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Abstract—Detecting event frontline or boundary sensors in
a complex sensor network environment is one of the critical
problems for sensor network applications. In this paper, we
propose a novel algorithm for event frontline sensor detection
based on statistical mixture methods with model selection [1],
[11], [5]. A Boundary sensor is considered as being associated with
a multimodal local neighborhood of (univariate or multivariate)
sensing readings, and each Non-Boundary sensor is treated as
being with a unimodal sensor reading neighborhood. Further-
more, the set of sensor readings within each sensor’s spatial
neighborhood is formulated using Gaussian Mixture Model [9],
[5]. Two classes of Boundary and Non-Boundary sensors can be
effectively classified using the model selection techniques for finite
mixture models. Our extensive experimental results demonstrate
that our algorithm effectively detects the event boundary with a
high accuracy under moderate noise levels.

Index Terms—Event boundary/frontline detection; Gaussian
Mixture Model; Expectation-Maximimation

I. Introduction
Sensor networking and methods on information processing

of sensoring data have emerged as an important area of many
real world applications and research activities. In general,
information processing in sensor networks is facing three
main challenges: (i) the scale of a sensor network can be
tremendous, (ii) sensor readings are prone to noise in real
environments and unreliable inter-sensor communications can
cause further information loss, and (iii) each sensor has very
limited computational power, memory storage and energy sup-
ply. These challenges motivate us to design robust, efficient,
distributed and in-network information extraction algorithms.

In this paper, we propose a new, more accurate and robust,
statistic based algorithm for detecting event Boundary (or
frontline) sensors then previous work [4], [2], [7], [6]. Median
based approach [4] works with scalar sensor inputs and only
handles single channel information such as temperatures, or
humidities over a geographical region. [2], [7] only take
0/1 binary predicates. Thus it remains to be a problem of
how to process multivariate data resources of multi-modality
sensor readings for event reporting. As a contrast, our new
statistical Gaussian mixture model [5] based method in this
paper is capable of fusing multivariate real-valued sensor
inputs to detect boundaries of events, in a mathematically
principled manner. Our new methods also naturally work for
detecting boundaries of multiple event intersections, without

constraining simplistic individual event shapes1.
Our algorithm of event frontline detection is derived from

statistical Gaussian mixture models [5] with explicit model
selection schemes [1], [11]. The basic idea is based on the
observation that a Boundary sensor is considered as residing
within a local sensor neighborhood with a multimodal dis-
tribution of (univariate or multivariate) reading inputs, while
each Non-Boundary sensor is surrounded with a neighborhood
of unimodal sensor readings. More precisely, the distribution
of sensor readings within each sensor’s spatial neighborhood
is mathematically formulated using finite Gaussian Mixture
Model [9]. The model selection techniques [1], [11], [5] can
then effectively identify the correct number of modes Γ for
finite mixture models, of which Gaussian mixture model is
the most popular. Thus Boundary and Non-Boundary sensors
can be consequently distinguished from its neighboring sensor
data distributions of Γ > 1 or Γ = 1.

Extensive simulation results demonstrate that our proposed
algorithm can accurately detect the event boundary sensors
with high robustness regarding to various noise levels and
different experimental settings. Though designed for sensor
networks, our algorithm can be applied to general regional
data analysis in spatial data mining [10] and network traffic
mining [8].

II. Related Work
[2] proposes three different schemes as statistical approach,

image processing approach and classifier-based approach, all
of which can only take inputs of the 0/1 decision predicates
from neighboring sensors. [6] presents a noise-tolerant algo-
rithm named NED for event and event boundary detection. In
NED, the moving mean of the readings of the neighboring
node set is used as the estimate for a certain sensor node. [4]
propose Median-based approaches for outlying classification
and event frontline detection. Median is a useful robust estima-
tor which works directly with continuous numbers, rather than
binary 0/1 readings. All previous works discussed above are
designed for sensor networks in single modality. To the best
of our knowledge, this paper is the first work that presents

1In [4], methods are designed to detect only simplified ellipse curves or
straight lines as event boundaries/frontlines for the validity of their heuristic
based random bi-section or tri-section Median schemes.



a principled methodology integrating multimodality sensor
readings.

