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Abstract—In many practical applications of wireless sensor net-
works, it is crucial to accomplish the localization of sensors within
a given time bound. We find that the traditional definition of rel-
ative localization is inappropriate for evaluating its actual over-
head in localization time. To address this issue, we define a novel
problem called essential localization and present the first rigorous
study on the essential localizability of a wireless sensor network
within a given time bound. Additionally, we propose an efficient
distributed algorithm for time-bounded essential localization over
a sensor network and evaluate the performance of the algorithm
with analysis and extensive simulation studies.

Index Terms—Essential localization, relative localization, time-
bounded localization, wireless sensor networks.

I. INTRODUCTION

A. Time-Bounded Localization

M ANY military and civil applications of wireless sensor
networks require the sensors to be aware of their posi-

tions in the physical space [1]–[4]. Such positions can be de-
scribed as either absolute locations (e.g., a combination of lat-
itude, longitude, and altitude) or relative ones (i.e., the loca-
tion of a sensor relative to others). The localization problem has
been extensively studied in terms of both theoretical analysis on
the localizability of a sensor network [5]–[7] and practical tech-
niques for the actual positioning of sensors [8], [9].
Missing from the existing research, however, is the local-

ization of sensors within a given period of time. Such a time-
bounded localization is extremely important for many practical
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applications. Consider a battlefield scenario as a simple mo-
tivating example. The localization of sensors must be accom-
plished within a short period of time because: 1) it is on the crit-
ical time path—i.e., a sensor has to position itself first before
annotating the monitored data with geographical information;
and 2) the localization process in general requires message ex-
changes between sensors, making the network more likely to be
detected by the enemy. Thus, it is critical for the localization
process to complete within a given time bound.

B. Outline of the Technical Results

We find that the traditional definition of relative localiza-
tion—i.e., a process that terminates when all sensors obtain their
locations in the same coordinate system—is inappropriate for
evaluating the actual efficiency of localization in practice. The
main reason lies in that part of the localization process can
be seamlessly integrated into subsequent payload transmissions
without incurring additional communication overhead. For ex-
ample, we shall demonstrate later in this paper that for a given
sensor network topology, localization may require an arbitrarily
long period of time according to the traditional definition, but
indeed it only needs the time of transmitting a short message
before allowing every pair of nodes to have their positions au-
tomatically transformed into one coordinate system.
In this paper, we reexamine the definition of relative local-

ization and define time-bounded essential relative localization,
a novel problem that captures the minimum amount of time re-
quired by localization before it can be integrated with regular
payload transmissions. Based on the definition, we present the
first rigorous study on the essential localizability of a wireless
sensor network within a given time bound. We also propose an
efficient distributed algorithm to perform time-bounded essen-
tial localization over a sensor network.
For physical localization in a sensor network, there must

exist multiple anchor nodes that are capable of acquiring their
physical locations from outband channels (e.g., through a GPS
module). Intuitively, if the number of anchors is large enough,
the network can always be localized in any time bound. How-
ever, in practice there can be only a small number of anchor
nodes because of the high cost. Thus, in analogy to essential
relative localization, we define the problem of time-bounded
essential physical localization and analyze its complexity. Fur-
thermore, we show that our distributed algorithm for essential
relative localization can also be used to solve the problem of
essential physical localization in polynomial time.
The rest of this paper is organized as follows. In Section II,

we introduce the preliminaries for localization inwireless sensor
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Fig. 1. Example graph modeling a sensor network of five nodes, with the real
numbers associated with the edges being the range distances.

networks. The problem of time-bounded essential (relative and
physical) localization is defined in Section III. Its complexity
from a centralized view is analyzed in Section IV. Section V
describes our distributed algorithm for time-bounded essential
localization. Section VI presents our simulation evaluation of
the proposed algorithm. We briefly review the related work in
Section VII, followed by the conclusion in Section VII.

II. PRELIMINARIES

A. Graph Model and Basic Notations

Graph Model: We model a sensor network as a graph
in which each vertex represents a sensor. For

the purpose of this paper, we assume all sensors to have an
equal communication range. Thus, we consider the graph to be
undirected, with an edge between two vertices1 and
iff their corresponding sensors are within range to communi-
cate with each other.
Fig. 1 depicts an example of such a graph model, which we

shall use as a running example. There are five nodes in the figure
connected by nine edges. Nodes 1–4 are interconnected with
each other, while 5 is connected with 2–4 only.
Relative and Physical Locations: In general, the location of

a sensor node in a -dimensional space can be specified by a
-dimensional vector

where is a unique identifier of the -dimensional coordi-
nate system, and is the corresponding coordinate of the sensor
node at the th dimension. For the sake of simplicity, we con-
sider all sensors to be distributed in a two-dimensional space
and denote the relative location of each sensor by .
Without causing ambiguity, we denote the physical location of
a sensor by .
Round of Communications: Finally, we define the granularity

of time for evaluating the efficiency of a localization algorithm
over a wireless sensor network. In particular, we define a round
of communications as the amount of time required for a sensor
with a degree to broadcast a message of length to
all its neighbors and to receive a message of length
from each of its neighbors, where is the degree of the
th neighbor.

1In this paper, we use sensor, node, sensor node, and vertex interchangeably.

TABLE I
DISTANCE TABLE OF SENSOR WITH NEIGHBORS

B. Multilateration-Based Localization

Forming the basic primitive of our study is the multilater-
ation-based localization technique—i.e., the ability of each
sensor to measure its distance with the neighboring sensors
and to determine its relative position based on the measured
distances. For the purpose of this paper, we do not consider the
details of lateration (interested readers are referred to [10] for
the details on the principles of lateration), but instead formulate
it as a preprocessing stage with the following two steps.
• In the first step, each sensor measures its distance to each
of its neighbors and stores the measured distances in a
distance table as depicted in Table I. Note that
is the distance between sensors and . Also in this
step, each sensor broadcasts its distance table (to all of
its neighbors). Thus, in one round of communications,
each sensor broadcasts a message of length ,
where is the degree of node . For example
in Fig. 1, node 5 broadcasts the following message:

, which is received by
nodes 2–4.

