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Abstract—The cooperation between the primary and the sec-
ondary users has attracted a lot of attention in cognitive radio
networks. However, most existing research mainly focuses on the
single-hop relay selection for a primary transmitter-receiver pair,
which might not be able to fully explore the benefit brought by
cooperative transmissions. In this paper, we study the problem
of multi-hop relay selection by applying the network formation
game. In order to mitigate interference and reduce delay, we
propose a cooperation framework FTCO by considering the
spectrum sharing in both the time and the frequency domain.
Then we formulate the multi-hop relay selection problem as a
network formation game, in which the multi-hop relay path is
computed via performing the primary player’s strategies in the
form of link operations. We also devise a distributed dynamic
algorithm PRADA to obtain a global-path stable network. Finally,
we conduct extensive numerical experiments and our results
indicate that cooperative multi-hop relaying can significantly
benefit both the primary and the secondary network, and that the
network graph resulted from our PRADA algorithm can achieve
the global-path stability.

Index Terms—Cognitive radio networks; cooperative multi-hop
relaying; network formation game; global-path stable network.

I. INTRODUCTION

In cognitive radio networks, the mutual beneficial relation-
ship between the primary users (PUs) and the secondary users
(SUs) has been exploited to establish cooperative transmis-
sions for performance enhancement [1]–[6]. With cooperation,
a PU can increase its primary transmission rate through the
relay service provided by a SU while the SU obtains channel
access opportunities as a reward, which can simultaneously
improve the performance of both the primary and the sec-
ondary network, achieving a “win-win” situation.

In this paper, we study the problem of multi-hop relay
selection via a network formation game based on the combined
cooperation in both the time and the frequency domain in a co-
operative cognitive radio network (CCRN). Our consideration
is motivated by the following observations.
• First, existing research mainly focuses on the single-hop

relay selection, in which a primary transmitter (PT) em-
ploys relays to form one or multiple two-hop paths toward
the primary receiver (PR) [1]–[6]. Nevertheless, in some
network scenarios such as cognitive sensor networks, the
SUs have to reduce their transmission ranges in order to
conserve power and maintain a long-term lifetime. Under
such a situation, only one relay on a path may not satisfy
the requirement of the PU; thus finding a number of
necessary relays for a primary transmitter-receiver pair
becomes a key problem.

• Second, many existing cooperation frameworks are based
on the idea of time slot division [1]–[5], in which the
channel access time is divided into time slots allocated
to both the primary traffic and the secondary traffic.
However, such a model brings a waiting delay to the PUs
and the relays, since a relay has to alternately forward the
primary traffic and send its secondary traffic on the same
channel. Thus, designing an effective cooperation model
plays an important role in the performance enhancement
of cooperative networks.

• Third but not the last, most game theory-based ap-
proaches in current research [2]–[6] provide mechanisms
to determine the set of relays without pointing out the
relay path, which can not be applied to the multi-hop
relay selection.

To overcome the challenges mentioned above, we propose
a novel solution in this paper. First, we devise a cooperation
framework FTCO, in which the primary traffic and the sec-
ondary traffic are separated in the frequency domain and the
relays share the leased sub-channel in the time domain, to
mitigate interference and reduce delay for both the primary
network and the secondary network. Second, we model the
multi-hop relay selection problem as a network formation
game, in which each primary player selfishly performs its
strategies to form a multi-hop path towards its receiver to max-
imize its payoff. This process is summarized by a distributed
stochastically dynamic algorithm PRADA, which yields a
stable network graph. Finally, we validate the effectiveness of
the PRADA algorithm and the stability of the resultant network
graph via both theoretical analysis and numerical experiments.
Our multifold contributions are summarized as follows:

• Different from the traditional cooperation frameworks,
FTCO considers the cooperative transmissions in both
the time and the frequency domain, allowing relays to
forward the primary traffic and to send their secondary
traffic at the same time without interfering with the PUs.

• To our best knowledge, we are the first to apply the
network formation game to model the multi-hop relay
selection in a CCRN. In the proposed network formation
game, the player’s payoff depends on not only the co-
operation partners, but also the interconnections between
them, indicating the impact of the communication path
on the network performance.

• We propose a distributed dynamic network formation
algorithm PRADA and mathematically prove that the
network graph output by PRADA can achieve the global-
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path stability, which is equivalent to the Nash equilibrium
in the proposed network formation game.

• Extensive numerical study confirms that a PU can benefit
from a multi-hop relay path and a SU can gain an
impressive throughput in our cooperative framework. Fur-
thermore, the network formation process of PRADA can
converge to output a global-path stable network graph.

The rest of this paper is organized as follows. In Section II,
we briefly summarize the related literature. Our system model
and network formation game are introduced in Sections III and
IV, respectively. The distributed dynamic formation algorithm
PRADA together with the theoretical analysis are detailed in
Section V. After presenting our simulation results in Section
VI, we conclude this paper in Section VII.

II. RELATED WORK

In recent years, researchers have shown a great interest
in developing cooperation frameworks for the primary and
secondary users by using game theory-based approaches such
as Stackelberg game [2], [3], auction [4], coalition game [5],
[7], bargaining [6], and so on.