III. Motivation and Mixture Models
The mixture model has been widely used in many areas

[10], [8]. Our major contribution is exploring the statistical
property of the finite mixture model [3], [5], especially the
Gaussian mixture model, and adopting it into the scenario of
distributive (sensor network) sensing data process and mining.
A. Finite Mixture Models and Gaussian Mixture
Models

Given a collection of data samples X = {x1, x2, ..., xm}
with each xi representing a D-dimensional random (column)
vector, assume that X follows a k-component (or mode) finite
mixture distribution as

p(xi | θ) =
k∑

j=1

αjp(xi | θj), j = 1, 2, .., k; i = 1, 2, .., m

subject to :
k∑

j=1

αj = 1

(1)

where αj is the mixing weight and θj is the set of parameters
of the j-th mixture component p(xi | θj). We denote θ =
{α1, θ1, α2, θ2, ..., αk, θk} as the complete set of parameters
defining a specific finite mixture model. The objective function
of estimating θ from X is to maximize the log-likelihood
criterion

logp(X | θ) =
m∑

i=1

log

k∑

j=1

αjp(xi | θj). (2)

Then the maximum likelihood estimator of θ is
θ̂ML = arg max

θ
{logp(X | θ)}. (3)

It is well known [9], [5], [3] that θ̂ML can not be computed an-
alytically from equation 3. Instead, expectation maximization
(EM) algorithm [3] is applied as its general solver to iteratively
find the maximum likelihood solution θ̂ML.

The Gaussian mixture model (GMM) is the most important
class of finite mixture densities [5]. GMM is formulated by
using a Gaussian density G(xi | µj , Σj) with its mean vector
µj and covariance matrix Σj to replace the general probability
density function p(xi | θj) in the finite mixture model

p(xi | θ) =
k∑

j=1

αjG(xi | µj ,Σj), (4)

where a D-dimensional multivariate Gaussian distribution is
defined as

G(x | µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

{
− 1

2
(x−µ)′Σ−1(x−µ)

}
.

B. Expectation Maximization Algorithm
EM algorithm is an iterative method on estimating the free

parameters of finite/Gaussian mixture models, more specifi-
cally the mean vectors µj , covariance matrices Σj and prior
weights αj in GMMs. The EM algorithm for GMM includes
iterations of E-step and M-step as follows.

E-step: Estimate the posterior probability γt
ij that the j-th

component generated xi using the estimates of the parameters

from the last M-step

γt
ij =

αt−1
j G(xi | µt−1

j , Σt−1
j )

∑k
j=1 αt−1

j G(xi | µt−1
j , Σt−1

j )
(5)

M-step: Compute the parameters using γt
ij

αt
j =

∑m
i=1 γt

ij∑k
j=1

∑m
i=1 γt

ij

(6)

µt
j =

∑m
i=1 γt

ijxi∑m
i=1 γt

ij

(7)

Σt
j =

∑m
i=1 γt

ij(xi − µt
j)(xi − µt

j)
′

∑m
i=1 γt

ij

. (8)

The EM algorithm generates a sequence of model parameter
estimates θ̂t

ML, t = 1, 2, .., until convergence, by alterna-
tively executing E-step and M-step from an initialization of
θ0. The most common initialization is to set αj = 1/k,
Σj = I(D) where I(D) is a D-dimensional identity matrix,
and µj = random({x1, x2, · · · , xm}) for any mixture model
component j. Convergence of the EM algorithm is guaranteed
since the objective function is monotonically increasing for
each incremental iteration and the global optimum is bounded
[9].
C. Model Selection

The EM algorithm does not provide any information regard-
ing selection of the number of mixtures from data. Clearly,
such a selection is an important and unavoidable computational
issue for GMM and EM.

Akaike’s information criterion (AIC) [1] and Bayesian in-
formation criterion (BIC) [11] are the two most popular model
selection criteria based on penalty terms of model complexity.
AIC and BIC intend to compute the model that best represents
the data (i.e., data likelihood term), with a minimum number of
free parameters to be estimated (i.e., model complexity term).
Nevertheless, AIC has the tendency of obtaining an estimated
model with a negative bias towards the true data distribution
when the data sample number m is in the same magnitude as
K. Here K is the total number of parameters to be estimated
in GMM. Thus in this paper, we use the following BIC [11]

BIC(θ) = −2log(p(X|θ)) +Klog(m) (9)
for GMM model selection. To use BIC for model selection, we
simply choose the model that leads to the smallest BIC over
the set of possible models.