• In the second step, each sensor computes its relative po-
sition to its neighbors based on its own distance table and
the distance tables received from the neighboring nodes.
To understand how such a positioning process works, con-
sider a sensor node . Let be the set of neighboring
sensors of . If three nodes , where

, are interconnected with each other2 and non-
collinear, then has the knowledge of , and

after receiving all broadcast messages. Based on
such information, can construct an orthogonal coordi-
nate system as follows. First, it sorts , and in an
increasing order of their IDs. Without loss of generality,
let such an order be . Then, it constructs a co-
ordinate system by assigning the location of to ,
the location of to , and the location of to

, where is the angle
formed by the edges and . Note that can be ob-
tained through the Law of Cosines, and that the constructed
coordinate system is unique in 2-D because , and are
noncollinear. In the example shown in Fig. 1, node 5 is ca-
pable of constructing a coordinate system under which the
coordinates of 3–5 are (0, 0), (0.4, 0), and (0.3125, 0.3903),
respectively. This step incurs no message exchange, and
the storage overhead of each sensor is .

In multilateration-based localization, each localized node3

should broadcast its position to help its neighbors’ localization
process. Therefore, one round of communication refers to the
total time required by the localized nodes to broadcast their

2Note that one of , or might be .
3A localized node is one whose position is available.
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Fig. 2. Example network localizable with one round of communications.

positions and to receive their localized neighbors’ broadcasts.
The to-be-localized nodes, on the other hand, have to wait for
one or more rounds in order to get the position information of
three noncollinear neighbors. A to-be-localized node becomes
a localized one after obtaining the distance information to three
localized neighbors. We employ the number of communication
rounds as a metric to quantify the time required to localize the
network.

III. TIME-BOUNDED ESSENTIAL LOCALIZATION

In this section, we define a new problem of time-bounded es-
sential localization. In particular, we first explain the deficiency
of the traditional evaluation on the overhead of localization
time, and then formally define two variants of the time-bounded
essential localization for relative and physical positioning.

A. Objective of Essential Localization

Traditionally, a relative localization process is considered ac-
complished only if all sensors are positioned in the same coordi-
nate system. Nonetheless, we argue that this is not a proper def-
inition for evaluating the overhead of localization because part
of such a process can be seamlessly integrated into the subse-
quent transmissions of valuable payload information, incurring
little extra overhead.
To understand why, consider an example of relative localiza-

tion as depicted in Fig. 2. With the traditional definition, at least
rounds of communications are required for localization be-

cause the radius of the network is . For example, to localize
the network under the coordinate system , which is
noted as for short, rounds of flooding are required to
send the information of to the nodes 0 and , the two far-
thest nodes from . Moreover, the results are the same even if
each node starts localizing by constructing a ocal oordinate
ystem (LCS) itself instead of waiting for the information from
. The reason is that the traditional definition requires all the

nodes to be localized in the same coordinate system. In other
words, the nodes’ positions under their LCSs need to be trans-
formed to their corresponding positions under a unique global
coordinate system. To transform between two 2-D LCSs, a suffi-
cient and necessary condition is that at least three noncollinear
nodes are aware of their positions in both LCSs. As a result,
each node needs to wait for the information to perform the co-
ordinate system transformation, which also requires at least
rounds of flooding to transform all LCSs to a unique global co-
ordinate system for the example in Fig. 2.

In practice, however, one round of communications might be
sufficient for the network shown in Fig. 2. Consider the case
where sensor 0 is supposed to transmit a message as well
as its own position to node (which can be either a
sensor or a sink). Suppose that the routing protocol transmits
through . Note that the ultimate
objective of localization is for node to be able to understand
the locations of 0 and itself in the same coordinate system. This
objective can be achieved with exactly one round of localiza-
tion communications plus coordinate transformations during the
regular payload message transmissions.
Let us take a look at the details. In the preprocessing stage,

nodes , and , where , select the coordinate
system and localize themselves and their direct neighbors in
. Nodes 0 and localize themselves in and , re-

spectively. Then, each sensor broadcasts its selected coordinate
system as well as the coordinates of itself and its neighbors in
the selected coordinate system.
Clearly, neither node 0 nor node can position each other

in the same coordinate system after this single round of com-
munications. Nonetheless, all future steps needed for localiza-
tion can be embedded into the actual transmissions of the pay-
load information without incurring any additional communica-
tion overhead.
After this single round, node 0 positions itself in the coordi-

nate system . Let be the ID of this coordinate system
and be the coordinates of node 0 in . What node 0
sends to node 1 during the payload transmission is

(1)

Note that the length of this message is the same as that when 0
knows its position in a global coordinate system.
After receiving , the processing by node 1 is as fol-

lows. First, from the information it learns during the prepro-
cessing step, node 1 is aware of the coordinates of in

. Since during the single round of communications, node 2
has broadcast the positions of itself, , and in the coordinate
system , node 1 also knows the positions of in

. This enables node 1 to construct a linear transformation
between the two coordinate systems.
Now what node 1 does is to transform the location of node 0

from to , and then transmit to node 2,
where are the coordinates of node 0 in . Again,
the message length remains the same as if a global coordinate
system exists. We can derive in analogy that the final message
received by node is . Since node can
also infer its own location in based on the information
it receives during the preprocessing stage, the ultimate objective
of relative localization is achieved—i.e., node learns the lo-
cations of both 0 and itself in the same coordinate system.
One can see from this example that it is unfair to attribute

rounds of communications to the relative localization
process (as in the traditional definition) because the com-
munication overhead incurred by localization is only one
round—after which localization incurs only computation over-
head for coordinate transformation. Note that the time taken by
one round of communications is defined to be the maximum
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Fig. 3. Example network that requires two rounds of communications in order
for the packets to be routed from 0 to 4 via the shortest path.

