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Abstract—In this paper, we consider the problem of coop-
erative spectrum sensing scheduling (C3S) in a cognitive radio
network when there exist multiple primary channels. Deviated
from the existing research our work focuses on a scenario in
which each secondary user has the freedom to decide whether
or not to participate in cooperative spectrum sensing; if not,
the SU becomes a free rider who can eavesdrop the decision
about the channel status made by others. Such a mechanism
can conserve the energy for spectrum sensing at a risk of
scarifying the spectrum sensing performance. To overcome this
problem, we address the following two questions: “which action
(contributing to spectrum sensing or not) to take?” and “which
channel to sense?” To answer the first question, we model our
framework as an evolutionary game in which each SU makes its
decision based on its utility history, and takes an action more
frequently if it brings a relatively higher utility. We also develop
an entropy based coalition formation algorithm to answer the
second question, where each SU always chooses the coalition
(channel) that brings the most information regarding the status
of the corresponding channel. All the SUs selecting the same
channel to sense form a coalition. Our simulation study indicates
that the proposed scheme can guarantee the detection probability
at a low false alarm rate.

Index Terms—Cognitive radio networks; cooperative spectrum
sensing; free rider; evolutionary game; coalition formation.

I. INTRODUCTION

Spectrum sensing has become an essential function in
cognitive radio networks for secondary users (SUs) to identify
the temporarily unused/under-utilized licensed spectrum bands
and to protect the transmissions of the primary users (PUs).
Due to the uncertainty factors resulted from the channel ran-
domness such as shadowing and fading, the detection perfor-
mance of spectrum sensing may be significantly compromised.
Fortunately, the uncertainty problems can be mitigated by
allowing the spatially dispersed secondary users to cooperate
and collaboratively make a decision regarding the status of
the licensed bands [1]. This procedure is termed cooperative
spectrum sensing, which has recently been actively studied in
[2], [3], [4], [5], [6] due to its attractive performance.

Existing literature mainly focuses on a typical scenario
where all the secondary users contribute to spectrum sensing.
However in reality, it might be not necessary for each sec-
ondary user to perform spectrum sensing at every time slot as
long as the sensing performance meets certain requirements.
Spectrum sensing consumes a certain amount of energy that

may alternatively be diverted to data transmissions. Moreover,
secondary users in emerging mobile and ad hoc applications
may tend to behave selfishly and take advantage of others to
conserve energy for their own data transmissions. Therefore,
it is of great importance to study the dynamic behaviors of
selfish users in cooperative spectrum sensing.

We propose a novel cooperative framework, in which sec-
ondary users can decide whether to participate in spectrum
sensing or do nothing to save their own energy. This frame-
work is modeled as an evolutionary game [7], [8], which
provides an excellent means to address the strategy uncertainty
that a user/player may face when exploring different actions.
For those SUs that do nothing, we take them as free riders that
can eavesdrop the final decisions about the status of the prima-
ry users. By making different choices, SUs can get different
utilities determined by their achieved revenue/throughput and
energy consumption. Each SU selects its action based on its
utility history, and a rational user should choose a strategy
more frequently if that strategy brings a higher utility.

Since there exist multiple primary channels, each contribut-
ing secondary user needs to determine which channel to sense.
To answer this question, we propose an “entropy” based
coalition formation algorithm, where a SU chooses to join the
coalition that brings the most information about the channel
status distribution. As a result, all the SUs sensing the same
channel form a coalition to collaboratively make the final
decision regarding the status of the primary channel. Since
entropy is a measure of the uncertainty of the channel status,
each contributing secondary user joins the coalition that results
in the largest entropy reduction. This algorithm ensures that the
contributing SUs autonomously collaborate and self-organize
into disjoint coalitions; and spectrum sensing of each channel
is performed within the corresponding coalition independently.

We assess the performance of the proposed scheme in terms
of detection probability and false alarm probability for each
channel via simulation study. Our results demonstrate the
effectiveness of the proposed scheme in detecting the presence
of primary users, while maintaining a nice property of low
false alarm probability.