IV. Algorithm for Event Boundary Sensor Clas-
sification

In this paper, we provide a solution for classifying event
boundary sensors using EM based model fitting and model
selection techniques.
A. Algorithm

Given a sensor network {Si}, we assume that sensors are
moderately dense-deployed in the spatial domain and the
spatial distribution of sensing signals is smooth within each
event region. From a mathematical perspective, sensor read-
ings provide a dense, but discrete samplings of the underlying



continuous distribution. Furthermore, xi, the reading of Si, is
considered as a D-dimensional random vector2.

To detect or classify the event boundary sensors, the associ-
ated neighborhood sensor set N (Si) of each sensor Si needs
to be first constructed as follows,

N (Si) = {Sn}
subject to : dist(Si, Sn) <= D

(10)

where dist(Si, Sn) represents either the Euclidean distance or
one-hop, or multi-hop distance between sensor Si and Sn, and
D is the distance constraint.

To check whether or not Si is a sensor lying on the boundary
of an event, we input the data {xn} from readings of the
sensors in N (Si) and then build our best GMM based on
{xn}. Here the EM algorithm in Section III-B is applied for
parameter estimation, and the BIC in Section III-C is used to
select the final model. More details on this follow below. We
first set the upper bound of the mixture component number to
be K. Then for each J = 1, 2, ..., K, the data set {xn} is feeded
into the EM algorithm for estimation of θ(J). Correspondingly,
we obtain BIC scores {BIC(θ(J))}J=1,2,..,K in light of
equation 9. Let CL denote the number of mixture components
of our final model (the best model). We select CL = k
where BIC(θ(k)) = minK

J=1 BIC(θ(J)). Therefore our final
is θ(CL), or {µj , Σj , αj}j=1,...,CL. Optionally, a sensitivity
test can be performed by removing from θ(CL) any under-
presented mixture components with weights αj < ζ1. Then
we obtain an updated model θ′(CL) with CL = CL − k0

where k0 is the number of removed components from the
original θ(CL). Now it is straightforward to check the status
of Si. Si is treated as an event boundary sensor if and only
if CL >= 2. To classify if Si is an outlying sensor, the
conditional probability for xi given model θ′(CL) is computed

p(xi|θ′(CL)) =
CL∑

j=1

wjG(xi | µj , Σj) (11)

then if p(xi|θ′(CL)) < ζ2, Si is classified as an outlying
sensor and F(Si) = 1 is set; otherwise F(Si) = 0. Note that
ζ1 is a threshold indicating an insignificant value of overall
mixture component weight, and ζ2 is used as another threshold
to measure outlying sensors which have significantly low
probalility density values given the final model θ′(CL). The
above is summarized in algorithm 1. Our algorithm is purely
distributed and computed for each sensor data neighborhood
set {xn}n=1,2,...m of N (Si) at Si or xi. The complexity of
the EM algorithm has the same order of magnitude as the
expected complexity of Median based algorithms in [4].

V. Experiments
In this section, we describe our experimental settings and

report our evaluation results on the task of Boundary/Non-
Boundary sensor classification.

2In our approach, the pairwise correlations among multi-modality sensor
readings, such as temperature, humidity and others, are naturally formulated
by the covariance matrices of finite/Gaussian mixture models.

Algorithm 1 Event Boundary Sensor Classification Based on
GMM.
inputs: Multivariate sensor readings {xn} of sensors from the
neighborhood N (Si).
outputs: Labels E(Si), F(Si) of sensor Si. If Si is an event
boundary sensor, set E(Si) = 1; otherwise E(Si) = 0. If Si is an
outlying sensor, set F(Si) = 1; otherwise F(Si) = 0.

1) Input {xn} to build GMM using EM algorithm (equations 4,
5, 6, 7 and 8) for parameter estimation and BIC (equation 9)
for model selection.

2) Mixture Component Number Determination: Set the
upper bound of the mixture component number to
be K. From the available GMMs {θ(J)}J=1,2,..,K =
{{µj , Σj , αj}j=1,..,J}J=1,2,..,K and their associated BIC
scores {BIC(θ(J))}J=1,2,..,K, we select CL = k where
BIC(θ(k)) = minK

J=1 BIC(θ(J)). Our final model is then
θ(CL) = {µj , Σj , αj}j=1,...,CL.

