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NE X T GE N E R AT I O N CO G N I T I V E CELLULAR NE T W O R K S

INTRODUCTION
Currently, the use of wireless frequencies is main-
ly regulated by centralized authorities (e.g., the
Federal Communications Commission [FCC] in
the United States) that allocate the spectrum stat-
ically in the temporal and spatial dimensions such
that the spectrum band assigned to each user is
valid for an extended period of time (usually
decades) and for a large geographical region
(country-wide). An illustration of this static spec-
trum assignment policy is presented in Fig. 1a.
Obviously, large portions of the spectrum remain
temporally and/or spatially underutilized/unused.
But due to the proliferation of mobile devices in
recent years, the demand on bandwidth continues
to increase, making dynamic spectrum access a
better choice for managing the spectrum resource.

Cognitive radio (CR), which provides the
capability to harness the potential of
unused/underutilized spectrum (spectrum holes)
in an opportunistic manner, is a key enabling
technology for dynamic spectrum access. An
illustration of the CR technology is presented in
Fig. 1b, from which it is easy to observe that CR
can significantly improve the overall spectrum
utilization when the CR users are allowed to uti-

lize the spectrum holes. A CR network typically
involves two types of users: primary users (PUs),
who are incumbent licensed users of the spec-
trum, and CR users (also known as secondary
users), who try to opportunistically access the
unused licensed spectrum as long as harmful
interference to PUs is limited.

To effectively implement the concept of CR
networking, CR systems need the capability to
perform the following functions [1]: spectrum
sensing, spectrum decision, spectrum sharing, and
spectrum mobility. In spectrum sensing, CR
users sense the PU spectrum occupancy status
and recognize the spectrum holes in the
licensed bands that can be used for their own
communications. Based on the sensing results,
CR users determine which spectrum band to
use (spectrum decision), how to share the spec-
trum with other CR users (spectrum sharing),
and when to evacuate the current spectrum
band for the returned PUs (spectrum mobility).
Considering the fact that all four of these func-
tions introduce time delays that undermine the
spectrum sensing accuracy as well as the spec-
trum utilization efficiency of CR systems, and
PU activities exhibit regularity in both the time
and spatial domains, spectrum prediction has
been proposed.

Spectrum prediction in CR networks is a
challenging problem that involves several
subtopics such as channel status prediction, PU
activity prediction, radio environment prediction,
and transmission rate prediction. In this article,
we present an overview of the most important
spectrum prediction techniques in CR networks.
This article is organized as follows. The necessity
for spectrum prediction is addressed, and we
introduce the prediction techniques and their
applications. Open research issues and chal-
lenges are discussed, followed by a conclusion.

NECESSITY OF PREDICTION IN
COGNITIVE RADIO NETWORKS

Cognitive radio is a technology that enables sec-
ondary users to discover and access the spectrum
holes in the licensed bands. CR technology
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ABSTRACT
Spectrum sensing, spectrum decision, spec-

trum sharing, and spectrum mobility are four
major functions of cognitive radio systems. Spec-
trum sensing is utilized to observe the spectrum
occupancy status and recognize the channel avail-
ability, while CR users dynamically access the
available channels through the regulation pro-
cesses of spectrum decision, spectrum sharing,
and spectrum mobility. To alleviate the process-
ing delays involved in these four functions and to
improve the efficiency of spectrum utilization,
spectrum prediction for cognitive radio networks
has been extensively studied in the literature.
This article surveys the state of the art of spec-
trum prediction in cognitive radio networks. We
summarize the major spectrum prediction tech-
niques, illustrate their applications, and present
the relevant open research challenges.

SPECTRUM PREDICTION IN
COGNITIVE RADIO NETWORKS
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includes four major functions, which are present-
ed in Fig. 2.

The operation of the CR functions shown in
Fig. 2 can be described as follows. A CR user
sequentially senses the spectrum bands and con-
structs a spectrum pool consisting of all the dis-
covered spectrum holes in the spectrum sensing
stage, and selects a channel from the spectrum
pool for its own transmission in the spectrum
decision stage. In order to enhance the channel
capacity, the CR user may share the available
channel with other CR users via an appropriate
spectrum sharing policy as long as spectrum shar-
ing does not cause transmission collisions. More-
over, the CR user must evacuate its occupied
channel when it is required by PUs according to
a spectrum mobility policy to guarantee the pri-
ority of the PUs and protect PU transmissions.