amount of time for a node to broadcast its positioning informa-
tion and to receive its neighbors’ broadcastings.
It is important to understand that such an improvement de-

pends on the network topology, the selected coordinate system,
and the employed routing protocol. For example, the commu-
nication overhead of localizing the network shown in Fig. 3 in-
cludes two rounds of communications when packets are routed
from node 0 to 4 via the shortest path that passes node 3 when

and are selected to localize nodes and
nodes , respectively, in the preprocessing stage. After
the first round of broadcasting, node 0 is aware of the positions
of nodes in , but not in . To compute their
positions in , another round of communications is needed.
In other words, node 0 needs two rounds of communications to
get sufficient information for and transformation.
Note that node 3 is not localizable, and that only one round of
communications is needed if packets are routed through 1 and
2 to reach 4.
From the above discussions, we argue that the objective of

a localization process should be to provide each node suffi-
cient information such that any future transmissions of the pay-
load information can automatically integrate the locations of the
source and destination into the same coordinate system. This is
a weaker requirement than having all sensors share the same co-
ordinate system immediately after the localization process. We
formally define this new objective as follows.
Definition 3.1: (The Objective of Essential Relative Localiza-

tion): Essential relative localization is accomplished if and only
if for any pair of nodes in the network, there exist a sequence
of coordinate systems such that
• can position itself under ;
• can position itself under ;
• for any , there exists a sensor such that
is capable of transforming a position between
and .

The key idea of essential localization is to avoid the unnec-
essary communications for localization. The objective of essen-
tial localization is quite broad. Some nodes could be essentially
localizable even if they cannot be localized in any LCS after
rounds of communications. Fig. 4 shows such an example,

where the network N is essentially localizable after rounds
of communications, but the outside node 1, which does not be-
long to N, cannot be localized by any of the LCSs in N because
its neighbors have not yet been localized in a global coordinate

Fig. 4. Network that is essentially localizable with an essentially localizable
outside node 1.

Fig. 5. Example essentially localizable network with subnetworks and
and an essentially localizable outside node 1.

system. However, as N is essentially localizable, nodes 2–4 will
be eventually localized in a global coordinate system, and thus
node 1 will become localizable. Therefore, we mark the net-
work shown in Fig. 4 (the network N plus the outside node 1)
as -round essentially localizable.
Furthermore, outside nodes that are essentially localizable

can also contribute to the essential localizability of the whole
network. In Fig. 5, and are two essentially localizable
subnetworks, and node 1 is an outside node of both and
. and can be eventually localized in and

, respectively. Since node 1 has three neighbors in
each of and , it is essentially localizable in both
and . Then, the whole network (the union of ,
node 1, and the associated edges) is also essentially localizable
because nodes 1–3 can be eventually localized in both
and , which implies that the two LCSs are mutually
transformable.

B. Formal Definitions

Based on the objective of essential relative localization, we
shall define the concept of -round essential localization and
the problem of time-bounded essential localization for relative
and physical positioning.
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Definition 3.2: ( -Round Essential Localization): In -round
essential localization, sensors intend to localize themselves
under their local coordinate systems during the first rounds
of communications; after that, they can localize themselves
only through transferring positioning information among the
available LCSs.
Definition 3.3: (Time-Bounded Relative Localization): A

wireless sensor network is -round localizable if and only
if there exists an algorithm that accomplishes the essential
relative localization within rounds of communications.
This definition reflects our novel view of the relative local-

ization: It is accomplished within a bounded time, i.e., after
rounds of communications, the subsequent payload transmis-
sions can be used to transform the positions of communicating
nodes into the same coordinate system without extra communi-
cation overhead.
Note that this definition may not be applicable to all sensor

networks—for a sensor network whose topology is a discon-
nected graph, it is not localizable even when because
the distance between two disconnected sensors can never be
determined.
Such a situation changes in physical localization, however,

because anchor nodes can be placed into isolated components
of a network for positioning all sensors in the physical coor-
dinate system. In an extreme case, if each sensor is within the
communication range of three anchors, the preprocessing step
is sufficient for positioning every sensor. Thus, the definition
of localizability for physical localization must involve both the
number of communication rounds required for localization and
the number of anchor nodes deployed to a network.
Definition 3.4: (Time-Bounded Physical Localization): A

wireless sensor network is -round localizable with anchors
if and only if there exists a location configuration of anchors

and a localization algorithm that terminates within
rounds of communications such that for any sensor , there

exist at least three anchors , and for each of these
anchors, say , there exist a sequence of coordinate systems

satisfying the following:
i) can position itself under ;
ii) can position itself under ;
iii) for any , there exists a sensor such that

is capable of transforming a position between
and .

One can see from the definition that if a sensor network
is -round localizable with three anchors, it must be -round
localizable for relative localization. To understand why, we
observe that the sequence of coordinate systems specified in
Definition 3.4 is invertible. With three anchors, for every pair of
sensors and , there must exist an anchor, say , with which
both and are connected through a sequence of coordinate
systems. The concatenation of these two sequences defines a
sequence that connects and and thus fulfills the localizability
requirement for relative localization.

IV. COMPLEXITY ANALYSIS FOR TIME-BOUNDED
LOCALIZATION

A. Preliminaries

In order to analyze the complexity of localizing a given
network in a given time-bound, we assume that the following

parameters are available: the time bound , the network size
, the network diameter , and the maximum node degree .

We start our analysis from a sensor’s local -hop graph, the
induced graph of the sensor’s neighbors within -hop distance.
Lemma 4.1 claims that a sensor’s local -hop graph covers
all the possibilities that can make the sensor localizable in
rounds of communications.
In a graph, there might exist multiple anchors and multiple

possible LCSs because every three mutually connected nodes
can construct an LCS. The localization process can start from
a subset of anchors and/or a subset of LCSs. We denote the
set of the selected anchors and/or LCSs as a combination. In
the -lateration localization for -dimensional space, a
necessary and sufficient condition for a node’s localizability is
that the node has direct localizable neighbors to which
it has the distance information. Then, to localize the node in
rounds of communications, those direct neighbors

should be localized within rounds of communications.
With the same reasoning, we claim that any of the node’s -hop
neighbors could contribute to the node’s localizability only if
it can be localized within rounds of communications.
Therefore, the anchors or the local coordinate systems that are

-hop away from the node do not help with the node’s
localizability in rounds of communications.
Lemma 4.1: All the combinations of the anchors and/or the

local coordinate systems that can cooperate to localize a node
under some LCS in rounds of communications reside in the
node’s local -hop graph.