3) Sensitivity Testing (optional): Denote by k0 the number of
mixture components with αj < ζ1. Removing these k0 under-
presented mixture components from θ(CL) yields the new
model θ′(CL) with CL = CL− k0.

4) Classify Boundary Sensor: If CL >= 2, Si is an event
boundary sensor and set E(Si) = 1; otherwise E(Si) = 0.

5) Classify Outlying Sensor by density value: Compute the con-
ditional probability for xi of sensor Si: p(xi|θ′(CL)) using
equation 11. Then if p(xi|θ′(CL)) < ζ2, Si is an outlying
sensor and set F(Si) = 1; otherwise F(Si) = 0.

A. Experiment Setup
Our experiments are performed within a map consisting of

128× 128 simulated sensors with each randomly deployed in
one of the 128×128 grids, restricting one sensor per grid. By
default, our experiments are performed on sensors with three
sensing channels. The extension to multivariate variables with
dimension > 3 is straightforward.

In our Matlab-based experiments, we rigorously test the
following signal models under different Normal distributions.
The background sensing function is set as Gaussian noise
G(µ0, Σ0), where µ0 = randn(3, 1) × 8 + [25, 25, 25]′ and
Σ0 is a symmetric, positive semi-definite matrix with diagonal
elements as σ and other elements as randn(1, 1) × σ × 0.3
under Σ0(i, j) = Σ0(j, i). Function randn(m,n) returns a
m×n matrix, of which each matrix element satisfies the stan-
dard Normal distribution ∈ N (0, 1). Diagonal elements of the
covariance matrix represent self-correlation and off-diagonal
elements indicate cross-correlation between pairwise multi-
variate variables. In the experiments, we set σ = 5 by default.
For synthesized sensor events, Normal distributions are also
assumed. For a particular example of the ith event G(µi,Σi),
each variable in µi is randomly sampled from a 10-component
vector [25, 50, 75, 100, 125, 150, 175, 200, 225, 250] plus an
additive Gaussian disturbance ∈ N (0, 8), to preserve the
separatability among different sensing events including the
background noise. Σi is kept as the same of Σ0 (ie.,Σi = Σ0)
for simplicity.

There are three different shapes and five total configura-
tions in our experiments. We randomly generate q ellipses
or rectangle bars at arbitrary orientations, or q + 1 radially
divided zones in a star-graph in the simulated sensor map



with q event regions. In each event area i, sensor values
are sampled from a specific multivariate Gaussian distribution
G(µi, Σi) as discussed above. The lengths of ellipse axes are
sampled uniformly from [5, 20] independently. The center and
orientation of each ellipse are randomly placed. For rectangle
bar, we first produce a random line with length > 20 and then
label all sensors as event sensors which are within a certain
distance (randomly from [5, 10]) from the line. Due to the
spatial randomness, an event i may intersect with another event
j. In this case, the simulated sensor readings of an overlapping
area can be either selected from one of the two distributions
according to an arbitrary order (i.e., one event distribution is
overwritten by the other), or as the overlaid sum3. These two
different ways of handling sensor readings in an overlapping
region are denoted as EL OW or EL OL for the ellipse
event shapes, and LB OW or LB OL for the event shape
of rectangle bars, respectively. The star-graph originates at a
random point in the center 32 × 32 region of the grid map,
and its zones span some random angles from the range of
2π/(q + 1)± π/6. Unless otherwise stated, we set q = 3 for
experimental evaluations.

To evaluate the performance of algorithm 1 for boundary
sensor classification, we use four classification accuracy met-
rics: event boundary rate (EB Rate), error rate (ER Rate), true
positive rate (TP Rate), and false positive rate (FP Rate). EB
Rate is the ratio of the number of Boundary sensors to the
number of all sensors; ER Rate is the ratio of the number
of incorrectly classified sensors to the number of all sensors;
TP Rate is the ratio of the number of correctly classified
Boundary sensors to the number of Boundary sensors; and
FP Rate is the ratio of the number of incorrectly classified
Boundary sensors to the number of Non-Boundary sensors.
Furthermore, the outlying detection rate (OR Rate) is used to
evaluate the accuracy of outlying sensor detection of algorithm
1. OR Rate is the ratio of the number of correctly classified
outlying sensors to the number of all true outlying sensors.