By making use of these four functions, CR
users can opportunistically utilize the unused
licensed spectrum for their own communications.
However, several shortcomings are identified,
which hinder the capacity enhancement of CR
networks:
• Sensing the wideband spectrum results in non-

negligible time delays [2].
• Spectrum decision based on real-time sensing

results undermines the spectrum utilization
efficiency due to the time delays introduced by
spectrum sensing and spectrum decision [3].

• In spectrum sharing, CR users may join at dif-
ferent times with different bandwidth demands
and quality of service (QoS) requirements.
Assigning appropriate spectrum bands to the
bursty heterogeneous CR service requests may
lead to considerable time delays, which results
in low efficiency in traditional spectrum shar-
ing policies.

• Carrier sense multiple access (CSMA)-based
traditional spectrum mobility policy always
results in transmission collisions since the CR
user does not evacuate its occupied channel
until the appearance of the PU is detected [4].
To overcome these shortcomings, prediction-

based techniques have been extensively studied.
In prediction-based spectrum sensing [2, 5–7], a
CR user can skip the sensing duty on some chan-
nels that are predicted to be busy, thus reducing
the sensing time and energy consumption. In
prediction-based spectrum decision [4, 5, 8], a
CR user predicts the quality of the channels in
terms of the idle probabilities, idle durations,
and other properties, and then selects a high-
quality channel for sensing and accessing to
increase the efficiency of its dynamic spectrum
access. In prediction-based spectrum mobility [4,
8, 9], a CR user predicts the appearance time of
PUs and evacuates the channel before the start
of the PU transmissions. To the best of our
knowledge, prediction-based spectrum sharing
has never been addressed in literature. Never-
theless, it is obvious that the existence of a pre-
diction-based spectrum sharing model can help
predict the requests of CR users in the time,
space, and frequency domains, based on which
the spectrum bands can be pre-assigned for
effective spectrum sharing before CR requests
come. Such a process can better exploit the
channel capacity and reduce the response delay.

All these prediction-based methods have

demonstrated that prediction is an effective way
to improve the performance of CR networks. In
the following section we summarize the most
typical prediction techniques and their applica-
tions in CR networks.

TYPICAL PREDICTION TECHNIQUES

In this section, we introduce a few prediction
techniques and their applications in CR net-
works. Two widely used prediction methods, hid-
den Markov models and neural networks, are
introduced first, followed by the presentation of
Bayesian inference-based prediction, moving
average-based prediction, autoregressive model-
based prediction, and static neighbor graph-
based prediction. Finally, we present a table to
summarize the surveyed prediction methods and
their applications.

HIDDEN MARKOV MODEL-BASED PREDICTION
A hidden Markov model (HMM) can be consid-
ered as a generalization of a mixture model that
consists of two processes: the variation of the
hidden states is a Markov process, and the obser-
vation under a specific hidden state is a normal
random process. In CR networks, the channel

 Figure 1. a) Static spectrum assignment policy; b) cognitive radio technology.
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occupancy states (busy or idle) are hidden since
they are not directly observable, and the sensing
results of the CR users are the observation of
the channel states. Define the hidden state space
as X = {x1, x2}, with x1 = 0 and x2 = 1, indicat-
ing that the channel is idle and busy, respective-
ly. Similarly, define the observation state space
as Y = {y1, y2}, with y1 = 0 and y2 = 1 indicating
that the spectrum sensing result is idle and busy,
respectively. Let qn denote the channel state on
time slot n and on denote the corresponding
sensing result. Then an HMM can be described

by its parameters L = (p, A, B), where p is the
initial state probability distribution: p = [pi]1¥ 2,
p i = P(q1 = i), i Œ X; A is the state transition
probability matrix: A = [aij]2¥ 2, aij = P(qn+1 =
jÔqn = i), i, j Œ X; and B is the emission proba-
bility matrix: B = [bjk]2¥ 2, bjk = P(on = kÔqn =
j), j Œ X, k Œ Y.