Proof: The statement is true for the combination of
anchors because anchors located at more than hops away
cannot contribute to the localization of the node in rounds of
communications.
Let be a node that is more than hops away from the to-be-

localized node . Assume that participates in constructing a
local coordinate system that contributes to node ’s local-
ization in rounds of communications. Then, there must exist
a node that can be localized in , and is essential to lo-
calize the node in rounds of communications. Without loss
of generality, we assume that is localized in at the th
round of communications. This means that is at most
hops away from in order to localize in rounds of com-
munications, and that is at most hops away from in order
to be localized by at the th round of communications.
Therefore, the hop distance between and is at most , which
contradicts our assumption. Thus, the statement is true for the
combination of local coordinate systems.
For a given network , the number of nodes in a node’s

local complete -hop graph is , where is the maximum
node degree. For each node, it can participate in constructing

number of local coordinate systems in the -dimensional
space. Then, there exist in total number of
possible LCSs in the network, where is the network size. In a
node’s local -hop graph, there exist number of pos-
sible LCSs; and the number of all possible combinations of the
LCSs is . For better elaboration, a combination
of the LCSs is denoted as a cooperating LCS (CLCS).
For each CLCS, as the number of communication rounds for

localization is bounded by , it takes time to
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identify the nodes that can be localized under some LCS of the
CLCS. Therefore, it takes time to figure out
which node can be localized under which LCS after rounds of
communications. Note that the time complexity is polynomial
to .
In the following, we begin with analyzing the complexity of

time-bounded relative localization.

B. Complexity of Time-Bounded Essential Relative
Localization

A necessary and sufficient condition for mutually trans-
forming coordinates between two LCSs is that there exist at
least nodes that are aware of their positions in both
LCSs in the -dimensional space. According to Section IV-A,
each possible , can obtain its , the set
of nodes that can be localized under in rounds of
communications, in polynomial time. Then, it takes at most

time to transform all the LCSs into a locally unique
coordinate system (LUCS) through enumeration. Considering
the essentially localizable nodes outside the network and their
contributions to the network’s -round essential localizability,
it takes at most time in total to eventually
transform all the LCSs into the LUCS. Note that there might
exist multiple LUCSs when the network is not essentially
localizable in rounds of communications. We call each LUCS
an isolated LCS island. An isolated LCS island is a set of
mutually transformable LCSs. Any two LCSs in two different
islands are not transformable to each other.
Therefore, the complexity of checking whether a given net-

work can be essentially relatively localized in rounds of com-
munications is polynomial to , which is the number of nodes
in the network. Let be the network diameter. It takes at most

time, which is
also polynomial to , to figure out whether the network is lo-
calizable in rounds of communications and to obtain the min-
imum that guarantees the network’s localizability.

C. Complexity of Time-Bounded Essential Physical
Localization

Following the results presented in Section IV-B, we study the
complexity of time-bounded physical localization in this sec-
tion. According to Definition 3.4, we should address the fol-
lowing questions for time-bounded physical localization.
1) Given a network and the deployed anchors, is the net-
work essentially physically localizable in rounds of com-
munications?

2) Given a network and the deployed anchors, is the net-
work localizable? If yes, what is the minimum required
communication rounds ?

3) Given a network and , how should the anchors be de-
ployed such that the network is localizable in rounds of
communications and the number of anchors is minimized?

To answer these questions, we construct a new graph
, where and
, with , and being defined

as follows:
• LUCS set , where each node represents a locally unique
coordinate system;

• to-be-localized node set , where each node represents a
to-be-localized node in the network ;

• candidate anchor set , where each node represents a po-
tential anchor node in the network ;

• dominating edge set , where each edge joints a LUCS
node in and a node in the to-be-localized node set
if the node in can be localized under the LUCS in
rounds of communications;

• anchor edge set , where each edge joints a LUCS node
in and a node in the candidate anchor set if the
node in can be localized under the LUCS in rounds
of communications.

Note that it takes polynomial time to construct the graph
according to the analysis in Section IV-B. For the first question,
it is equivalent to the problem of finding whether there exists a
set such that each node in is dominated by at least
one node in , and that each node in connects to at least
three nodes in . Obviously, this problem can be easily solved
in polynomial time. To answer the second question, we need to
construct and to check whether the network is essentially
physically localizable in rounds of communications for each
possible . According to the analysis presented in Section IV-B,
is upper-bounded by . Therefore, the time com-
plexity of answering the second question is also polynomial.
For the third question, the solution set should si-

multaneously satisfy the following three requirements.
• For any , each node in is dominated by at
least three nodes in .

• Each node in is dominated by at least one node in .
• is minimized.
It is easy to conclude that the hitting set problem [11] is a de-

generation of the above problem. Therefore, generally speaking,
the third question is NP-hard. Intuitively, it is related to the dom-
inating set and connected dominating set problems, with both
being proved to be NP-hard [12], [13]. There exist many ef-
forts [14]–[17] to construct a connected dominating set in sensor
networks. A survey of these algorithms can be found in [18].
Nevertheless, none of the proposed algorithms could be applied
to solve the time-bounded essential localization problem be-
cause they focus on the 1-hop 1-dominating set problem. More-
over, the practical constraint also makes it impossible to con-
struct the graph in real-world implementations. On the other
hand, the time-bounded essential localization problem is more
likely to be related to the -hop -dominating set problem,
in which a node should either be a dominator or be dominated by

dominators within hops away. Distributed algorithms
for the k-hop 1-dominating set problem, which is proved to be
NP-hard [12], are reported in [19] and [20]. To our knowledge,
none of the existing works focuses on the -hop -dom-
inating set problem for a positive integer . Furthermore, solu-
tions for the -hop -dominating set problem can only
produce necessary solutions for the time-bounded localization
problem because they can at most guarantee -hop -dom-
inating graphs, which are insufficient for localizability as re-
ported in Section VII.
In our investigation, the most related research to the time-

bounded essential physical localization problem is the Fast In-
formation Propagation problem proposed in [21]. This problem
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Fig. 6. Example .