The rest of the paper is organized as follows: Section II
presents our system model, and Section III details the proposed
C3S scheme. Our simulation results are reported in Section IV.
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We summarize our work and conclude the paper in Section V.

II. SYSTEM MODEL

We consider a cognitive radio network with M primary
channels and N SUs, denoted byM = {1, 2, ...,M} and N =
{n1, n2, ..., nN}, respectively. We assume that the system is
time-slotted. At each time slot, M primary channels are sensed
synchronously. In this paper, we design an evolutionary game
to help each SU decide whether to participate in spectrum
sensing or not, and partition all the contributing SUs into
M coalitions, with each sensing one channel. The decision
is made by the coalition head based on majority vote, and is
broadcast to all members in the same coalition.

The problem of spectrum sensing can be formulated as a
binary hypothesis testing [2]:

x(t) =

{
n(t), H0

hs(t) + n(t), H1,
(1)

where x(t) is the signal received by the secondary user, s(t)
is the primary users’ transmitted signal, n(t) is the additive
white Gaussian noise (AWGN), and h is the amplitude gain
of the channel. Here H0 and H1 denote the hypothesis of the
absence and presence, respectively, of the primary user in the
considered channel. According to [9], the received signal x(t)
will be transformed into a normalized output Y by energy
detector. Then Y is compared to a detection threshold θ to
decide whether the PU is present.

In a Rayleigh fading environment, the detection probability
and false alarm probability of SU i detecting the status of
primary user/channel j are, respectively, given by Pd,i,j and
Pf,i,j as follows [2]:

Pd,i,j = P{Yi,j > θj |H1}

= e−
θj
2

m−2∑
n=0

1

n!
(
θj
2

)n + (
1 + γi,j
γi,j

)m−1

×[e
−

θj
2(1+γi,j) − e−

θj
2

m−2∑
n=0

1

n!
(

θjγi,j
2(1 + γi,j)

)n](2)

Pf,i,j = P{Yi,j > θj |H0} =
Γ(m,

θj
2 )

Γ(m)
(3)

where Yi,j is the normalized output of SU i sensing the status
of primary user j, θj is the detection threshold for primary
user j, m is the time bandwidth product, γi,j denotes the
average SNR of the received signal from the PU to SU, which
is defined as γi,j =

Pjhj,i
σ2 , with Pj being the transmit power of

PU j, σ2 being the Gaussian noise variance, and hj,i = κ
dνj,i

being the path loss between PU j and SU i; here κ is the
path loss constant, ν is the path loss exponent, and dj,i is
the distance between PU j and SU i. Γ(., .) is the incomplete
gamma function and Γ(.) is the gamma function.

III. UTILITY-BASED COOPERATIVE SPECTRUM SENSING
SCHEDULING

There are two major stages in our cooperative spectrum
sensing scheduling scheme. First, each SU decides whether to

be a contributor or a free rider based on their utility history.
Second, each contributor makes a decision on which channel
to sense, i.e., which coalition to join.

A. Which Action to Take?

In our model, each secondary user first makes its own
decision about whether to contribute to sense or to do nothing
as a free rider at each time slot.

We model this problem as an evolutionary game, which
contains two kinds of players: the contributors (denoted by
C) that participate in spectrum sensing, and the free riders
(denoted by F) that only overhear the spectrum sensing
decisions by others. Then the proposed cooperative sensing
problem can be modeled by a game (N , U), with N being
the set of players (the SUs) and U being the utility function
or value of each player. Apparently, C

⋃
F = N .

The utility function for a contributor C (C ∈ C) is given by

U(C) = R(C)− E(C) (4)

where R(C) is the revenue received by C, and E(C) is the
cost in terms of energy consumed for spectrum sensing per
time slot. Similarly, the utility function for a free rider F (F ∈
F) is defined as

U(F ) = E(F )−H(F ) (5)

where E(F ) is the return in terms of saved energy for not
participating in spectrum sensing and H(F ) is the punishment
for not contributing. The values of R(C) and H(F ) are
related to the spectrum sensing performance. We will introduce
specific utility equations in the next subsection.

