target location, which is the
weighted“average”of the locations of the current set of event
sensors in Si ∈ R̂(t, it) given p(xi(t) | A(t−1)) from previous

step. At the beginning of the iterative process, R̂(t, 1) is the

same as R(t−1). For the subsequent iterations, R̂(t, (it+1))

and sensors Si ∈ R̂(t, (it+1)) are updated using L̂(t, (it+1))
as follows. We simply choose the active sensor nodes reside
in the covering range of L̂(t, (it+1)) as event sensors. When

convergent, the final L̂(t, (it+1)) is used to estimate the lo-
cation L(t). Empirically, the mean-shift converges within
3 ∼ 5 iterations in our experimental settings. Figure 1 illus-
trates the process of the mean-shift optimization for target
tracking and localization. In contrast to our approach, [3,
14, 25] only formulate A as a static, unchanged target model
while tracking.

4.3 Adaptive GMMs for Target Updating
As a general form of data representation, GMM can be

adopted for modeling and tracking a moving target over
time. However, in some scenario, when the target travels to
some area where something significant happens in the back-
ground, the target sensing values will be affected, mainly in
an additive manner. It means that the sensing signals are
the addition of the signals capturing both the background
sources and the target source. On the other hand, the outly-
ing sensor readings in the set of the event sensors may distort
the target appearance model, leading to inaccurate target
position estimation. For these reasons, we need an exten-
sion to temporally adapt the mixture models to capture the
possible changes or dynamics of the event data distribution
and prevent drifting. In brief, when the target is moving,
its appearance model A will normally become dynamic and
will change over time.

We can estimate a GMM θ(k, T) (representing the tar-
get at time T) using all data {X(τ)} within a (w + 1)-time
frame temporal window τ ∈ [T − w, T]. This is a general
temporal-spatial fusion treatment for robustness estimation.
To filter out outlying sensor readings, {X(τ)} is updated by
pruning some sensing measurements that have extremely low
probability density values. For implementation convenience,
(1 − p) of the original {X(τ)} that have the largest proba-
bility density values will be used to compose the new data
set {X(τ)} and contribute to estimating the time-changing
target model, where p can be set as the ratio of the outly-
ing sensors in the network and this ratio can be empirically
acquired. Given the ratio threshold p and {X(τ)}, we can
use a quick-sort type technique [5] to filter out outlying sen-
sor readings based on their density values p(xi(t) | A(t−1)),
which only requires linear time complexity of |{X(τ)}|. That
is, we fit a dynamic target appearance model θ(k, T) at each
T using some temporally integrated data. In this paper,
we assume that the number of mixture components k is a
constant throughout the tracking process. If more compu-
tational power is permitted, model selection techniques can
be used at each time frame for more accurate model estima-
tion. For the purpose of only evaluating the density values
of p(xi(t) | A(t − 1)), a fixed k is found to be sufficient
empirically, after the process of model selection using BIC

at frame 0 as target model pre-calibration. Thus, we may
simplify θ(k, T) as θ(T). The model θ(T) can be estimated
using the EM algorithm in the following way. In the E-step,
we compute

ψ
(τ)
j =

∑

x∈X(τ)

γ(x, j)

where γ(x, j) denotes the probability that the j-th compo-
nent generates x and is estimated using the Bayes’ theorem
and the current parameter values. In the M-step, we com-
pute the updates of the parameters

µj(T) =

∑T
τ=T−w

∑
x∈X(τ) γ(x, j)x

∑T
τ=T−w ψ

(τ)
j

,

Σj(T) =

∑T
τ=T−w

∑
x∈X(τ) γ(x, j)(x− µj(T))(x− µj(T))′

∑T
τ=T−w ψ

(τ)
j

,

and

αj(T) =

∑T
τ=T−w ψ

(τ)
j∑k

j=1

∑T
τ=T−w ψ

(τ)
j

.