intends to extract the minimum size of nodes for initial acti-
vation such that information could be sent to all the nodes in
the given social network within a bounded time. It has been
proved [21] that the fast information propagation problem is
NP-hard when the time bound (number of hops) is 1 and the
number of dominators is , which is half of the maximum
node degree. An approximate algorithm is also proposed in [21].
Under the same conditions, Zhu et al. [22] prove that the fast in-
formation propagation problem is APX-hard whether the initial
active nodes are connected or not. Although the fast informa-
tion propagation problem is a good match to our time-bounded
essential localization problem, the 1-hop constraint makes the
currently focused problem degenerate to be a variation of the
dominating set problem. Therefore, as stated above, no existing
result can be applied to our general time-bounded essential lo-
calization problem.

D. Analysis on Optimal Anchor Selection for Time-Bounded
Physical Localization

In this section, we study the problem of how to select the
minimum number of nodes as anchors so that the network can
be physically localized in a given time bound. Note that we use
the same notations as those in Section IV-C. Fig. 6 shows an
example graph , where , and .
Obviously, and are the reflections (copies) of and

, respectively, when each node in can be an anchor
candidate. As indicated in Sections IV-B and IV-C, given the
number of rounds , the graph can be constructed in poly-
nomial time. Additionally, according to the objective stated in
Section III-A, each LUCS in has at least three neighbors
in . Moreover, any two LUCS in should have at most
two common neighbors in since otherwise they should be
merged into one LUCS.
To physically localize the network, we first identify those iso-

lated nodes that cannot be localized by any LUCS. These iso-
lated nodes have to be chosen as anchors. Then, we look for a
minimum subset of such that the nodes in , which are
three-dominated by the selected subset, can dominate all the
nodes in . We set the nodes in the selected subset of as
anchors.
To find the minimum subset, an intuitive question to ask is

the following: Are all the LUCSs essential to localize the net-
work? In other words, does each LUCS localize some nodes that
cannot be localized by other LUCSs? If the answer is Yes, the
problem can be degraded to the three-dominating set problem.
Unfortunately, the answer isNo because the nodes, which can be

localized by , can also be localized by either or
as shown in Fig. 6. A possible solution to this problem

is to employ enumeration on , which has a time complexity
of .
Our next goal is to find the lower bound of the minimum

number of anchors to physically localize a network with di-
ameter in rounds, which is denoted as . Suppose that
each node can be localized in some LUCSs. Then, the min-
imum number of LUCSs that can localize the whole network is
lower-bounded by . This means that is the number
of essential LUCSs to cover the whole network in rounds.
As any two of these essential LUCSs can share at most two
common neighbors in , we have

(2)

which implies that any three nodes in the minimum required
anchor set, whose cardinality is , can construct an essential
LUCS. Then, we can obtain the theoretical lower bound of the
minimum number of anchors by solving (2), with being the
only unknown.
Theorem 4.1: Given a network with diameter , the

lower bound of the number of required anchors, which
can cooperatively localize the network in rounds, is

.
Note that is the minimum positive root of (2).
Although there exist some greedy methods for finding ap-

proximate solutions, we simply skip the discussions because
they are centralized, which makes them inapplicable in wireless
sensor networks. In the next section, we propose a distributed
approximate solution for the essential localization problem.

V. DISTRIBUTED ALGORITHM

In this section, we describe a distributed algorithm for time-
bounded essential localization. From an algorithmic perspec-
tive, the objectives of essential localization for both relative and
physical positioning are the same—i.e., to maximize the number
of localized nodes at any given time bound.

A. Algorithm Design

The algorithm is depicted in Algorithm 1. The only input is
the time bound—i.e., the maximum number of communication
rounds that can be consumed by the localization process. The
algorithm requires each sensor node to maintain the following
data structures:
• a position table, which stores the positions of all 1- and
2-hop neighbors of the sensor node under all LCSs con-
structed by the sensor;

• an LCS identification table, which specifies how each LCS
is constructed (i.e., the IDs of all the sensors that define the
LCS);

• an LCS transformation table, which specifies the transfor-
mation between each LCS in the LCS identification table
and a base LCS (BLCS). Note that each node has its own
BLCS.

The BLCS is an LCS, which is constructed by the sensor it-
self and two of its direct neighbors, such that the number of lo-
calized nodes under this LCS is no less than that by any other
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LCS in the node’s 2-hop topology. The BLCS is determined as
follows. At each communication round, a sensor broadcasts its
1-hop position table so that its neighbors can update their corre-
sponding 2-hop position tables. Then, based on the 2-hop posi-
tion table, each sensor constructs its BLCS by finding two of its
1-hop neighbors such that: 1) these two neighbors are within the
communication range of each other; and 2) the LCS constructed
by the two neighbors and the sensor itself can localize the max-
imum number of sensors in the 2-hop topology. Note that this
step can be achieved by brute-force searching and trilateration
as the sensor is aware of its 2-hop topology. The time com-
plexity is , with being the node degree. Once the BLCS
is selected, three steps are performed by the function Update
the LCS transformation table: First, a sensor checks its position
table to find all the LCSs that can be transformed to the BLCS;
second, the sensor transforms all LCSs identified in the first step
to the BLCS; finally, the sensor localizes more sensors based on
the updated position table. The output of the algorithm includes
the following information:
• : the number of isolated LCS islands re-
maining in the network. presents how many
islands that are not globally transformable in the network
if we run the proposed algorithm for an infinite number of
rounds.