Assume that all the secondary users are rational and selfish,
and they are all interested in maximizing their own utilities.
To decide which action to take, the SUs perform the following
update algorithm:

1) Initially, each SU (each player) has two choices (C-
contributor, or F-free rider), and selects each choice with
a probability of 50%.

2) At each time slot t:
• each player ni selects the action e ∈ {C,F} with

probability pni(e, t);
• each player computes the utility Uni(e, t) for the

selection of action e at time slot t.
3) Each user ni approximates the average utility for the

action e within the past T time slots (including the slot
t), which can be expressed as Uni(e); each user ni also
approximates the average utility of the mixed actions (all
the actions) Uni in the past T slots. Note that if there
are less than T − 1 slots in the past, all slots need to be
considered.

4) The probability of user ni selecting the action e ∈
{C,F} for the next time slot can be computed by:

pni(e, (t+ 1)) = pni(e, t) + ηni [Uni(e)− Uni ]pni(e, t)
(6)

with ηni being the step size of adjustment determined
by ni.
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If strategy e ∈ {C,F} results in a higher utility compared
to the average utility, the probability of e being adopted in the
next slot should grow. And the growth rate is expressed by:

ṗe =
p(e, t+ 1)− p(e, t)

p(e, t)
= η[U(e)− U ]

Apparently, the growth rate is proportional to the difference
between strategy e’s current utility and the current average
utility achieved by the mixed strategies selected in the past T
slots.

B. Which Channel to Sense?

In this subsection, we answer the question “which channel
to sense” by developing an “entropy” based coalition forma-
tion algorithm. The basic idea lies in that each contributor
selects to join a coalition that brings the most information
about the corresponding channel’s status distribution.

Entropy is a measure of the uncertainty associated with a
random value. One important feature about entropy is that if
the value of a random variable is highly predictable, its entropy
should be low. The formal definition of entropy for a discrete
random variable is as follows:

For a discrete random variable X with possible values
x1, ..., xn and probability mass function p(X), the entropy can
be explicitly written as [10]:

H(X) =

n∑
i=1

p(xi) logb
1

p(xi)
= −

n∑
i=1

p(xi) logb p(xi) (7)

The common values of b are 2, Euler’s number e, and 10. In
this paper, we take b=2.

In this paper, the random values are the statuses of each
channel, denoted by H1 and H0, respectively. We denote
this discrete random variable by Xi for channel i, whose
possible values are drawn from {xi1,xi2}, where xi1=1 and
xi2 = 0 indicate that channel i is busy and idle, respectively.
We aim to predict the value of Xi. To accurately predict
the channel status distribution, we calculate two probabilities
pi1 = p(xi1 = 1|H1) and pi2 = p(xi2 = 0|H0). Apparently, the
higher the pi1 and pi2, the more accurate our estimation is. Thus
we borrow the entropy concept here. The goal of our method
is to reduce the entropy for each channel as much as possible
when deciding which channel to sense for each player.

All the contributors in C need to be dispersed into the
M channels. The secondary users contributing to cooperative
sensing for the channel i form a coalition, denoted by Sic.
Since each secondary user can only sense one channel at each
time slot, the collection of the coalitions satisfies the following
conditions:
• ∀i, j ∈ {1, ...,M}, Sic ∩ Sjc = ∅
• S1

c ∪ S2
c ∪ ... ∪ SMc = C

The collection of the coalitions is called a partition of C.
First, we derive the values of pi1 and pi2. Since we employ

majority vote as our fusion rule, we have

pi1 = p(xi1 = 1|H1)

= Pr (more than half nodes in Sic report H1|H1)

Equivalently, we define

pi1 = p(xi1 = 1|H1)

=

|Sic|∑
k=d 1+|Sic|

2 e

Pr (k SUs in Sic report H1|H1)

When there are k SUs from Sic that detect the presence of a
PU and report H1, we say the k SUs form Skd . With different
k members in Skd , we have K =