Based on [17], we implement an incremental version of
the EM algorithm to update θ(τ = T) more efficiently by
integrating the previous model θ(τ = T − 1) (up to frame
(T −1)) and the mixture model estimated with X(T −w−1)
at frame T − w − 1, or the model estimated with X(T)
at frame T . Accordingly, we denote these two models by

{µ(T−w−1)
j , Σ

(T−w−1)
j , α

(T−w−1)
j } and {µ(T)

j , Σ
(T)
j , α

(T)
j }, with

µj(T) = µj(T − 1) +
ψ

(T)
j

Ψj(T)
(µ

(T)
j − µj(T − 1))

−ψ
(T−w−1)
j

Ψj(T)
(µ

(T−w−1)
j − µj(T − 1))

(12)

Σj(T) = Σj(T − 1) +
ψ

(T)
j

Ψj(T)
(Σ

(T)
j − Σj(T − 1))

−ψ
(T−w−1)
j

Ψj(T)
(Σ

(T−w−1)
j − Σj(T − 1))

(13)

and

αj(T) = αj(T − 1) +
1

w + 1
(α

(T)
j − αj(T − 1))

− 1

w + 1
(α

(T−w−1)
j − αj(T − 1))

(14)

where

Ψj(T) =

T∑
τ=T−w

ψ
(τ)
j

It is easy to obtain

Ψj(T) = Ψj(T − 1) + ψ
(T)
j − ψ

(T−w−1)
j (15)

to update Ψj(T) incrementally. Note that we assume that
the total data sample count of X(τ) remains unchanged over
time. Using the incremental model updating technique re-
quires less computation overhead, communication cost and
memory storage.

The above steps are summarized into Algorithm 1 for fault
tolerant target tracking by combining adaptive GMM and
the mean-shift optimization.

5. SIMULATIONS
In this section, we describe our experimental settings and

report our evaluation results on fault tolerant target track-
ing. Numerical study and analysis of our newly proposed
algorithm compared with previous works [3, 14, 25] are also

(a) (b) (c)

Figure 1: A scenario for target tracking where the white circles represent sleeping nodes, blue circles denote
active nodes, and red circles are event sensors that contribute to the target location estimation at each time
frame. (a) shows the initial step for model fitting at frame t−1, (b) is the process for mean-shift optimization

to estimate R̂(t) at each iterations, and (c) shows the final estimated target location at frame t.

provided.

5.1 Simulation Setup
Our simulations are performed within a map consisting of

512×512 simulated sensors with each randomly deployed in
one of the 512×512 grids, restricting one sensor per grid. To
visualize a large sensor map with better clarity, we use an
image to display the sensor map with multivariate sensing
values. As shown in Fig. 2, We assume that sensors have
multivariate sensing values from three different modalities,
which form a three-component vector shown in RGB color.
The extension of multivariate towards more than three di-
mensions is straightforward.

The background sensing function is set to be Gaussian
noise G(µ0, Σ0), where µ0 = randn(3, 1)×8+[25, 25, 25]′ and
Σ0 is a symmetric, positive semi-definite matrix with diago-
nal elements as σ and other elements as randn(1, 1)×σ×0.3
under Σ0(i, j) = Σ0(j, i). Function randn(m, n) returns a
m×n matrix, of which each matrix element satisfies the stan-
dard Normal distribution N (0, 1). Diagonal elements of the
covariance matrix represent self-correlation and off-diagonal
elements indicate cross-correlation between pairwise multi-
variate variables. The use of multivariate Gaussian function
(in our algorithm and simulations) provides a principled way
of modeling and fusing multivariate sensor readings. In all
the simulations, we set σ = 5 by default.

Background Events: We also evaluate our algorithm
under complex background noise with non-uniform back-
ground events. Thus, besides the general background noise
model mentioned above, we randomly generate another two
ellipse-shaped background event regions (which can be con-
sidered as “systematic noises” for our target tracking). Each
region has a spatial support in the range of [Dim/6, Dim/3]
for both axes and has unconstrained orientation, where the
dimension of the network 512 is set to 512. Its signal model
satisfies an exponentially decaying multivariate Gaussian
model G(µi, Σi) × exp(−d((x, y), (cxi, cyi))/λ), where each
dimension of µi is sampled from [25, 50, 75, 100] indepen-
dently, and d((x, y), (cxi, cyi)) is the Euclidian distance be-
tween the center of the ith background noise region (cxi, cyi)
for i ∈ {1, 2} and the sensing location (x, y). The decay fac-
tor λ is set as 7. We also introduce an additive Gaussian
disturbance of N (0, 8) to each dimension of µi. Examples of

Figure 2: Sensor map represented using an image.
(a) a local sensor map of two sensing events shown
in different colors with their spatial locations, (b) a
global sensor map represented by an image.

these two non-uniform background noise regions are shown
as light purple or light green (due to randomness) ellipse-
shaped blobs at the first row in Fig. 4.