B. Event Boundary and Non-Boundary Sensor Classi-
fication

First, we evaluate the performance of Boundary sensor
detection under the condition of no outlying sensors. For
space reason we only report the results for EL OL, LB OL,
and the star-graph event shapes. The simulation results for
EL OW and LB OW are similar. The sensitivity parameter
in algorithm 1 is set as ζ1 = 0.25. The upper bound of
the component number is set as K = 5. The size of the
neighborhood sensor set N (Si) is 196. These parameters keep
as default in section V unless otherwise stated.

Boundary sensors are considered as lying on the boundary
of multiple (two or more including background noise) sensing
events, while Non-Boundary sensors existing inside the region
of any single event. Refer Table I for the performance of our
algorithm in the average of 100 runs.

3This is equivalent to sampling from G(µi, Σi)+G(µj , Σj), which is still
a Gaussian component for the multivariate Gaussian distributions. Thus our
proposed algorithm is still applicable.

Comparison of Different Algorithms under Five Event Shapes
Shape Algorithm EB Rate ER Rate TP Rate FP Rate

EL OW EM BIC 0.0906 0.0019 0.9902 0.0012
Median 0.0179 0.034 0.6438 0.0211

LB OW EM BIC 0.1712 0.0232 0.9632 0.0042
Median 0.0304 0.0692 0.6354 0.0436

EL OL EM BIC 0.0844 0.0123 0.9722 0.0084
Median 0.0215 0.035 0.7651 0.0247

LB OL EM BIC 0.1527 0.0204 0.9646 0.009
Median 0.0243 0.0698 0.6108 0.0461

Star EM BIC 0.118 0.0066 0.9713 0.0036
Median 0.02 0.0519 0.2462 0.0283

TABLE I
Comparison of Median based method [4] and algorithm 1.

Comparison with Median based method [4]: We compare
our new algorithm on Boundary sensor detection with the
Median based method [4] using bi-section scheme (which is
claimed better than tri-section. The distribution-wise assump-
tion for Boundary sensor in [4] is defined as having two
mixture components with each weighting 0.5 (wj ≈ 0.5). Here
we set ζ1 = 0.45 to mark the ground truth of the Median
based method for statistical stability where 0.5 is too strict to
have sufficient numbers of Median based Boundary sensors.
Therefore the EB rates are noticeably less than the above case
of algorithm 1 with ζ1 = 0.25, but ER, TP and FP Rates are
still meaningful metrics to be compared. The other parameter
settings are the same as default.

Table I shows numerical error comparison of different
algorithms with the average of 100 runs under five event
shape configurations when q = 3. Our algorithm 1 (denoted as
EM BIC) outperforms the previous Median based methods
(denoted as Median) [4] in all five event configurations, with
a statistically significant margin of higher TP Rates but lower
ER and FP Rates.

Robustness against outlying sensors: To test the robust-
ness of algorithm 1 against outlying sensors, we randomly
choose a portion $ (eg., 5%, 10%, ...) of sensors and add
a noise offset as randn(3, 1) × 30 to each of their original
readings. The readings of other sensors and the parameter
settings are kept same as before. Table II shows the perfor-
mance evaluation of our algorithm 1 under different outlying
sensor ratios $ in EL OL. All results are the averages
of 100 trials with all other default settings. Performance of
algorithm 1 drops gracefully with increasing $s. The TP
Rates of Boundary sensors remain at the same level, but more
false alarms (FP Rates) appear. We also test the robustness of
Median based algorithms for comparison purpose. It degrades
about 2.13 times faster than our mixture model approach in FP
Rate. Due to the space limitation, we omit numerical details.
Results of other four cases are similar. Importantly, the OR
Rates of outlying sensor detection by using algorithm 1 are
also reported in Table II. This result shows slightly worse
performance but comparable stability than boundary sensor
detection as $ increases. Our mixture model based framework
is capable to provide an unified approach for simultaneous
boundary and outlying sensor detection.



Robustness Evaluation on the outlying sensor ratios $ of Algorithm 1
Metric $ = 0% $ = 5% $ = 10% $ = 15% $ = 20%
EB Rate 0.0844 0.0859 0.0864 0.0834 0.0858
ER Rate 0.0123 0.0148 0.0159 0.0193 0.0264
TP Rate 0.9722 0.9691 0.9519 0.9583 0.9562
FP Rate 0.0084 0.0108 0.0122 0.0179 0.0231
OR Rate —— 0.9481 0.9238 0.9029 0.9185

TABLE II
Robustness evaluation on the outlying sensor ratio $ of algorithm 1.