In HMM-based prediction [5, 6], the only
prior knowledge of a CR user is the spectrum
sensing results within N time slots, denoted by O
= {o1, …, oN}, with n Œ {1,…, N} and on Œ Y.
Having this knowledge, the CR user takes the
following three steps, shown in Fig. 3, to make
an HMM-based prediction:
• HMM training: In this process, the observa-

tion sequence O = {o1, …, oN} is used as a
training sequence to train an HMM model
and estimate its parameters. The Baum-Welch
algorithm is one of the most commonly used
HMM training algorithms, in which the HMM
parameters are estimated by maximizing the
probability of observing the sequence O.

• Channel state decoding: Solving the optimiza-
tion problem Q = arg max P(Q,OÔL) accord-
ing to the Viterbi algorithm to decode the
unknown channel state sequence Q = {q1, …,
qN}, with n Œ {1, …, N} and qn Œ X, which
generates the observation sequence O = {o1,
…, oN}.

• Prediction decision: Given the estimated
parameters and decoded channel states, the
future channel state can be predicted accord-
ing to the following rule:

where q̂N+1 is the predicted channel state in
time slot N + 1.

The HMM-based prediction method has been
widely used in CR networks. In [3], HMM-based
channel state prediction was proposed to mini-
mize the negative impact of the response delays
caused by hardware platforms. The authors
claimed that spectrum sensing introduced time
delays that reduce the accuracy of the sensing
results. Therefore, spectrum decision based on
real-time spectrum sensing may lead to transmis-
sion collisions between CR users and PUs. Nev-
ertheless, spectrum decision based on channel
state prediction can provide an effective way to
tackle the problem since CR users gain informa-
tion on the current channel states from the spec-
trum sensing results, and on future channel states
from the prediction results. By selecting a chan-
nel that is sensed as well as predicted to be idle,
CR users can improve the spectrum utilization
efficiency and reduce the interference with PUs.
In [4], HMM-based prediction is used to design a
smart spectrum mobility scheme. This study indi-
cates that the CSMA-based traditional spectrum
mobility model always results in transmission col-
lisions since a CR user does not evacuate its cur-
rently occupied channel before the detection of
PUs. However, in prediction-based smart spec-
trum mobility [4], also known as proactive chan-
nel switching, a CR user predicts the idle
duration of the channel and the appearance time
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Figure 3. HMM-based prediction.
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 Figure 2. Operation of the cognitive radio functions.
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of the PUs, and leaves the incumbent channel
before detecting any signal from the PUs. There-
fore, it can efficiently reduce transmission colli-
sions and interference with the PUs. In this
scheme, the authors modeled the channel usage
pattern as a binary series with 0 indicating no
traffic on the channel and 1 indicating that the
channel is currently occupied. By using the
HMM-based prediction method, a CR user can
predict the channel states in the near future and
make a transmission decision accordingly. The
CR user can continue to transmit if the predicted
result is idle, and evacuate the channel if the pre-
dicted result is busy. After the evacuation deci-
sion is made, the CR user switches to another
channel. In order to solve the switching channel
selection problem, [9] proposed an HMM-based
prediction approach, in which each CR user com-
putes a hopping sequence according to the pre-
dicted channel availability information and
switches channels according to the sequence.

MULTILAYER PERCEPTRON
NEURAL-NETWORK-BASED PREDICTION

A multilayer perceptron (MLP) is a feedforward
artificial neural network model that maps sets of
input data onto a set of appropriate outputs. In
MLP-based prediction [6, 7], the input data is
the history observations, while the output is the
prediction of the future states.

As shown in Fig. 4, an MLP consists of three
or more layers (an input and an output layer
with one or more hidden layers) of nodes in a
directed graph. Each node in one layer connects
with a certain weight to every node in the next

layer. Excluding the nodes at the input layer,
each node is a neuron (or computing unit) that
calculates a weighted sum of the input and trans-
forms the sum through a nonlinear activation
function G(◊).

The main challenge in MLP neural-network-
based prediction is the training of the model, that
is, changing connection weights of the graph. The
training process can be described as follows:
• Process each piece of observation and produce

corresponding output.
• Calculate the error in each output compared

with the expected value.
• Adjust the connection weights by minimizing

the error in the entire output.
After the training process, prediction can be
made by providing the newest observation as the
input to the MLP model.