Target Distribution Modeling: We simulate two tar-
get sensing signal patterns as follows. The moving target is
first simulated as a small overlaying pattern of two Gaus-
sian signals (a Gaussian mixture model), which is spatially
bounded by a fitted ellipse (target boundary), denoted by
the set of event sensors R, in the model calibration process
before tracking. The second target pattern is formulated as
a decaying signal X×exp(−d((x, y), (cx, cy))/λ), where X is
the signal strength at the center, and d((x, y), (cx, cy)) is the
distance from its signal center (cx, cy) to any sensor location
(x, y). Note that X is a three dimensional vector with each
dimension being randomly sampled from a 7-component vec-
tor [100, 125, 150, 175, 200, 225, 250]. An additive Gaussian
disturbance (noise) N (0, 10) is also introduced to each di-
mension of X. Also notice that λ controls the decaying
speed in the spatial domain and is set to be λ = 7. The
resultant target boundary is a circle with a radius = 2 × λ
in our simulations. We further formulate the target mo-
tion trajectory as a circle with a radius randomly selected
from [Dim/4, Dim/3], which is proximately deployed in the
center of the map. The target moves at a pace uniformly se-

(a) (b) (c)

Figure 3: An example of tracking a moving target over a trajectory trespassing the two background event
regions in the sensor map. (a) shows the ground truth (the trajectory of the target), while (b) is the tracking
trajectory from Algorithm 1 with an adaptive GMM model; and (c) is associated with the fixed GMM variant.
It is obvious that Algorithm 1 can track the moving target over the entire spatial range while the fixed GMM
variant fails to track the target after a number of time frames.

lected from [1.5, 2.5] as a degree of angular distance at each
time frame counterclockwise. The window size is set to be
w + 1 = 5 for the adaptive mixture model in algorithm 1.
The radius of the active sensor set RR is twice as large as
that of the event sensor set R.

Outlying Sensors: To explore the robustness of our al-
gorithm against outlier sensors, we require that with a prob-
ability less than ϕ each sensor node has an outlying reading
in any of its three sensing channels. In our simulation, we
first generate a uniformly sampled random variable % ∈ [0, 1]
for each sensor, and then randomly select one of its three
sensing modalities (ie., any dimension xj

i from its three mul-

tivariate readings xi) to add xj
i with a random disturbance

ranging from [−100, 100] if % < ϕ. We vary the value of ϕ
from 0.05 to 0.25 in our simulation study.

5.2 Target Tracking Results
In this section, we report our simulation results under

two scenarios: with outlying sensors and without outlying
sensors. In each case, we report the tracking performance
and our analysis for two noise models (with “background
events” or not) and two target models (ie., the Gaussian
mixture model and the spatially decaying signal model). All
results are averaged over 100 random trials.

5.2.1 Tracking Results Without Outlying Sensors
We first evaluate our algorithm for tracking a target whose

distributional signals are modeled by the Gaussian mixture
model in complex background noise settings. As a compari-
son, we also implement a variant of algorithm 1 with a fixed
GMM [3, 14, 25].

Fig. 3 illustrates an example of tracking a moving target
over a circular trajectory trespassing the two “background
event” regions in the sensor map. These results indicate that
our adaptive GMM is able to track the moving target over
the entire spatial region while the fixed GMM variant fails
to track the target after a number of time frames.

Fig. 4 illustrates several tracking snapshots by Algorithm 1
at different time frames under the above scenario. It is
shown that our Algorithm 1 can accurately track the moving
target. The adaptive GMM can successfully capture the dy-
namic appearance (as sensor readings) distributions of the
target and track its spatial trajectory with the mean-shift
optimization [4] over a sequence of 180 frames. Fig. 5 shows
the details at frame 12# and 19# for the fixed GMM vari-

(a) Frame 2# (b) Frame 19#

(c) Frame 99# (d) Frame 110#

Figure 4: Sampled frames of tracking the moving
target using our proposed Algorithm 1 in a 180
frame sequence. Target is successfully tracked at
both the non-event background area and the two
event background regions. The red ellipse shows
the target boundary based on the ground truth; the
blue ellipse shows the tracked target boundary using
Algorithm 1.

ant of algorithm 1. It is observed that the fixed mixture
model variant loses its tracking at frame 12# when the tar-
get enters the first non-uniform background event region (in
light-green color). This failure is no surprise in that it cap-
tures the sensor reading data distribution only at frame 0.
When the target moves to a background event region (as
shown in Fig. 5), the underlying sensor reading distribution
A changes dramatically and therefore the fixed GMM based
appearance model becomes invalid.