In [2], the cooperation is modeled as a Stackelberg game,
in which a primary user leases the spectrum to secondary
users in exchange in the form of the distributed space-time
coding. The PU attempts to maximize its performance in terms
of either data rate or probability of outage, while the SUs
compete among themselves for transmission within the leased
time-slot following a distributed power control mechanism. A
similar model is considered by Zhang et. al. [3], in which
a primary user utilizes a set of secondary users as relays to
form multiple two-hop paths for its throughput improvement,
while a secondary user can access a fraction of the channel
time for its own data transmissions. In [4], Yang et. al. design
TASC, an auction scheme for cooperative communications
where wireless nodes can trade relay services to motivate the
participation of relay nodes and source nodes in cooperative
communications while preventing any agent from rigging its
bid or ask to manipulate the market at the same time. Li et.
al. [5] exploit a transferable utility coalition game to model
the cooperation in cooperative cognitive radio networks. Its
results indicate that there is an operating point that maximizes
the sum utility over all operators while providing each player
a share to guarantee the stability of the grand coalition. Xu
et. al. [6] propose a flexible channel cooperation based on
Nash bargaining, which allows secondary users to freely use
channels for transmitting primary data to the same base station
along with their own data toward the secondary access point
for the performance maximization.

As one of the most powerful tools in game theory, the net-
work formation game, which represents the interconnections
between players in a graph format, has been used to construct
and analyze network graphs [8]–[13]. In [8], an agent-based
computational network formation model is proposed for the In-
ternet at the Autonomous System (AS) level based on realistic
provider and peering strategies with ASs acting in a myopic
and decentralized manner to optimize a cost-related fitness
function. Nama et al. [9] use a non-cooperative bilateral con-
nection game framework to study network formation of ad-hoc
networks among selfish energy-constrained wireless devices

that are interested in being connected with other devices. In
their framework, devices choose their individual strategies to
remain connected by minimizing only their direct transmission
power costs. In addition, a number of previous research [10]–
[12] presents different analytical network formation models
to simulate the interactions between nodes during the network
formation process, and to investigate the stability, connectivity,
convergence, and efficiency of the network graphs.

To our best knowledge, the most related literature is [13], in
which Saad et. al. formulate a network formation game among
the relay stations in a 802.16j network, with an objective of
setting up paths from relay stations to the base station to
output a connected directed uplink tree network rooted at the
base station. In this paper, we consider a two-tier network that
supports the coexistence of the PUs and SUs, in which each
primary transmitter has its own distinct receiver. We intend
to establish cooperative communications between the PUs and
SUs via multi-hop paths from the primary transmitters to their
corresponding receivers for performance improvement. As a
matter of fact, when both the PUs and the SUs act as players,
a network formation game can be viewed as a multi-leader
multi-follower Stackelberg game in which the PUs and SUs
are leaders and followers, respectively. This brings unique
challenges in devising the cooperation model, constructing
the network formation game, and designing the formation
algorithm, as the diversity of the primary transmission pairs
also needs to be considered. Thus the network formation game
proposed in [13] cannot be applied in this study.

III. SYSTEM MODEL

A. Network Model

We consider a multi-hop cooperative cognitive
radio network consisting of N SUs, denoted by
SU1,SU2, · · · ,SUN . Coexisting with this CRN is an
OFDMA-based primary wireless network that supports
M distinct primary transmitter-receiver pairs, denoted by
{PT1,PR1}, {PT2,PR2}, · · · , {PTM ,PRM}. Let M and N
be the sets of PU transceiver pairs and SUs, respectively.
Then we have {PTi,PRi} ∈ M, 1 ≤ i ≤ M , M = |M|, and
SUj ∈ N , 1 ≤ j ≤ N , N = |N |. The cooperation mechanism
between the primary and secondary network will be detailed
in the next subsection. The primary spectrum band contains
multiple orthogonal sub-carriers and each primary transmitter
is allocated with a subset of the sub-carriers, forming a
sub-channel, for its communications. For simplicity, we
assume that each sub-channel has C sub-carriers, where C is
the same for all sub-channels; and each sub-carrier is assigned
to at most one sub-channel, ensuring that multiple PTs can
transmit simultaneously without inter-channel interference.
Since our objective is to select relays for the primary
communication pairs, the allocation of the sub-carriers to the
PUs is out of the scope of this paper. For the same reason,
we do not consider secondary traffic, i.e., the delivery of the
data belonging to the cognitive radio network. We further
assume that each SU has two radios, with one for relaying
the primary traffic and one for simultaneously transmitting its
own secondary traffic.
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B. Cooperation Framework
We adopt a simple cooperation framework in which PTs

employ SUs to relay their data and provide channel access
opportunities to SUs as rewards. With such a cooperative
scheme, PTs can effectively transmit their data to a larger
area and SUs can obtain more channel access opportunities,
improving the performance of both the primary network and
the secondary network. Our cooperation framework involves
both the frequency domain and the temporal domain, which is
termed Frequency and Time Combined cOoperation (FTCO),
and is illustrated in Fig 1.

Fig. 1. The illustration of the FTCO framework.

In FTCO, the C sub-carriers of a sub-channel are divided
into two parts: i) the set of θC sub-carriers1 forming the
cooperative sub-channel, which is used for the cooperative
transmissions to support the primary traffic; and ii) the set of
(1− θ)C sub-carriers called the leased sub-channel, which is
allocated to the SUs as the reward according to time-based
proportional fairness. Cooperative sub-channels are used by
the PTs and SUs to transmit/relay the primary traffic only.
For each relay, the times spent for receiving and forwarding
the primary data are determined by the effective bit rates
of the links on the path. To share the leased sub-channel, a
unit access time is divided into multiple fractional portions
each of which is assigned to a relay according to proportional
fairness. The parameter “θ” indicates the tradeoff between a
PT’s bandwidth requirement and its cooperation degree. That
is, the larger the value of θ, the more bandwidth the PT
requires and the smaller reward the relays receive. Such a
cooperation framework has two nice features: on one hand,
the primary traffic and the secondary traffic are separated in
the frequency domain without inter-channel interference; on
the other hand, the relays share the leased sub-channel in the
time domain without interfering with each other.