Tumuluru et al. applied the MLP-based pre-
diction method to spectrum sensing in CR net-
works [6, 7]. In their approach, each CR user
predicts the future channel states by using an
MLP-based predictor and senses only those
channels that are predicted to be idle. Such tar-
geted spectrum sensing can reduce the energy
consumption of CR users.

BAYESIAN-INFERENCE-BASED PREDICTION
Bayesian inference (BIF) is an approach of
inference where Bayes’ rules are utilized to
update the probability distribution of a hypothe-
sis when additional evidence data is learned.

In CR networks, a CR user can compute a
prior probability distribution (also known as
prior) of each system parameter q, denoted by
P(q), from experimental subjective assessments,

Figure 4. Multilayer perceptron neural networks: a) an example neural network model; b) the computing
process of a neuron, ni

j.
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before any data is taken into account. Through n
time-slot spectrum sensing, some observed data
X = {x1, x2, ◊◊◊, xn} are collected. Then the CR
user computes a likelihood function of parame-
ter q, denoted by L(qÔX), as the probability of
the observed data given that parameter. That is,
L(qÔX) = P(XÔq). After acquiring the prior
probability distribution and the likelihood func-
tion, BIF can be used to derive the posterior
probability distribution of the system parameter
q conditioned on the data X = {x1, x2, ◊◊◊, xn}. In
BIF-based prediction, the CR user first derives
the posterior probability distribution P(qÔX)
according to Bayes’ rule

and then uses the derived posterior to predict
the data to be observed.

In our work [5], we designed a BIF-based
channel quality prediction method for CR net-
works. In our approach, we modeled the spec-
trum sensing process as a non-stationary HMM
(NSHMM), estimated the model parameters,
which carry the information about the expected
duration of the channel states and the spectrum
sensing accuracy (detection accuracy and false
alarm probability) of the SU, via a BIF
approach, and predicted the channel quality
according to the inferred channel idle duration
and spectrum sensing accuracy. After our pre-
diction process, each channel is associated with
a predicted channel quality. Then the channels
are ranked in descending order of the predicted
quality. Our simulation-based performance
study indicated that the ordered sequence can
be used for both spectrum sensing (sensing the
channels sequentially according to the ordered
sequence) and spectrum decision (selecting the
first channel of the sequence) to improve the
network performance in terms of network
throughput and time cost of finding available
channels.

MOVING-AVERAGE-BASED PREDICTION
Moving average (MA)-based prediction [10] is
commonly used to predict a trend in a sequence
of values. Consider a history sequence of length
N; a k-order MA predictor predicts the next
value of the sequence as the average of the last k
values in the sequence. To enhance the influ-
ence of the most recent observations on the pre-
diction result, an upgraded version of MA-based
prediction, exponential MA (EMA)-based pre-
diction, can be implemented, where exponential-
ly decreasing weighting factors are applied to
older observations.

In [2], EMA-based prediction is used to
enhance the spectrum sensing performance.
Each CR user collects the history energy level of
the channels as observations and predicts the
future energy level via an EMA based-predictor.
Then the CR user skips the sensing duty on
those channels whose predicted energy level is
higher than a preset threshold (considered as
occupied by the PUs). Through this approach,
the whole spectrum sensing time and energy
consumption can be reduced.

AUTOREGRESSIVE-MODEL-BASED PREDICTION

The autoregressive model (ARM), a kind of lin-
ear prediction formula, can also be used to pre-
dict the future states of a CR network based on
the previous observations [8]. In this approach,
the prediction decision is made according to the
prediction rule: ^XT = Sp

i=1jiXT–i + wT, where ^XT
is the predicted state at future time T, XT–i is the
observation at time T – i, p is the order of the
autoregressive model, j i, i = 1, 2, ◊◊◊, p, is the
parameter of the model, and wT is the white
noise at time T.

In ARM-based prediction, a CR user first
estimates the model parameters ji, i = 1, 2, …,
p, with Yule-alker equations, maximum likeli-
hood estimation, or other approaches. Then it
inputs the history observations into the predic-
tion rule, and predicts the future state of the sys-
tem as ^XT.