We also compare our algorithm with the fixed GMM [3,
14, 25] in general noise background (without background

(a) Frame 12# (b) Frame 19#

Figure 5: Sampled frames of tracking the moving
target using the fixed GMM variant of Algorithm 1
in a 180 time frame sequence. Note that the fixed
GMM variant loses the target at frame 19#.

Comparison of Algorithms with Adaptive or Fixed GMM

Background general complex
Algorithm Algo.1 fixed Algo. 1 fixed

abs
x-coor. 3.1453 3.7249 3.5420 —
y-coor. 3.1383 3.7336 3.3278 —

std
x-coor. 0.4154 0.4445 2.8422 —
y-coor. 0.4028 0.4420 2.9816 —

Table 1: Comparison study of Algorithm 1 and its
fixed GMM variant under the general background
noise model and the complex noise model for the
Gaussian mixture target signals.

events). Table 1 reports both the absolute localization er-
rors and the standard deviations of Algorithm 1 and its fixed
GMM variant over 100 trails under different settings of noise
without outlying sensor impacts. Furthermore, the perfor-
mance result for tracking a target with a decaying signal
model is summarized in Table 2. It is shown that the fixed
GMM variant can only track the object trajectory under the
general simple Gaussian noise background model, and it fails
at which the background event regions appear (as in Fig. 5)
regardless of the target models. In addition, the mean lo-
cation errors with the fixed GMM are slightly higher than
those of Algorithm 1 in all cases. On the other hand, our
adaptive GMM based algorithm 1 can successfully track the
moving target under both background noise models for both
target models. The adaptive GMM dynamically updates the
sensor reading distributions of the moving target and tracks
its spatial trajectory with the mean-shift [4] optimization
over a sequence of 180 frames. Therefore, Algorithm 1 per-
forms better than the fixed GMM variant in all scenarios.
The difference of the tracking performance under the Gaus-
sian mixture target model and the spatially decaying target
model seems not significant. This observation demonstrates
the flexibility and effectiveness of our Algorithm 1, especially
the adaptive GMM based target appearance modeling, for dif-
ferent target models.

To show the robustness of Algorithm 1 for multi-target
tracking, We first perform tracking two targets on differ-
ent motion patterns. Example tracking frames are demon-
strated in Fig. 6. From Fig. 7, one target appears to move
along a circle trajectory as before, and the other target
moves on a line with a random pace. It is evident that

Comparison of Algorithms with Adaptive or Fixed GMM

Background general complex
Algorithm Algo.1 fixed Algo. 1 fixed

abs
x-coor. 3.2376 3.5321 3.2376 —
y-coor. 3.3427 3.4463 3.1158 —

std
x-coor. 0.7352 0.5742 2.6283 —
y-coor. 0.4639 0.6352 2.5837 —

Table 2: Comparison study of Algorithm 1 and its
fixed GMM variant under the general background
noise model and the complex noise model for spa-
tially decaying target signal distribution.

(a) Frame 23# (b) Frame 48#

(c) Frame 97# (d) Frame 180#

Figure 6: Sampled frames of tracking two moving
targets, under different motion patterns, by Algo-
rithm 1 in a 180 frame sequence.

two targets are successfully tracked by Algorithm 1 during
the whole process. Handling two moving targets, with over-
lapping trajectories (in some frames), is also addressed. As
shown in Fig. 8, it is expected that the tracked target con-
tours (in blue) drift to a certain degree when the two targets
intersect (Frames 48# and 52#) because sensor readings in
the overlapped zone do not well satisfy either target GMM
model estimated before the targets intersect. However our
adaptive GMM based target tracking is capable of robustly
recover the lost of tracking and then keeping good tracking
accuracy after passing the intersection (Frame 57#). No
noticeable tracking accuracy performance degrading is ob-
served for single or multiple target tracking.

5.2.2 Tracking Results With Outlying Sensors
In the following, we provide performance evaluations for

different outlying sensor ratios ϕ under the two randomly
deployed background event noise models and the Gaussian
mixture target model using Algorithm 1 based on the adap-
tive GMM for target tracking. The performances of other
combinations of noise/target models are quite similar. As

100 150 200 250 300 350 400

100

150

200

250

300

350

400

Comparison of Event Tracking Accuracy (of Event Center Positions)

Ground Truth

Tracking Result (adaptive model)

Figure 7: Ground truth (red) and tracked (blue)
target moving trajectories of two targets. One is
on a circle-like motion, and the other has line-like
motion.