(|Sic|
k

)
different Skd , which is

denoted by Skd,j , with {j = 1, 2...,K}. Formally,

Pr (k SUs in Sic report H1|H1)=
K∑
w=1

∏
∀m,Sm∈Skd,w

∀n,Sn∈Sic&Sn /∈S
k
d,w

Pd,Sm,i(1− Pd,Sn,i) (8)

Thus

pi1 = p(xi1 = 1|H1) =

|Sic|∑
k=d 1+|Sic|

2 e

K∑
w=1


∏

∀m,Sm∈Skd,w
∀n,Sn∈Sic&Sn /∈S

k
d,w

Pd,Sm,i(1− Pd,Sn,i)


(9)

where Pd,Sm,i and Pd,Sn,i denote the detection probabilities of
the coalition member Sm and Sn for channel i, whose values
can be determined by (2).

Next we derive the probability that the channel i is idle. Let
P iF denote the probability of the false alarm rate for channel
i. We have

pi2 = p(xi2 = 0|H0) = 1− P iF
= 1− Pr (more than half nodes in Sic raise false alarm)

Similarly,

P iF =

|Sic|∑
k=d 1+|Sic|

2 e

Pr (k SUs in Sic raise false alarm) (10)

For simplicity, we assume that the local false alarm proba-
bilities computed by the SUs within the coalition for channel
i are the same, which is denoted by Pf,i. Therefore, after
coalition fusion the false alarm probability for channel i can
be expressed as:

P iF =

|Sic|∑
k=d 1+|Sic|

2 e

(Pf,i)
k(1− Pf,i)|S

i
c|−k (11)

Consequently,

pi2 = p(xi2 = 0|H0) = 1− P iF

= 1−
|Sic|∑

k=d 1+|Sic|
2 e

(Pf,i)
k(1− Pf,i)|S

i
c|−k (12)
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Finally, we derive the entropy for our prediction about the
channel status distribution as follows:

H(Xi) =

2∑
z=1

piz logb
1

piz
= −

2∑
z=1

piz logb p
i
z (13)

A new contributor should always choose the channel whose
entropy can be reduced the most because of its participation.
Let H(Xi) be the entropy of channel i with its current
coalition members. If a new contributor nV joins, the new
entropy H(Xi, nV ) can be obtained by (13). Formally, the
entropy based coalition selection algorithm can be elaborated
as follows:

Step 1) Compute the entropy difference ∆H(nV ) =
H(Xi)−H(Xi, nV ) for the set M of candidate channels.

Step 2) Select channel î such that

î = arg max
i∈M

(H(Xi)−H(Xi, nV )).

After the contributor nV joins the right coalition, it receives
its revenue R(nV ). However, it also consumes a certain
amount of energy for spectrum sensing. Hence we adopt the
following utility function for contributor nV :

U(nV ) = R(nV )− E(nV ) = µ∆H(nV )− ωξ (14)

where ∆H(nV ) is the entropy reduction, µ is a predetermined
parameter defining the value of the revenue, ξ is the energy
consumption for spectrum sensing per time slot, and ω is
used to transfer per unit energy consumption into equivalent
expenditure.

For free riders, we assume that the utilities for all the free
riders are the same, which are defined as follows:

U(F ) = ωξ − λmin{1,−logS(Hmax)} (15)

where S(Hmax) is a measurement of the degree of the
satisfaction with the detection performance, which can be
modeled as a sigmoid function of the maximum entropy. In our
consideration, we take the largest entropy of the M channels
Hmax as the measurement of the detection performance. In our
consideration, the range of S(Hmax) is between [0,1]. Here
λ is a predetermined parameter defining the harshness of the
penalty. We can see that when the detection performance is
highly satisfied, the value of S(Hmax) is close to 1; thus
the penalty is close to 0. On the other hand, the value of
the penalty is high to encourage the SUs to participate in
spectrum sensing. Similar to (15), ξ is the energy saved from
spectrum sensing, and ω is used to transfer per unit energy
into equivalent revenue.

The sigmoid function for the satisfaction degree of the
detection performance is calculated by:

S(Hmax) =
1

1 + e−a(H̃−Hmax)
(16)

where H̃ is the predefined requirement for the entropy, and a
decides the steepness of the satisfactory curve.