• : the max/min number of communication
rounds required to connect all LCSs in every island (as
defined above).

• : the number of localized sensors in the iso-
lated LCS island that contains the largest number of local-
ized nodes among all the isolated LCS islands.

• : the number of unlocalized nodes in the
network—i.e., the number of nodes that cannot be essen-
tially localized.

• : the number of anchors required to physi-
cally localize the network.

Based on the outputs, a sensor network is -round es-
sentially relatively localizable if

, and . For physical
localization, a sensor network is -round localizable when

. The number of required anchors is
calculated by

which means that each island has three anchors, and that each
unlocalized node is an anchor. Note that (3) is an upper bound
of the number of required anchors. As any two islands can have
at most two common nodes, the lower bound of the required
number of anchors is

which implies that all the islands share the same two
common nodes that have been chosen as anchors. The output

is the upper bound defined in (3).

B. Algorithm Analysis

In this section, we shall first show that our algorithm is
capable of positioning more sensors (through polynomial-time
transformations among LCSs) than the traditional technique.

Algorithm 1: Time-Bounded Localization Algorithm

1: ;
2: while do
3: ;
4: Subphase I: Broadcasting and Collecting
5: if the LCS identification table has been updated then
6: Broadcasts the update of the LCS identification

table;
7: end if
8: if the position table has been updated then
9: Broadcasts the update of the position table;
10: end if
11: if the LCS transformation table has been updated

then
12: Broadcasts the update of the LCS transformation

table;
13: end if
14: Collects all the messages from its neighbors;
15: Subphase II: Localization
16: Updates the LCS identification table;
17: Updates the position table;
18: Combines the LCS transformation table with the

received messages;
19: Selects a BLCS;
20: Updates the LCS transformation table;
21: while the the position table has been updated do
22: Updates the LCS transformation table;
23: end while
24: end while
25: Outputs the position table and the LCS transformation

table;
26:
27: Functions:
28: function UPDATES THE LCS IDENTIFICATION TABLE
29: Combines the LCS identification table with the

received messages;
30: end function
31: function UPDATES THE POSITION TABLE
32: Combines the position table with the received

messages;
33: Localizes the nodes under LCSs;
34: end function
35: function UPDATES THE LCS TRANSFORMATION TABLE
36: Transforms the transformable LCSs to the BLCS;
37: Transforms the positions in the transformable LCSs

to the BLCS;
38: Updates the position table;
39: end function

Then, we investigate the local optimality of our algorithm
in selecting a BLCS. We prove that, within a sensor’s 2-hop
topology, the group of sensors that can be localized by the
selected BLCS is a superset of those that can be localized by
other LCSs that can also localize the sensor.
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Fig. 7. Example to illustrate the ordered list of the localized nodes in .

As multilateration is the basic approach adopted by each
LCS to localize a network, there exists an order of the localized
nodes for each LCS, in which each node except the three
origins defining the LCS has at least three ancestor nodes. In
other words, following that order, all the nodes can be localized
by the three origin nodes of the LCS. However, if randomly
selecting three nodes in the ordered list, we cannot guarantee
the localizability of their ancestor nodes nor the localizability
of all the nodes after them in the list. Note that we require the
selected three nodes to be nondegenerative. Fig. 7 shows such
an example, where there exist six localized nodes in ,
with nodes 1–3 being the three origins. Nodes 4–6 can be
localized in the order of in , but none of the
origins can be localized by them.
Note that if two LCSs can be mutually transformable, the

intersection of their ordered lists of the localized nodes should
have at least three degenerative nodes. According to the above
analysis, it can be concluded that the nodes in the intersection
cannot guarantee the localizability of all the nodes in both lists.
Therefore, we obtain the following theorem.
Theorem 5.1: Given a network and a set of anchors, the

number of localized nodes by applying the proposed algorithm
is larger than or equal to the number of localized nodes by
applying the traditional multilateration localization method.

Proof: For any node in the ordered list of an LCS, it can ob-
tain its physical position through position transformations when
there exist at least three anchors in the list. Starting from these
anchors, we can obtain a sublist of the LCS’s list through the
traditional multilateration localization method. This means that
the LCS can localize all the nodes that can be localized by these
anchors. Note that the ordered list starting from any anchor must
be a sublist of some LCS. However, according to the above anal-
ysis, the sublist cannot guarantee the localizability of the two
original lists. Therefore, the proposed algorithm can localize all
the nodes that can be localized by all the anchors, but not vice
versa.
Within the 2-hop topology of a node, there does not exist

an edge to connect two 2-hop neighbors of the node because
its 1-hop neighbors only broadcast their 1-hop topologies. In-
tuitively, for a node to construct a local optimal LCS that can
localize the maximum number of nodes (including itself) in
its 2-hop topology, it is sufficient to consider all the possible
three-node combinations as LCS candidates, in which the three
nodes should mutually hear each other. The time complexity
of this enumeration procedure is , where is the max-
imum node degree, because an LCS candidate can include at
most one of the node’s 2-hop neighbors. Nevertheless, as in-

dicated by Theorem 5.2, the time complexity of our proposed
BLCS selection method is . This theorem also proves that
the proposed BLCS selection method is sufficient to find a local
optimal LCS.
Theorem 5.2: In the proposed distributed algorithm, the se-

lected BLCS is a local optimal LCS within the 2-hop topology
of a node.