ϕ = 5% 10% 15% 20% 25%
Algo.-A 100% 99% 97% 90% 85%
Algo.-B 100% 100% 100% 99% 97%

Table 3: Comparison of Algorithms 1-A and 1-B,
using the criterion of rates of success of tracking
versus total trials.

described in section 4.3, an additional low-density sensor
reading filtering process can be added in the step of Incre-
mental Model Updating in Algorithm 1 to deal with outlying
sensors. Thus we have two versions of Algorithm 1, denoted
by 1-A for the case of without sensor filtering and 1-B for
the case of with filtering. In these simulations, we assume
that there is no perfect pre-calibration, and the filtering-out
ratio p is set to be 10% regardless of the real settings of the
ratio ϕ.

We run 100 trails under ϕ = 5%, 10%, 15%, 20%, 25% us-
ing either Algorithm 1-A or 1-B. A tracking is successful
if the target is successfully tracked (with the mean loca-
tion error < 5 in both x and y coordinates) throughout
the full-length time sequence. The rates of successful track-
ing are reported in Table 3. As shown in this table, the
sensor “sorting-filtering” process for updating A(t) in Algo-
rithm 1 noticeably improves the successful tracking rates of
1-B though 1-A also achieves good results. Sample track-
ing snapshots of using Algorithm 1 is illustrated in Fig. 9.
As shown in Fig. 10, Algorithm 1-B also marginally im-
proves the tracking accuracy in terms of the averaged lo-
cation error compared to 1-A (after tracking failure trials
being removed). However, there is no clear tendency from
the statistics of the averaged standard deviation to prove
the superiority of 1-B or 1-A.

These results indicate that our algorithm has a desirably
good generality on tracking when 5% ∼ 25% outlying sen-
sors exist. This is probably due to the smoothness offered
by the probabilistic nature of GMM (to handle extremely
noisy sensor readings generated by outlying sensors) and
the continuous optimization of the mean-shift algorithm (to
accurately locate the target’s moving trajectory over time).

6. DISCUSSIONS

(a) Frame 36# (b) Frame 48#

(c) Frame 52# (d) Frame 57#

Figure 8: Sampled tracking frames of two overlap-
ping moving targets using Algorithm 1 in another
sequence.

(a) Frame 39# (b) Frame 136#

Figure 9: Sampled frames of tracking the moving
target using algorithm 1-B when 20% outlying sen-
sors exist. The target is successfully tracked in a
180 frame sequence.

5 10 15 20 25
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
Mean Location Error in Target Tracking

Outlying Sensor Ratio %

M
ea

n
Lo

ca
tio

n
E

rr
or

Algo. 1−A x−coor
Algo. 1−B x−coor
Algo. 1−A y−coor
Algo. 1−B y−coor

Figure 10: Plot of mean location errors of Algo-
rithms 1-A and 1-B, based on the average of 100
trails per configuration.

Our algorithm is distributed in nature and can be exe-
cuted by the cluster head or the leader node of the set of
event sensors at each time frame. The EM algorithm has
a linear complexity of O(md) where m is the number of
(multivariate) sensor readings {xn}, and d is the dimension-
ality of each xn. The incremental GMM updating scheme
(in section 4.3) only needs a fraction of the computations
resulted from a standard EM optimization, but it requires
slightly more memory resource. In the incremental version
of the EM, we only need to transmit the parameters of the
adaptive mixture model. Thus, the communication cost is
O(k+2kD) (float numbers) for diagonal covariance matrices,
or O(k + kD(D + 1)/2 + kD) for full matrices.

The Gaussian or Normal distribution is the most suitable
parametric function approximating the natural signals due
to its many statistical properties. This is where “Normal”
comes from. It has been widely used in many domains, espe-
cially signal processing. Sensor readings are also captures of
natural signals to which the Gaussian distribution applies.
Furthermore, the Gaussian mixture model (GMM) has the
modeling capacity of approximating any arbitrary functions.
GMM has been used previously in [3, 14, 25] for information
processing in sensor networks.

To perform our algorithm 1 for target tracking, the model
estimation utilizes the EM algorithm and the BIC crite-
rion, which includes log and exp operations than can be
approximated using Taylor series expansion. Therefore the
computation overhead of our algorithm in real sensor im-
plementation is not prohibitive. We propose to implement
our tracking algorithm in a real sensor testbed in our future
work.