IV. NETWORK FORMATION GAME FORMULATION

To model the relay selection process in a multi-hop coop-
erative CRN, a network formation game is adopted, which is
detailed in the following subsections.

A. Players & Network Graph
In our network formation game, the players consist of the

transmitters and the receivers of the primary communication
pairs, and the SUs, which are denoted as primary players
and secondary players, respectively (In this paper, primary

1if θC is not an integer, choose the integer that is closest to θC.

transmitter/receiver and primary player are interchangeable;
secondary user and secondary player are interchangeable.). All
players are connected according to some network relationship
summarized by a directed graph G(V,E), with V being the
set of players, i.e., V =M∪N , and E being the set of links
connecting two interacting players in the game. At the begin-
ning of the game, E = ∅ since no relay (no communication
link) has been selected for the primary transmitters.

Definition 1: (Path) A path of the i-th primary transmitter-
receiver pair Li is defined as a subset of E consisting of
a sequence of players, i.e., Li = {(vk, vk+1) ∈ E|k =
1, 2, · · · ,K − 1, v1 = PTi, vK = PRi}, where (vk, vk+1) is a
directed link from vk to vk+1 and K is the number of players
on the path.

Correspondingly, the set of players on a path Li is de-
noted by VLi

= {vk|(vk, vk+1) or (vk−1, vk) ∈ Li, k =
1, 2, · · · ,K}. Note that in this paper, we compute only one
path for each primary transmitter-receiver pair and all the paths
are node-disjoint.

B. Payoff Functions
According to our cooperation framework, a player benefits

from participating in cooperative transmissions by forming
links with others and also costs its own resources to maintain
the links. Since PUs and SUs have different concerns such
as effective bit rate and channel access time during the
cooperation, our next step is to define the payoff functions
to capture the incentives for PUs and SUs to cooperate.

Due to the limited transmit power, the effective bit rate
between a PT and its PR may not satisfy the direct communica-
tion requirements. In the worse case, a PT cannot send packets
to its PR via direct transmissions. Thus, the PT is motivated to
employ relays for performance enhancement [14]. Assume that
the bandwidth of each sub-carrier is W Hz; thus the effective
bit rate of a sub-carrier in a link (u, v) can be calculated by
Shannon’s theorem, i.e., r(u,v) = W log2(1+SNR(u,v)), where
SNR(u,v) is the Signal-to-Noise Ratio (SNR) received by v
from u. Accordingly, the effective bit rate of a sub-channel is
R(u,v) = C · r(u,v). For direct transmissions, the path of the
i-th primary pair is Li = {(PTi,PRi)}, and the corresponding
effective bit rate is,

Ri(G) = CW log2(1 + SNR(PTi,PRi)). (1)

When the primary pair {PTi,PRi} exploits cooperative
transmissions, the effective bit rate of a link (vk, vk+1) is,

R(vk,vk+1)(G) = θiCW log2(1 + SNR(vk,vk+1)), (2)

and the corresponding effective bit rate of the path Li is,

RLi(G) = min
(vk,vk+1)∈Li

{R(vk,vk+1)}. (3)

Compared with direct transmissions, multi-hop communica-
tions may incur an undesirable delay, which can be taken as the
cost of the cooperation for the PUs [15]. According to [16],
a packet service system can be modeled as a M/G/1 queue
in a data network. Thus, the delay of the direct transmission
is computed by

Di(G) =
λi

2µi(µi − λi)
+

1

µi
, (4)
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where λi is the packet arrival rate of PTi and µi = Ri(G)
Len is

the service rate with Len being the length of a packet. On
the other hand, the delay of the cooperative transmission is
obtained by (5), where µ(vk,vk+1) =

R(vk,vk+1)(G)

Len .

DLi
(G) =

∑
(vk,vk+1)∈Li

D(vk,vk+1)(G)

=
∑

(vk,vk+1)∈Li

[
λi

2µ(vk,vk+1)(µ(vk,vk+1) − λi)

+
1

µ(vk,vk+1)

]
. (5)

To guarantee that all packets from the previous-hop are
sent to the next-hop on a path, we assume that µi > λi and
µ(vk,vk+1) > λi.

Note that a primary pair intends to find a path with a
higher bit rate and a lower delay. In this regard, the payoff
of the primary pair {PTi,PRi} is defined by (6), where
RLi

(G)−Ri(G)

Ri(G) is the bit rate profit and DLi
(G)−Di(G)

Di(G) is the
delay cost.

UPi (Li, G) =

{
0, θi = 1;
RLi

(G)−Ri(G)

Ri(G) − DLi
(G)−Di(G)

Di(G) , 0 < θi < 1.
(6)

This payoff function indicates that if θi = 1, the primary
pair prefers direct transmissions without cooperating with
others; otherwise when 0 < θi < 1, the primary pair selects
SUs as relays to accomplish the cooperative transmissions.
Moreover, if UPi (Li, G) > 0, the selected path can benefit the
primary pair with a higher effective bit rate, or a smaller delay,
or both; when UPi (Li, G) < 0, the selected path degrades
the performance of the primary pair. Thus, UPi (Li, G) can be
viewed as the performance growing rate of the primary pair
{PTi,PRi}.