Proof: In the proposed distributed algorithm, we check all
the LCS candidates that are constructed by the node itself and
two of its direct neighbors to select a BLCS.We denote this type
of LCS candidates as , where 0 represents the node
itself and 1 represents one of its 1-hop neighbors.
A possible LCS candidate can also be constructed by three

of the node’s 1-hop neighbors. We denote this type of LCS
candidate as , where 1 represents one of the node’s
1-hop neighbors. Moreover, a possible LCS candidate can be
constructed by one of the node’s 2-hop neighbors and two of
the node’s 1-hop neighbors. We denote this type of LCS candi-
date as , where 2 represents one of the node’s 2-hop
neighbors and 1 represents one of the node’s 1-hop neighbors.
Our proposed method only needs to check the LCS candidate
set .
Assume that a local optimal LCS is in the candidate

set . As all the three 1-hop neighbors that construct
the local optimal LCS can mutually hear each other and the
node itself connects to all of them, the LCS constructed by the
node and any two of the three 1-hop neighbors can localize the
other 1-hop neighbor. Therefore, all the three origins of the
local optimal LCS can be localized by the newly constructed
LCS that is in the set . Then, the newly constructed
LCS can localize all the nodes that can be localized by the
local optimal LCS. Thus, the newly constructed LCS is a local
optimal LCS.
Assume that a sensor’s local optimal LCS is in the candi-

date set . As the local optimal LCS can localize the
sensor itself, it must be able to localize at least one more 1-hop
neighbor. The LCS, which is constructed by this 1-hop neighbor
and the other two 1-hop neighbors in , can localize the
2-hop neighbors in the set . Therefore, the newly con-
structed LCS, which is in the set , can localize all the
three origins of the local optimal LCS. Thus it is a local optimal
LCS. According to the analysis of , there must exist a
local optimal LCS that is in the candidate set .
In conclusion, checking only the candidate set is

sufficient to find a local optimal LCS within a node’s 2-hop
topology. This means that our proposed BLCS selection method
can find a local optimal LCS in time.
Note that the result of Theorem 5.2 cannot hold if the com-

munication edge between two nodes is not bidirectional.

VI. SIMULATION EVALUATION

In this section, we use MATLAB simulations to evaluate
the performance of our proposed algorithm for essential
localization.

A. Simulation Settings

In our simulation, each sensor node runs our proposed lo-
calization algorithm. The topology of the sensor network is set



CHENG et al.: TIME-BOUNDED ESSENTIAL LOCALIZATION FOR WIRELESS SENSOR NETWORKS 409

Fig. 8. Number of instances for each node degree.

up as follows. We consider a sensor network consisting of 100
nodes randomly deployed in a two-dimensional square region
with a size of 100 100. We denote the region’s border length
and the number of sensors in the network by and

, respectively. Thus, the node density can be approx-
imated by . To control the network average node degree, we
vary the node’s communication range from to such that

and —i.e., and .
This yields a node degree ranging approximately from 3 to 13.
Note that the transmission ranges are the same for all the nodes
at each simulation. The outcomes of all simulations are aver-
aged over 50 i.i.d. random network instances.

B. Simulation Results

In this section, we report our simulation results to study the
time-bounded localization problem. The performance metrics
include the Iteration Bound, which is the minimum number
of communication rounds required to connect all the LCSs in
any isolated LCS island, the number of isolated LCS islands,
the maximum number of localized nodes in the largest isolated
LCS island, the number of unlocalized nodes, and the esti-
mated number of anchors required to physically localize the
network. Note that the results reported for the node degree
summarize those from to . As the node degree cannot
be directly controlled, Fig. 8 presents the number of instances
each node degree appears in the simulations. Note that the
following reported results are the average of all the instances at
its corresponding node degree.
Fig. 9 reports the results regarding how many nodes are un-

localizable, how many nodes can be localized in the largest
isolated island, and how many anchors are required to physi-
cally localize the network. Generally speaking, all the curves are
monotonic from node degree 3 to 12. An exception appears at
node degree 13. The reason lies in that the number of instances
at degree 13 is very low as shown in Fig. 8, thus the reported
result cannot represent the general property of degree 13. When
the node degree reaches 10, almost all the nodes become localiz-
able, and about 75% of the nodes can be localized at the largest
island.

Fig. 9. Numbers of the nodes that are localized in the largest island and that
are unlocalized, and the number of anchors required to physically localize the
network.

Fig. 10. Number of Isolated Islands.

Fig. 10 reports the number of isolated islands identified by the
proposed algorithm versus the node degree. Generally speaking,
this is a decreasing curve because the LCSs have more chances
to transform to each other when the node degree is larger. An
exception appears when the node degree varies from 3 to 4. A
possible reason is that the degree 4 is still a low degree, but
more nodes become localizable when constructing more LCSs
compared to the degree 3. The number of islands is relatively
high and decreases fast when the node degree is less than 10. The
curve goes down slowly when it passes the point (degree) 10,
where the number of isolated islands is about 5. The exception
at node degree 13 is resulted from the low number of instances
at degree 13, as elaborated for Fig. 9.
Fig. 11 reports the iteration bounds of the network’s localiz-

ability for given node degrees under both the newly defined es-
sential localization and the traditional trilateration localization.
A maximum localization time represents the worst case among
all the instances for the given node degree in the simulations.
It is easy to observe that the proposed essential localization al-
gorithm significantly outperforms the trilateration localization
in terms of localization time. Note that the standard deviations
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Fig. 11. Iteration bound.

of the reported average essential localization time and the av-
erage trilateration localization time are about 62% and 58% of
the mean values, respectively. It is interesting to observe that the
maximum essential iteration bound in the worst case is roughly
equal to , where is the communication range. The essential
localization bound curve always peaks at the node degree 10,
which demonstrates a change in the trend in both Figs. 9 and
10, where almost all the nodes become localizable and a large
island is formed. A possible reason for the curves’ decrease after
10 is that most of the LCSs are mutually transformable and that
the nodes’ localizability becomes stable. When the node degree
is less than 5, where the number of isolated islands is relatively
large, the bound is always 1. This indicates that all the isolated
islands are constructed in 1 iteration because the node degree
is too low to satisfy the LCSs’ transformation conditions. When
the node degree reaches 12, the maximum bound is also about 1,
where the node degree is large enough to build one big island to
localize almost all the nodes (more than 96%). It is delightful to
see that the average bound for all the node degrees is less than 2,
which means that two rounds of communications are sufficient
for essentially localizing a large number of nodes.