7. CONCLUSION
In this paper, we propose a novel unified solution based on

the Gaussian mixture model with an explicit model selection
to model the distribution of different target signal models.
For target tracking, we adopt an adaptive Gaussian mix-
ture representation to tackle the problem of target mobility
and employ the continuous optimization of the mean-shift
[4, 15] for target localization, with no need of hard classifica-
tion processes such as in [3, 14] for better tracking accuracy,
smoothness and robustness. As a future research, we plan to
study how to recognize targets from different sources (e.g., a
certain type of vehicle) and track the scale changes (besides
location) of a moving event region.

8. ACKNOWLEDGMENTS
This research was partially supported by the US National

Science Foundation under grants CNS-0347674, CNS-0721669,
and CNS-0831852.

9. REFERENCES
[1] H. Akaike, Information theory and an extension of the

maximum likelihood principle, 2nd International
Symposium on Information Theory, 1973.

[2] V. Barnet and T. Lewis, Outliers in Statistical Data,
John Wiley and Sons, 1994.

[3] RR Brooks, P. Ramanathan and AM Sayeed,
Distributed target classification and tracking in sensor
networks, Proc. of the IEEE, 91:1163-1171, 2003.

[4] D. Comaniciu, V. Ramesh, P. Meer, Kernel-Based
Object Tracking, IEEE Trans. PAMI, 2003.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, MIT publisher, 2001.

[6] A. Dempster, N. Laird, and D. Rubin, Maximum
likelihood estimation from incomplete data via the
EM algorithm, J. of Royal Statistical Society, 1977.

[7] M. Ding, D. Chen, K. Xing, and X. Cheng, Localized
Fault-Tolerant Event Boundary Detection in Sensor
Networks, IEEE INFOCOM, 2005.

[8] M. Figueiredo and A.K. Jain, Unsupervised learning
of finite mixture models, IEEE Trans. on Pat. Anal.
and Mach. Intell., 24(3):381-396, 2002.

[9] Research Project: Networks and Infrastructure for
Environmental Sensing and Image Acquisition,
http://research.cens.ucla.edu/projects/2007/Terrestrial
/Systems/

[10] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira,
Tracking Probabilistic Correlation of Monitoring Data
for Fault Detection in Complex Systems, Int. Conf. on
Dependable Systems and Networks, 2006.

[11] T. He, et al., An Energy-Efficient Surveillance System
Using Wireless Sensor Networks. Mobisys, 2004.

[12] T. He, et al., Achieving Real-Time Target Tracking
Using Wireless Sensor Networks, ACM Trans. on
Embedded Computing System, 2007.

[13] C. Hurvich and C. Tsai, Regression and Time Series
Model Selection in Small Samples, Biometrika
76:297-307, 1989.

[14] D. Li, K. Wong, YH Hu and A. Sayeed, Detection,
classification and tracking of targets in distributed
sensor networks, IEEE Signal Processing Magazine,
March 2002.

[15] L. Lu and G. Hager, A Nonparametric Treatment on
Location/Segmentation Based Visual Tracking, IEEE
Conf. on Comp. Vis. and Pat. Recog., 2007.

[16] X. Meng, G. Jiang, H. Zhang, H. Chen, K. Yoshihira,
Automatic Profiling of Network Event Sequences:
Algorithm and Applications, IEEE INFOCOM, 2008.

[17] S. McKenna, Y. Raja and S. Gong, Tracking colour
objects using adaptive mixture models Image and
Vision Computing, 17(3-4):225-231, 1999.

[18] G. McLachlan and D. Peel, Finite Mixture Models.
New York: John wiley & Sons, 2000.

[19] R. Ng and J. Han. Efficient and effective clustering
method for spatial data mining. VLDB, 1994.

[20] http://atom.research.microsoft.com/sensormap/

[21] G. Schwarz, Estimating the dimension of a model,
Annals of Statistics, Vol. 6, pp. 461-464, 1978.

[22] A. Terzis, A. Anandarajah, K. Moore. I-J. Wang, Slip
Surface Localization in Wireless Sensor Networks for
Landslide Prediction, IPSN, 2006.

[23] X. Yu, K. Niyogi, S. Mehrotra, N.
Venkatasubramanian, Adaptive Target Tracking in
Sensor Networks, CNDS, 2004.

[24] W. Zhang and G. Cao, Optimizing Tree
Reconfigration for Mobile Target Tracking in Sensor
Networks, IEEE INFOCOM, 2004.

[25] F. Zhao, J. Shin and J. Reich, Information-driven
dynamic sensor collaboration for tracking applications,
IEEE Signal Processing Magazine, 2002.