When considering the cooperation from the view point
of the SUs, the achievable throughput and the energy con-
sumption are two key concerns. In other words, a SU aims
at obtaining a high throughput for itself while consuming
little energy for relaying the primary traffic. In cooperative
transmissions, SUj that relays for PTi can get the following
throughput profit:

Bj(i, G) = T aj (i, G)R(j,jc)(i, G), (7)

where T aj (i, G) is the obtained channel access time, and
R(j,jc)(i, G) = (C − θiC)W log2(1 + SNR(j,jc)) is the
effective bit rate from SUj to its receiver SUjc .

Meanwhile, SUj costs a certain amount of energy for
relaying, i.e., the energy cost, which is estimated by,

Qj(i, G) = T rj (i, G)Pj , (8)

where T rj (i, G) is the transmission time for relaying the PU
traffic and Pj is SUj’s transmit power.

Accordingly, the payoff of SUj working as the i-th primary
pair’s relay can be defined by:

USj (i, G) =
Bj(i, G)

[T aj (i, G) + T rj (i, G)]Pj
. (9)

From (9), USj (i, G) can be viewed as the transmission
efficiency of a relay in terms of the number of bits per unit
energy. Note that each SUj is allowed to serve at most one
primary pair and USj (i, G) = 0 if SUj is not selected as a
relay. We say a SU is “free” if it is not a relay for any PU.

C. Cooperation Rules

In order to set up the cooperation between the primary and
secondary players, some rules are needed to regulate their
behaviors, which are presented in the following:
• Traffic Conservation

T rj′(i, G)R(vk−1,vk) = T rj (i, G)R(vk,vk+1), (10)

in which SUj′ = vk−1 and SUj = vk.That is, the traffic
received by a relay must be sent to the next hop.

• Proportional Fairness
A primary pair may cooperate with multiple relays; thus
the assignment of the channel access time should meet a
certain fairness criterion. In this game, the channel access
time obtained by each relay is proportional to its energy
consumption, i.e.,

T aj (i, G) =
Qj(i, G)∑

k∈VLi
Qk(i, G)

. (11)

D. Player Strategies

In the network formation game, the action of each player
is reflected by the operation on links. Accordingly, the action
space contains four different operations: (i) add a link; (ii)
delete a link; (iii) replace a link via (i) and (ii); and (iv) null.

Note that in our cooperative CRN the primary players have
higher priorities than the secondary players and they need to
initiate the cooperation; on the other hand, secondary players
are restricted to determine whether to accept the cooperation
request from primary players or not. In other words, the
primary players can perform their strategies in the game, and
the secondary players are only allowed to passively react to
the cooperation request without performing any strategy, i.e.,
the primary and the secondary players are the leaders and
the followers, respectively. Particularly, the relay selection is
carried out by PTs, forming paths from PTs to PRs. In this
regard, it is not necessary for PRs to play strategies.

Definition 2: (Strategy Space) The strategy space of
PTi is defined as a set of triples Si = {si(j) =
〈+(vk,SUj),+(SUj , vk+1),−(vk, vk+1)〉|SUj ∈ (N ∩ V ) \
VLi , vk, vk+1 ∈ VLi}.

That is, the strategy of PTi is a sequence of actions: add SUj
into its current path by forming two new links (vk,SUj) and
(SUj , vk+1) and deleting the old link (vk, vk+1). Let Gi,−i
be the network graph in which only PTi is allowed to play a
strategy. Accordingly, denote by Li + si(j) and Gi,−i + si(j)
the modified path and network graph after PTi plays strategy
si(j).

Definition 3: (Beneficial Strategy) A strategy si(j) ∈ Si
is a beneficial strategy for PTi if and only if UPi (Li +
si(j), Gi,−i + si(j)) > UPi (Li, Gi,−i).

Definition 4: (Strategy Preference List) For PTi, a strat-
egy preference list S̄i is the set of all its beneficial strategies
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sorted in a non-increasing order according to the correspond-
ing payoff values.

Definition 5: (Best Strategy) A strategy si(j∗) ∈ Si is the
best strategy of PTi if and only if si(j∗) is in the first-place
of the strategy preference list S̄i.

Playing a beneficial strategy can enhance the payoff of
PTi, motivating it to set up cooperative transmissions; while
selecting the best strategy can maximize its payoff. We say
PTi has “incentive” if its strategy preference list is nonempty.
In contrast, PTi has only null action if its strategy preference
list is empty.

V. DISTRIBUTED DYNAMIC NETWORK FORMATION

The objective of each player is to maximize its payoff via
strategy selection. In this section, we propose a distributed
algorithm to model the interaction among the players and to
form a network structure for the cooperative CRN.

A. Preference-Based Dynamic Formation Algorithm

At the beginning of the game, the initial network graph
G0 contains no link (E = ∅). During the distributed network
formation process, each player maximizes its payoff via a my-
opic strategy selection scheme based on its strategy preference
list without considering the future evolution of the network.
The players’ myopic behaviors are mainly resulted from the
fact that it is difficult or costly to collect the information of
the whole network to predict a long-term payoff. Therefore,
players prefer to improve their short-term payoffs.