Sensitivity and Flexibility Testing on ζ1 of Algorithm 1
Metric ζ1 = 0.15 ζ1 = 0.25 ζ1 = 0.35 ζ1 = 0.45
EB Rate 0.1707 0.0844 0.0678 0.0262
ER Rate 0.0081 0.0123 0.0109 0.0082
TP Rate 0.9671 0.9722 0.9695 0.9794
FP Rate 0.0033 0.0084 0.0054 0.0046

TABLE III
Performance evaluation on the different ζ1 settings of algorithm 1.

C. Performance Sensitivity Testing
In the following, we evaluate the performance of algorithm

1 on different parameter settings, i.e., threshold ζ1, covariance
scale σ, and neighborhood size φ.For space limitations, we
take EL OL as an illustrative case for error analysis. Results
of other four cases are similar.

1) Performance Sensitivity and Flexibility Testing on ζ1:
Table III shows the performance evaluation of algorithm 1 on
different settings of parameter ζ1. As shown in the table, the
Boundary and Non-Boundary sensor classification accuracy is
insensitive to ζ1. When ζ1 increases, for example from 0.15,
0.25, 0.35 to 0.45, smaller EB Rates and thinner Boundaries
are obtained, which is as expected. However at the meanwhile,
the classification accuracy metrics of ER Rates, TP Rates
and FP Rates remain at the same level as in algorithm 1 for
EL OL, which shows the good stability over different ζ1s.

2) Performance Sensitivity on Covariance Scales: In our
experiments, all Gaussian signal components (including back-
ground white noises) share the same covariance matrix Σ0,
which is defined in section V-A and σ is a key factor
controlling the noise levels. Thus we test the performance
sensitivity of algorithm 1 with different σ settings in Table IV.
Using EL OL as an example, we conclude that our algorithm
1 is very insensitive to σ changes. No statistically significant
performance downgradings are observed when σ varies from
2 to 5, 10 and 15.

3) Performance Sensitivity on Neighborhood Size: We eval-
uate the performance sensitivity on sensor neighborhood size φ
of algorithm 1 in EL OL. From Table V, by varying φ from
36, 100, 196 to 400, the EB Rate stays at the same level of

Performance Sensitivity Testing on σ of Algorithm 1
Metric σ = 2 σ = 5 σ = 10 σ = 15
EB Rate 0.0823 0.0844 0.0850 0.0838
ER Rate 0.0120 0.0123 0.0127 0.0125
TP Rate 0.9768 0.9722 0.9699 0.9703
FP Rate 0.0077 0.0084 0.0101 0.0092

TABLE IV
Performance sensitivity testing on covariance scale σ of algorithm 1.

Performance Sensitivity Testing on φ of Algorithm 1
Metric φ = 36 φ = 100 φ = 196 φ = 400 φ = 900
EB Rate 0.0630 0.0646 0.0844 0.1270 0.1871
ER Rate 0.0126 0.0124 0.0123 0.0209 0.0494
TP Rate 0.9706 0.9796 0.9722 0.9743 0.9820
FP Rate 0.0086 0.0084 0.0084 0.0187 0.0519

TABLE V
Performance sensitivity testing on neighborhood size φ of algorithm 1.

φ = 36, 100, and raises slightly when φ = 196 and noticeably
under φ = 400. At the meantime, the ER Rate is stable
when φ changes from 36 to 196, but increases obviously when
φ = 400. It indicates that the impact of the changes of sensor
neighborhood sizes φ on algorithm performance is stable
within a moderate range of [36, 196]. When φ is extremely
small, not enough sensors are available for EM based statistical
GMM algorithm. On the other hand, EM optimization in
algorithm 1 tends to output more Boundary sensors, under
much wider distributional variations when φ ≥ 400.

VI. Conclusion
In this paper, we first propose a novel, unified solution based

on Gaussian mixture modeling with explicit model selection
to detect Boundary sensors, which achieves accurate, robust
experimental performance by leveraging its probabilistic na-
ture. We plan to study how to recognize sensor events from
different resources (e.g., a certain type of vehicle) and track
the scale changes (besides location) of a moving event region
in our future research.
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