VII. RELATED WORKS

The localization problem has been widely investigated in
wireless sensor networks for many years, and now it is still
a hot research topic. In this section, we first summarize the
theoretical results for localization. Then, major existing local-
ization schemes are reviewed under the categories of physical
positioning and relative positioning.
From graph theory’s point of view, the localization problem

asks how to assign a position to each node in the network
such that the relations among the edges can be satisfied. Ref-
erence [23] claims that the network localization problem is
solvable in two-dimensional and three-dimensional space if
and only if the network graph is globally rigid. An intuitive
description of the rigidity is that the graph cannot flex. A
globally rigid graph is unique in the isometry of -dimensional
space. Generally speaking, the test for the global rigidity of a
graph is NP-hard [24]. A stronger concept is the generic global
rigidity. A graph is said to be generic if the set containing the
coordinates of all its points is algebraically independent over
the rationals. References [25] and [26] study a necessary but

Fig. 12. Wheel graph.

not sufficient condition for the generic global rigidity: If a
graph is generically globally rigid in -dimensional space,
then is redundantly rigid and -connected. A graph is
-connected if it remains connected upon removal of any set
of vertices. A graph is redundantly rigid in -dimensional
space if the removal of any single edge results in a graph that
is also generically rigid. This condition has been proved to be
both necessary and sufficient in two-dimensional space by [27].
Asix-connected graph is proved to be generically globally rigid
in two-dimensional space by [27] as well. However, there exist
redundantly rigid and at least -connected graphs that are
not globally rigid when [27].
In general, [23] has proved that the localization problem is

NP-hard, and the result holds true even if the network is a unit-
disk graph. For example, the wheel graph shown in Fig. 12 is
globally rigid but cannot be localized in polynomial time. For-
tunately, there exist some kind of graphs that can be localized
easily, such as the -lateration graph. A -lateration
graph is a graph that has a -laterative ordering. This is
an ordering of all the vertices in the graph such that from any
vertex with ordering , there are at least edges
to the vertices earlier than in the sequence. The -lat-
eration graph is globally rigid and has a polynomial-time local-
ization solution in -dimensional space [23]. The -later-
ation graph can be localized by the geometrical multilateration
method in polynomial time in -dimensional space. In a geomet-
rical -lateration method, a node can be localized by the
geometrical localization when number of its neighbors
have been localized and the geometrical distances between the
node and those neighbors are available. References [5] and [6]
prove that all the centralized and distributed implementations of
the geometrical multilateration method are equivalent in local-
izing a -lateration graph, given the graph and the anchors.
Our time-bounded localization research focuses on the multilat-
eration localization method because it can produce solutions in
controllable polynomial time.
Most existing works propose physical localization schemes

because they employ physical anchors. A range-free positioning
method is presented in [28] based on Area-based Point-In-Tri-
angulation test (APIT) and some super anchors that have a much
larger transmission range than normal sensor nodes. Without
super anchors, a bilateration-based localization method is pro-
posed in [29] to localize sparse networks. The complexity of this
proposed method is exponential. In [30], the authors propose a
trilateration-based localization algorithm under the noisy dis-
tance measurement. Different triangulation-based localization
schemes are proposed in [8], [9], and [31], which employ the
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relative distances toward the anchors obtained from time-dif-
ference-of-arrivals. A similar idea is employed in [32] to pro-
pose a silent self-positioning algorithm for underwater sensor
networks. Another underwater localization algorithm, named
3DUL, is proposed in [33]. 3DUL employs three surface buoys
as anchors and determines the internode distances through lever-
aging the low speed of sound. Mobile localization problem has
been addressed in [34], where the actors (types of node that col-
lect and process sensor data and perform appropriate actions)
limit their location update scopes based on the Voronoi dia-
gram, and the sensors predict the movement of the actors based
on the Kalman filtering of the previously received location up-
dates. The time bound for localization has not been addressed
in the literature. The existing anchor-based works usually focus
on the density of the anchors. They cannot answer determinate
questions such as how many anchors are necessary and where
to deploy the anchors such that the network can be localized.
Without utilizing anchors, [35] proposes a self-positioning

algorithm (SPA) to build a relative coordinate system with the
time-of-arrival-based range information. Local information
is collected, and each node builds its local coordinate system
where the node itself is located at (0, 0). Then, a global coor-
dinate system is constructed by merging the local coordinate
systems at the second step. The major difference between
our proposed algorithm and SPA is the process of the local
coordinate system construction and the time-bounded global
localization. Reference [36] proposes a multidimensional
scaling (MDS) localization algorithm. MDS is centralized and
requires an initial estimation of the complete distance matrix.
For relative localization, we propose a new concept of local-
izability for time-bounded deterministic study in this paper.
Compared to existing works such as [35] and [36], our work is
novel in that it introduces the time bound into the process of
constructing local coordinate systems. We first formally define
the time-bounded essential localization problem, then analyze
its complexity, and finally present a practical solution.
So far, neither the theoretical nor the practical works has ever

addressed the problem of time-bounded localization. Moreover,
how to deploy minimum number of anchors such that the net-
work’s localizabiliy is guaranteed is still open.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper, we have explained why the traditional definition
of relative localization is inappropriate for evaluating the actual
efficiency of localization in practice. To address this problem,
we define essential localization, a novel problem to capture the
overhead of localization in a sensor network. The complexity of
the problem is studied, and an efficient distributed algorithm is
proposed to perform time-bounded essential localization, whose
performance is evaluated through simulation studies.
The concept of essential localization is proposed to com-

pute the minimum required time for localization and the ear-
liest time to start a location-based application. The results pre-
sented in this paper are based on flooding-based routing pro-
tocols. They should vary when applications employ other pro-
tocols for routing. As the flooding property maximizes the in-
formation diffusion, the essential localization time derived in
this paper should serve as the lower bound. In the future, our re-

search will focus on investigating the essential localization time
for other widely recognized routing protocols (such as shortest
path and the real-time protocol SPEED [37]). In addition, the
study on essential localization has a broad impact on social net-
work applications. Therefore, we will apply the methodologies
proposed in this research to the information diffusion problem
in social networks.
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