By taking into account the myopic player behavior and the
dynamics of the network formation, we propose a distributed
formation algorithm termed “PReference-bAsed Dynamic
formAtion” (PRADA), which consists of a sequence of rounds
with each containing multiple iterations. In order to determine
a path towards PRi, PTi exploits an entity called announcer
to find out the next-hop relay. Each PTi selects the next-hop
relay according to the following steps:

1) Payoff Negotiation
The announcer of PTi announces its cooperation infor-
mation, including the positions of the PTi and PRi, the
number of sub-carriers in the leased sub-channel, the
bandwidth of a sub-carrier, and the number of relays
on the current path, to its SU neighbors. Then, each
neighboring SU calculates the payoff obtained from PTi
and feedbacks the cooperation information including its
relay time, position, and transmission power to PTi.

2) Offer Provision
After receiving the replies from all neighboring SUs,
PTi computes the payoff value for each strategy in Si
and makes the corresponding strategy preference list S̄i.
If S̄i = ∅, PTi does not have any incentive to cooperate
and it ends its turn; otherwise, it sends an offer to SUj∗ ,
which corresponds to the best strategy si(j

∗), with a
decision probability τ = 1 − ε (0 < ε < 1), and then
removes si(j

∗) from S̄i. With this removal, the best
strategy of PTi changes after each offer provision and
a SU receives the offer from PTi at most once during
each round.

3) Cooperation Agreement
We say that PTi gets into cooperation with SUj∗ if its

offer is accepted and it is out of cooperation if it is
rejected by SUj∗ .
If SUj∗ is free currently, it accepts the cooperation offer
with the decision probability τ = 1−ε; otherwise, SUj∗
compares the payoff USj∗(i, Gi,−i + si(j

∗)) obtained
from PTi with its current best payoff USj∗(i

′, Gi,−i) of-
fered by PTi′ . If USj∗(i, Gi,−i+si(j

∗)) > USj∗(i
′, Gi,−i),

SUj∗ accepts PTi’s offer with the probability τ = 1− ε
and PTi′ becomes out of cooperation; otherwise, SUj∗
accepts PTi’s offer with the probability ε; and if rejected,
PTi is out of cooperation and thus goes to the step 2.

Instead of a deterministic decision procedure, players make
a decision with some randomness in the network formation
process in which links may be added or deleted via some
exogenous stimulus or simply by error of the player with a
small “mutation” probability ε.

The turn of PTi continues until either PTi gets into co-
operation with some SU or PTi’s strategy preference list
becomes empty. After PTi ends its turn, the PT that is still
out of cooperation but has a nonempty strategy preference
list is selected. The iteration of a round terminates whenever
any one of the following two conditions holds: (i) Every PT
with incentives has got into cooperation with some relay in
its turn, which implies that each PT can increase its payoff
with a beneficial strategy or even the best strategy. (ii) The
strategy preference lists of the PTs that are out of cooperation
are empty, which indicates that these PTs cannot find out a
beneficial strategy or all their offers are rejected by the SUs.

The announcer of PTi places a critical role in identifying a
right relay. Initially, PTi is the announcer and the path contains
only the primary pair {(PTi,PRi)}. During the execution of
our algorithm, the announcer is adjusted as follows: if a new
relay is added into the path, the new relay should act as the
announcer; if a relay exits the path, the previous-hop player
of the relay should act as the announcer. If PRi is arranged
to be the announcer, PRi turns over the announcement work
to PTi, and PTi suspends its strategy selection until a relay
leaves its path; if PTi’s offer is not accepted by any SU at the
end of a round, the next-hop player of the current announcer
in the path should work as the announcer for PTi.

Let Gx be the network graph output at round x (x =
1, 2, · · · ). As the round goes on, there is a sequence of network
graphs, i.e., {G0, G1, G2, · · · , Gx, · · · }.

The PRADA algorithm is summarized in Alg. 1, in which
several variables are employed to record the states of the
players and the network graphs: MT is a set of all PTs, M̄T

is a subset of MT to track the cooperation states of the PTs,
and ρ is the threshold of the number of rounds.

Theorem 1: For each round of the PRADA algorithm (lines
5-30 in Alg. 1), the number of iterations is at most MN when
ε = 0.

Proof: When ε = 0, the strategy selection is deterministic.
In the PRADA algorithm, each iteration consists of a PT
providing the cooperation offer to a SU to which the PT has
never sent the offer before. Since a PT sends an offer to each
SU at most once and there are only N SUs in the network, a
PT can send the offer at most N times. For M PTs, it takes
at most MN times to complete the offer provision process.
Therefore, a round can terminate after at most MN iterations.
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Algorithm 1 Preference-based Dynamic Formation (PRADA)
1: Initialization: the network graph G0 = (V,E), with V =
M∪N and E = ∅; x = 0; the announcer of each primary
pair is its transmitter.