In [8], an autoregressive spectrum hole pre-
diction model was proposed. Each CR user esti-
mates the model parameters using Yule-alker
equations and predicts the future channel states
according to the prediction rule. No specific
application was indicated for this prediction
method in this article, but intuitively, it can be
used for spectrum decision and spectrum mobili-
ty: a CR user can select a channel that is pre-
dicted to be idle for its own use during the
spectrum decision stage, or evacuate the channel
it currently occupies when the channel is predict-
ed to be busy in the near future for spectrum
mobility.

STATIC-NEIGHBOR-GRAPH-BASED PREDICTION
In [10], a static neighbor graph (SNG)-based pre-
dictor was designed to predict future PU loca-
tions according to the pre-collected topology
information of PU mobility. A directed graph
representing the PU mobility history is first con-
structed as follows: When a CR user observes the
PU move from location i to location j, it adds a
directed edge (i, j) to the graph and sets the
weight of the edge to wij = 1 if the edge (i, j) is
not in the graph; or it adds 1 to the weight of the
edge, w ij = w ij + 1 if the edge (i, j) is in the
graph. After the construction of the graph, a nor-
malization procedure is performed on the weights
of the edges such that "i, Sjwij = 1. Then the PU
mobility property is predicted as follows: If the
current location of the PU is i, and the CR user
finds location i in the graph, it returns a list (j,
w ij) for all edges (i, j) and then predicts the
future location of the PU as j = arg maxw ij.
Using SNG-based PU mobility prediction, more
useful information on the network topology can
be obtained, and the routing protocol perfor-
mance of the network can be improved.

SUMMARY OF THE PREDICTION APPLICATIONS IN
CR NETWORKS

In the previous subsections, we have introduced
six typical prediction techniques and their appli-
cations in CR networks. We observe that predic-
tion has been employed to improve the
performance of the CR network in terms of
reducing the delay of finding available channels,
decreasing the energy consumption, minimizing

θ
θ θ( ) ( ) ( )
( )=

⋅
P X

P X P

P X
,

We observe that pre-
diction has been
employed to improve
the performance of
the CR network in
terms of reducing
the delay of finding
available channels,
decreasing the ener-
gy consumption,
minimizing the inter-
ference with primary
users, and improving
the network 
throughput.
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the interference with PUs, and improving the
network throughput. The applications of each
prediction method are summarized in Table 1.
Note that since different prediction methods are
designed for different performance improvement
objectives, no performance comparison study is
carried out here. Besides, Table 1 only lists the
reported applications based on each prediction
technique. Future research may reveal more
applications for each prediction approach. Also
note that prediction-based methods have their
drawbacks too. For example, they require more
memory space for history observation storage
and more computational power for prediction
result calculation.

OPEN ISSUES AND RESEARCH CHALLENGES

In this section we discuss several open issues and
research challenges that need to be investigated
for the development of prediction methods in
cognitive radio networks.

Prediction for spectrum sharing: To the best
of our knowledge, no prediction method for
spectrum sharing has been proposed. The diffi-
culty of this research lies in the prediction of CR
user activities. Due to the heterogeneous proper-
ty of CR users and the uncertainty property of
CR communications, it is hard to predict the ser-
vice requests of the CR users in time, space, and
frequency domains. Thus, it is difficult to coordi-
nate the spectrum sharing between CR users
through prediction.

Long term prediction: As we observe from
earlier, most existing research simply focuses on
predicting the system states of the next time slot.
It is challenging to make an accurate long-term
prediction due to the error accumulation prob-
lem.

PU activity map prediction: Prediction in a
single domain (time, space, or frequency) can
only provide unilateral information of the future
states of the system to CR users. If we could
predict a PU activity map, which provides infor-
mation regarding PU-occupied spectra, their
physical positions, and their transmission pow-
ers, it would certainly benefit CR users and PUs
to provide more efficient utilization of the spec-
trum resource. However, this is a difficult task
since all the prediction methods need history
observations, which indicates that extended spec-

trum sensing is needed to construct a history PU
activity map before prediction can be conducted.

CONCLUSION

Spectrum prediction is a promising approach for
better realization of cognitive radio functions.
Extensive research has been performed on vari-
ous prediction techniques and applications in CR
networks. However, effort is still needed to design
prediction-based spectrum sharing methods, pro-
vide long-term accurate spectrum prediction, and
devise PU activity map prediction schemes.
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