We summarize our proposed algorithm in Algorithm I.

Algorithm I: Cooperative Spectrum Sensing Scheduling

1.Initialization:
t=1
� ∀ni ∈ N selects a proper step size ηni ;
� ∀ni ∈ N , e ∈ {C,F}, pni (e, t) = 50%.

2. ∀ni ∈ N selects an action e with probability pni (e, t).
For each contributor Si ∈ C
� Calculates the entropy for each channel j;
� Selects channel ĵ that brings in the largest entropy reduction;
� Receives the utility determined by (14).

3. After each contributor joins a coalition, each free rider
� Gets the largest entropy of the M channels Hmax;
� Receives the utility determined by (15).

4. Each user updates the probability of each action for the next time slot
by (6)

5. t=t+1, go to Step 2

IV. SIMULATION EVALUATION

A. Simulation Setup

In our simulation study, we consider a network that consists
of two PUs deployed in a 3km× 3km square area with SUs
surrounding the PUs. We set the parameters following the
simulation setup in [11], which are listed in Table I.

TABLE I: System Parameters

Parameter Semantic Meaning Value

m time bandwidth product 5
ν path loss exponent 3
κ path loss constant 1
ξ energy consumption for spectrum sensing per slot 1
ω equivalent revenue per unit energy 10
λ the parameter to determine the value of penalty 10
µ the parameter to determine the value of revenue 10
η adjustment step size 0.06
H̃ entropy threshold 0.3
σ2 Gaussian noise variance −90dBm
PPU PU transmit power 100mW

Since all the information needed to make a decision for each
SU is its utility history, our algorithm is pure localized and
distributed; thus it scales well to large networks. Therefore
there is no need to simulate a network that contains many
PUs/channels. Note that the results reported in this section are
averaged over 20 runs.

B. Simulation Results

Since our algorithm allows some of the SUs to be free
riders, apparently, the energy for spectrum sensing can be
conserved. However, we also need to guarantee the detection
performance for each channel. Figures 1a and 1b illustrate the
detection probability and false alarm probability for channel 1,
respectively. Similarly, the detection performance for channel
2 is shown in Figures 2a and 2b.

As depicted in Figure 1a and Figure 2a, our algorithm
achieves high detection probabilities for both channels with
different network scales. We also observe that a larger network
results in a better detection probability. This improvement
mainly comes from the fact that the increase in the network

168



5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of iterations

D
et

ec
tio

n 
pr

ob
ab

ili
ty N=5

N=7
N=10

(a) Detection probability

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

Number of iterations

Fa
ls

e 
al

ar
m

 p
ro

ba
bi

lit
y

N=5
N=7
N=10

(b) False alarm probability

Fig. 1: Detection performance for channel 1.
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Fig. 2: Detection performance for channel 2.

size implies more information could be used to estimate the
channel status. Another nice feature of our algorithm is that
the false alarm probabilities for both channels are effectively
restrained. From Figures 1b and 2b, we can see that the false
alarm probabilities are always below 0.025 for both channels.

V. CONCLUSION

In this paper, we propose a novel idea of cooperative
spectrum sensing scheduling when there exist M primary
channels and N secondary users. Different from existing
research focusing on cooperative sensing, the SUs in our
consideration have the freedom to choose whether or not to
contribute to spectrum sensing. Such a mechanism can help to
reduce the overall energy consumption for spectrum sensing.
We also introduce the concept of entropy to estimate the
channel status distribution. The SUs make decisions about
which channel to sense based on the entropy of each channel,
and each contributor always selects to sense the channel that
brings the most information of the status distribution. This
method effectively reduces the uncertainty of the channel sta-
tus. According to the extensive simulation study, our scheme is
proved to be effective and flexible. It achieves a high detection
probability and a low false alarm probability.

In our future research we intend to jointly consider the two
problems of which action to take and which channel to sense
as a secondary user may want to decide which action to take
based on the channel it needs to sense.
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