2: repeat
3: M̄T = ∅;
4: x = x+ 1;
5: while M̄T 6=MT do
6: Choose a PTi ∈ (MT \ M̄T ) with S̄i 6= ∅;
7: The announcer of PTi sends a cooperation offer to

SUj∗ with probability τ = 1− ε;
8: if PTi’s offer is sent to SUj∗ then
9: Remove si(j∗) associated with SUj∗ from S̄i;

10: end if
11: if SUj∗ is free then
12: SUj∗ accepts PTi with probability τ = 1− ε;
13: if PTi’s offer is accepted then
14: M̄T = M̄T ∪ PTi, PTi adjusts its announcer;
15: end if
16: else
17: SUj∗ has a current payoff from PTi′ ;
18: if USj∗(i, Gi,−i + si(j

∗)) > USj∗(i
′, Gi,−i) then

19: SUj∗ accepts PTi and rejects PTi′ with proba-
bility τ = 1− ε;

20: else
21: SUj∗ accepts PTi and rejects PTi′ with proba-

bility ε;
22: end if
23: if PTi’s offer is accepted then
24: M̄T = M̄T ∪ PTi, M̄T = M̄T \ PTi′ , PTi and

PTi′ adjust their announcers;
25: end if
26: end if
27: if PTi ∈ (MT \ M̄T ) and S̄i = ∅ then
28: M̄T = M̄T ∪ PTi, PTi adjusts its announcer;
29: end if
30: end while
31: until Gx = Gx−1 or x > ρ

Based on the PRADA algorithm, it can be shown that our
network formation game has the following properties.

Property 1: A network graph G of the network formation
game proposed in Section IV is a directed graph consisting of
at most M player-disjoint paths.

Property 1 is the direct result of two assumptions in our
model: the first one states that each primary transmitter PTi
has its distinct receiver PRi and the second one indicates that
a relay is allowed to serve at most one of the M paths.

Property 2: Given a network graph G of the network
formation game, the total bandwidth utility of all relays can
achieve its maximum value if all relays’ receivers are fixed.

For property 2, since the effective bit rate of each relay
is a constant in a given network graph G and the channel
access time is allocated according to proportional fairness, the
total bandwidth utility of all relays can reach its maximum
according to the derivation in [17], [18].

Property 3: The process of the PRADA algorithm is an

irreducible and aperiodic Markov chain.
In the PRADA algorithm, each player selects its myopic

best strategy with a decision probability τ = 1 − ε, where ε
is a mutation probability. According to [10], [11], [19], for
any 0 < ε < 1, the process of PRADA defines an irreducible
and aperiodic Markov chain, and thus has a unique invariant
stationary distribution. That is, the network Gx, the output
of round x, is a sate of a Markov chain and x = 1, 2, · · ·
(i.e., ρ → ∞) is a discrete time period. As ε → 0, the
stationary distribution converges to a unique limiting stationary
distribution. Moreover, by utilizing the PRADA algorithm, the
network formation process can converge to a stable network
graph, which is analyzed in the next subsection.

B. Path Stable Equilibrium
The PRADA algorithm allows all players to perform a local

strategy selection based on their strategy preference lists. In
order to examine the stability of the network graph generated
by PRADA, we first present two stable equilibrium concepts:
global-path stability and local-path stability.

Definition 6: (Global-Path Stable) A directed network
graph G is global-path stable if for every primary pair
{PTi,PRi} ∈ M, UPi (Li, Gi,−i) ≥ UPi (Li + si(j), Gi,−i +
si(j)), for ∀ si(j) ∈ S̄i.

Definition 7: (Local-Path Stable) A directed network
graph G is local-path stable if for any primary pair
{PTi,PRi} ∈ M, the following condition holds:

UPi (Li, G) < UPi (L′i, G
′)

⇒ ∃ j ∈ 4V,Usj (i, G) > Usj (i′, G′)

or Usj (i′, G) > Usj (i, G′),

where PTi′ ∈MT (i′ 6= i), 4V = (VLi ∪ VL′i) \ (VLi ∩ VL′i),
Li 6= L′i, and G 6= G′.

In a global-path stable network, no PT has an incentive
to play the strategies that can help to obtain a better payoff.
However, in a local-path stable network, a PT is allowed to
change its path for a higher payoff only if there is no decrease
in the payoffs of the relays that are newly added or deleted.
In other words, the global-path stability takes into account all
PTs and all relays from the view point of the whole network,
while the local-path stability only focuses on a path and some
relays within a certain local area.

Theorem 2: The network graph Gx output by the x-th
round of the algorithm PRADA is local-path stable.

Proof: We consider the following two cases.
(1) Case 1: ε = 0. If there is instability with respect to the

network graph Gx, at least two paths are involved. Without
loss of generality, let PTi and PTj be the transmitters of the
i-th path and the j-th path, respectively. SUj is a relay of the j-
th path with the following assumptions: (i) PTi can get a better
payoff by adding SUj ; and (ii) SUj can get a better payoff by
accepting the offer of PTi. Before the end of the round, if PTi
does not send an offer to SUj , the payoff of cooperating with
SUj is lower than PTi’s current strategy, which contradicts to
the assumption (i). Within the round, if PTi has sent an offer
to SUj but was rejected by SUj because SUj is in favor of
another PT that can provide a higher payoff. As the iteration
goes, SUj will obtain the highest payoff at the end of the
round. That is, the payoff provided by PTj is higher than that
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UPi (Li, G) =


R(vk,vk+1)(G)

Ri(G) −
∑

(vk,vk+1)∈Li
D(vk,vk+1)(G)

Di(G) , if R(vk,vk+1)(G) = RLi
(G);

RLi
(G)

Ri(G) −
∑

(vk,vk+1)∈Li
D(vk,vk+1)(G)

Di(G) , otherwise.
(12)

provided by PTi. This result contradicts to the assumption (ii).
Therefore, Gx is local-path stable.

(2) Case 2: ε > 0. As analyzed by Theorem 1, the finite
number of iterations at each round is MN , i.e., all possible
networks output at the end of the iterations during each round
constitute a sequence of at most MN networks. Since each
player can obtain a strictly better payoff when performing a
strategy with a probability τ = 1− ε, the probability that the
dynamic process does not reach a local-path stable network
after MN iterations is not more than ε. Then, Gx is not
a local-path stable network after α(MN) iterations with a
probability at most εα, where α is a positive integer. As α
becomes larger, εα → 0. Thus, the process converges to a
local-path stable network Gx with probability 1.

Therefore we can conclude that Gx is a local-path stable
network.

Property 4: In the proposed network formation game, the
global-path stability is equivalent to the Nash equilibrium.

When a network graph G is global-path stable, no PT can
improve its payoff by unilaterally changing its path based on
the strategy preference list, which is a Nash equilibrium in the
network formation game.

Theorem 3: The PRADA algorithm can converge to a
global-path stable network as ε→ 0 and ρ→∞.

Proof: According to Properties 3 and 4, as ε → 0 and
ρ→∞, the convergence toward a global-path stable network
for the PRADA algorithm is equivalent to the existence of
at least one global-path stable network G in the proposed
network formation game (i.e., a Nash equilibrium exists in
the relay selection game among the PTs).

Given M primary pairs and N SUs, the beneficial strategy
space for all PTs S̄ =

⋃M
i=1 S̄i, 0 < |S̄| ≤ MN !, is a

nonempty and compact space (if |S̄| = 0, G is always a global-
path stable network graph). To prove the existence of at least
one network G with Nash equilibrium, it is sufficient to prove
that the payoff function of PUs, UPi (·), is continuous and
concave in the compact space S̄ [20], [21]. For the effective bit
rate R(vk,vk+1)(G) of each link (vk, vk+1) added by a strategy
in S̄, the payoff function (6) can be rewritten by (12).

From (12), UPi (·) is obviously continuous in S̄. Then, we
take the second order derivative with respect to R(vk,vk+1)(G)
to prove its concavity.

∂2UP
i (Li,G)

∂2R(vk,vk+1)(G)
= −

Len
[
R3

(vk,vk+1)(G)+(R(vk,vk+1)(G)−λiLen)
3
]

Di(G)R3
(vk,vk+1)(G)

[
R(vk,vk+1)(G)−λiLen

]3 .
Since µ(vk,vk+1) =

R(vk,vk+1)(G)

Len > λi, we have
∂2UP

i (Li,G)
∂2R(vk,vk+1)(G) < 0, i.e., UPi (·) is concave in S̄ . Therefore,
a Nash equilibrium exists in the proposed network formation
game. It follows that the PRADA algorithm can converge to
a global-path stable network as ε→ 0 and ρ→∞.

The theoretical analysis presented above shows that the
network formation game proposed in the PRADA algorithm

can achieve the global-path stability. However, to consider a
tradeoff between the stability and the time complexity in real-
world applications, we let ρ be a finite integer to set up a
termination condition for the PRADA algorithm (line 31 in
Alg. 1): if Gx = Gx−1, Gx is global-path stable and is the
final output; otherwise, if the number of rounds x exceeds
ρ, the process of the dynamic network formation stops and
outputs the network graph Gx as the final result.

VI. NUMERICAL EXPERIMENT

A. Methodology

In our numerical experiment, we simulate an IEEE 802.16
OFDMA network located in an area of 5000× 5000 m2. The
primary spectrum contains 256 sub-carriers centered at the 5
GHz band and 200 of them are used for data traffic with each
having a bandwidth of 312.5 KHz [22], [23]. We uniformly
and randomly deploy 10 primary pairs within the network.
Each primary transmitter is assigned a sub-channel containing
20 sub-carriers.

To check the impact of the number of relays, we vary
the number of SUs from 10 to 50. We also set the trans-
mit power of the users to different levels ranging from
10 mW to 100 mW, to examine the impact of the trans-
mission range. The mutation probability ε is selected from
{0.1, 0.01, 0.001, 0.0001, 0} to analyze its impact on the per-
formance of the PRADA algorithm. Note that the mutation
probability should be sufficiently small because users typically
target a better payoff. The values of other parameters are listed
in TABLE I.

TABLE I
NUMERICAL EXPERIMENT PARAMETERS

Parameter Value
Noise 10−10 mW
Shadowing Factor 4
Bandwidth Requirement (θi) [0.5, 1]
Packet Size (Len) 1024 bits
Packet Arrival Rate (λi) (0, 1)
Threshold of the Number of Rounds (ρ) 20

We investigate the performance of the PRADA algorithm
based on the following performance metrics:
• The per-user payoff, profit, and cost.
• The average number of relays on each path.
• The relay utilization, which is defined to be the ratio

of the total number of relays to the total number of
SUs, indicating the percentage of the SUs involved in
cooperative transmissions.

• The number of rounds and the corresponding statistics
such as the maximum and minimum number of rounds
in PRADA, reflecting the stability of the resulted net-
work graphs and the convergence speed of the PRADA
algorithm.
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• The total number of iterations in all rounds, which reflects
the time complexity of the PRADA algorithm.

B. Player Performance
We first report the numerical results from the view point of

the users’ performance with ε = 0.1. For statistical confidence,
the averaged results of 100 runs are reported.
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Fig. 2. Impact of User Density.

Fig. 2(a) reports the average per-PU payoff and average
number of relays each primary pair selects when the number of
SUs varies. In this study, the transmit powers of the 10 primary
transmitters and the SUs are fixed to 100 mW. We observe
that as more and more SUs join the network, more potential
relays can be employed by the PUs to improve performance.
In particular, the blue curve shows that the average number of
relays taken by a primary transmitter becomes larger when the
number of SUs increases, indicating that more SUs get into
cooperation with the PUs. Similarly, as shown in Fig. 2(b)
which reports the average per-PU payoff and average relay
utilization when in total 50 SUs exist. We notice that more SUs
can obtain opportunities for cooperative transmissions when
the number of PUs goes up, increasing the corresponding relay
utilization (see the blue curve).

Fig. 3 presents the impact of the transmit power on coopera-
tive transmissions for a scenario that contains 10 primary pairs
and 50 SUs. As defined in (6), the PU’s profit is the bit rate
growth rate, its cost is the corresponding delay growth rate,
and its payoff is equal to the profit minus the cost. For a SU
(or a relay), the profit is the achievable throughput, the cost
is the energy consumption for relaying, and the corresponding
payoff is defined to be the ratio of the profit to the cost (see
(9)). The impact of the transmit power can be demonstrated
from the following two aspects.

On one hand, a larger transmit power can enlarge the
transmission range, providing more cooperation opportunities
for the PUs and the SUs. From Fig. 3(a), it can be observed
that the average number of relays is only 2.4 when the power
is set to 10 mW while this value increases to 4.5 when the
transmit power is 60 mW. Thus by utilizing more SUs as
relays, both the PUs and the SUs can obtain better payoff.

On the other hand, if no more relay can be invited to
participate in the cooperative transmissions, increasing the
transmit power can reduce the users’ payoff. For example,
in Fig. 3, the average number of relays on a path remains 4.5
when the power ranges from 60 to 120 mW. By enhancing
the transmit power, a primary pair can directly communicate
with a higher bit rate and a shorter delay, decreasing the
payoff from the relay service if no new relay is added. In
particular, without adding any new relay, Fig. 3(b) shows

that the PU profit gradually declines while the corresponding
cost gradually increases as the transmit power becomes larger,
leading to a reduction in the PU’s payoff. In addition, from the
view point of the SU, when the transmit power goes up, the
growth rate of the cost is higher than that of the profit due to
the corresponding mathematical properties (see (7) and (8)),
resulting in a decrease in the payoff as shown in Fig. 3(c).

C. Algorithm Performance

In this subsection, we analyze the performance of the
PRADA algorithm by examining the impact from the number
of SUs and the value of the mutation probability ε. The results
are the average of 100 runs. There are in total 10 primary pairs
and the transmit power is fixed to 100 mW.

The impact of the number of SUs on the PRADA algorithm
is reported in Fig. 4(a), where ε = 0.1. We particularly report
the maximum and the minimum number of rounds, which
indicate the worst case and the best case of the PRADA algo-
rithm, respectively. Although the number of rounds (including
the maximum number, the average number, and the minimum
number) gradually goes up as the number of SUs becomes
larger, it is smaller than the threshold ρ = 20 in our study.
For example, when there are 50 SUs, the maximum number of
rounds is 18, which is smaller than ρ = 20. This confirms that
the global-path stability does exist in our proposed network
formation game, as analyzed in Theorem 3.

Fig. 4(b) presents the convergence speed of the PRADA
algorithm when there are 50 SUs in the network and ε
varies. As illustrated by Property 3, the stochastically dynamic
formation process can converge to a finite sate when ε → 0.
Moreover, a smaller ε can accelerate the convergence, since the
lower mutation probability can reduce the randomness degree
in the strategy selection and generate a stable network with
a higher probability. From Fig. 4(b), it can be seen that the
PRADA algorithm converges to a global-path stable network
graph via fewer and fewer rounds as ε decreases from 0.1 to
0. In particular, the PRADA algorithm needs only 9 rounds to
converge when ε = 0.0001 and ε = 0.

Fig. 4(c) demonstrates the time complexity of the algorithm
in terms of the total number of iterations of all rounds. As
ε goes down, the number of total iterations is reduced due
to a higher convergence speed, which is consistent with the
analysis in Fig. 4(b). On the other hand, when ε = 0, the
maximum number of iterations within a round for a network
scenario of 50 secondary users is about 64, which is in
accordance with the conclusion of Theorem 1 that a round
has at most MN iterations when ε = 0.

VII. CONCLUSION

In cooperative cognitive radio networks, the cooperation
between the PU and the SU plays an important role in the
performance improvement. In this paper, we apply a novel
network formation game to form a multi-hop path between
the primary transmitter and its receiver by employing the SUs
as relays. We first construct a cooperation framework FTCO,
in which a relay can simultaneously forward the primary traffic
in the cooperative sub-channel and send the secondary traffic
in the leased sub-channel without any interference. Then, we
utilize the network formation game to model the multi-hop
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Fig. 4. Stability and Convergence.

relay selection by taking into account the effective bit rate
and the delay of the primary transmissions, and the achievable
throughput and energy consumption of the relays. To find
out a stable network, we design a distributed stochastically
dynamic algorithm PRADA, which is theoretically proved that
the output graph of PRADA is global-path stable. Numerical
results demonstrate that both the PU and the SU can obtain
significant payoffs in multi-hop relaying cooperation and that
the proposed algorithm PRADA can effectively converge to a
global-path stable network graph.
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