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Abstract—The problem of channel quality prediction in cog-
nitive radio networks is investigated in this paper. First, the
spectrum sensing process is modeled as a Non-Stationary Hidden
Markov Model (NSHMM), which captures the fact that the chan-
nel state transition probability is a function of the time interval
the primary user has stayed in the current state. Then the model
parameters, which carry the information about the expected
duration of the channel states and the spectrum sensing accuracy
(detection accuracy and false alarm probability) of the SU, are
estimated via Bayesian inference with Gibbs sampling. Finally,
the estimated NSHMM parameters are employed to design a
channel quality metric according to the predicted channel idle
duration and spectrum sensing accuracy. Extensive simulation
study has been performed to investigate the effectiveness of our
design. The results indicate that channel ranking based on the
proposed channel quality prediction mechanism captures the
idle state duration of the channel and the spectrum sensing
accuracy of the SUs, and provides more high quality transmission
opportunities and higher successful transmission rates at shorter
spectrum waiting times for dynamic spectrum access.

Index Terms—Channel quality prediction; cognitive radio
networks; non-stationary HMM; Bayesian inference.

I. INTRODUCTION

Cognitive radio [1]–[9] has been envisioned as a promising
approach to alleviate the spectrum scarcity problem as well as
to increase the efficiency of spectrum utilization. In cognitive
radio networks (CRNs), secondary users (SU) are allowed
to opportunistically access the primary channels on a non-
interference basis. However, the quality of the channels may
differ significantly and overlooking high-quality ones may
drastically decrease the spectrum efficiency. Thus in this paper
we tackle the challenges of channel quality prediction to
enhance the efficiency of dynamic spectrum access.

Our objective is to estimate the parameters of the channels
from the spectrum sensing results of the secondary users.
We intend to identify for each SU the channel that has
high detection accuracy, low false alarm probability, and long
idle duration. For this purpose, we model the process of
spectrum sensing as a Non-Stationary Hidden Markov Model
(NSHMM). The NSHMM is a more accurate model compared
to the stationary HMM as in reality, the probabilities of state
transitions are a function of the time interval the primary
user has stayed in the current state. In this paper the model
parameters are estimated via Bayesian inference with Gibbs
sampling, which provides a viable approach to infer the ex-
pected duration of the channel states and the spectrum sensing

accuracy of the SUs. We also propose a metric, which utilizes
the estimated NSHMM parameters, to evaluate the channel
quality according to the predicted channel idle duration and the
spectrum sensing accuracy quantified by the estimated spec-
trum detection probability and false alarm rate. The expected
idle duration is determined by the PU activities while the
spectrum sensing accuracy is mainly affected by the spectrum
sensing technology and the communication environment.

The main contributions of the paper are summarized as
follows. First, we employ the Non-Stationary HMM to model
the spectrum sensing process and infer the model parameters
through Bayesian inference with Gibbs sampling. To our best
knowledge, existing works [10], [11] all adopt the stationary
HMM for spectrum detection and prediction, which can not
capture the busy/idle duration of the primary channels. We
are the first to employ the NSHMM to model the channel
status in a CRN. Second, a novel channel quality evaluation
metric is proposed to help the SU select a channel with
high quality according to the predicted channel idle duration
and spectrum sensing accuracy. Our metric also considers
the preference of the secondary users, i.e., a SU has the
freedom to select the channel with the longest estimated idle
duration or the one it possesses the highest spectrum sensing
accuracy (high detection probability and low false alarm rate).
Third, we perform an extensive simulation study to validate
our NSHMM model and investigate the impact of various
model parameters on the expected channel quality. We also
consider two example application scenarios, with the first one
addressing the channel ranking based on the predicted channel
quality and the second one tackling the efficiency of dynamic
spectrum access according to the channel ranking.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. The network model and
necessary preliminaries are presented in Section III. The
prior probability distributions of the NSHMM parameters are
derived in Section IV. Channel quality prediction based on
Bayesian inference is proposed in Section V. The simulation
results are reported in Section VI, and the conclusion of the
paper is given in Section VII.

II. RELATED WORK

Channel quality prediction plays a critical role in enhancing
the efficiency of wireless resource utilization. A rich body
of research on channel quality estimation/prediction has been
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performed in OFDM systems [12], mobile cellular networks
[13], adaptive code modulation [14], and so on. But the
existing technical approaches can not be applied to CRNs
as SUs can only occupy a channel when it is not utilized
by primary users, which implies that channel availability has
to be considered when estimating the channel quality in a
CRN. More specifically, we have to take into account the idle
duration of the channel, i.e., the length of the time the channel
can be used by a SU, when evaluating the channel quality.

Strictly speaking, channel quality prediction for CRNs has
never been addressed to our best knowledge. Recent research
[15]–[18] propose to take advantage of channel quality infor-
mation to enhance the efficiency of dynamic spectrum access
in CRNs but none of them considers the important idle dura-
tions of the channels. In [15] and [16], the utility of secondary
users is modeled as a function of the channel quality, but how
to estimate and evaluate the channel quality is not discussed.
Channel-aware distributed scheduling is considered in [17],
[18], where the channel quality is mainly determined by the
transmission rate. Note that the works mentioned above all
require messages to be passed between secondary users, which
increases the energy consumption and transmission overhead.
The channel quality prediction scheme proposed in this paper,
on the other hand, employs only the local spectrum sensing
results to infer the parameters of the channels by each SU;
thus completely avoiding the overhead of message exchange.
Moreover, our approach can predict the estimated channel
duration, which can facilitate the SU to select the channel
that could stay idle for a long time.

III. NETWORK MODEL AND PRELIMINARIES

A. Network Model and Problem Description

In this paper, we consider a time-slotted cognitive radio
network. The busy/idle status of a channel is detected by a
SU via energy detection based spectrum sensing techniques
[19], [20] at the beginning of each time slot. If the channel
is idle, the SU starts its transmission (facilitated by multiple
access control) until the end of the slot; otherwise, the SU
recesses and starts to perform spectrum sensing again at the
beginning of the next time slot. We assume that the channel
status is stable within a time slot; that is, a channel state lasts
at least one slot. This process is illustrated in Fig. 1, in which
the SU obtains an observation ot on the true state qt of the
channel at each time slot t. The observation ot is the local
decision of the SU regarding the primary channel status. An
SU is said to make a detection if ot = busy and qt = busy,
and said to make a false alarm if ot = busy and qt = idle.
The detection probability Pd and false alarm probability Pf
are given respectively by (1) and (2) according to [20], [21].

Pd = e−
χ
2

m−2∑
n=0

1

n!

(χ
2

)n
+

(
1 + ξ

ξ

)m−1

·[
e
− χ

2(1+ξ) − e−
χ
2

m−2∑
n=0

1

n!

(
χξ

2(1 + ξ)

)n]
(1)

Pf =
Γ(m, χ2 )

Γ(µ)
(2)

where χ is the threshold of the energy detector, m is the time
bandwidth product, ξ is the average SNR of the SU on the
primary channel, Γ(., .) is the incomplete gamma function,
and Γ(.) is the gamma function. Note that ξ is defined as
ξ = PPUhPS

ς2 , with PPU being the transmit power of the PU,
ς2 being the Gaussian noise variance, and hPS = κ

dµPS
being

the path loss between the PU and the SU; here κ is the path
loss constant, µ is the path loss exponent, and dPS is the
distance between the PU and the SU.

The detection probability and false alarm probability in-
dicate the spectrum sensing accuracy of the SU; and the
spectrum sensing accuracy has significant influence on the
spectrum utilization efficiency of the SU over the channel.

1 2 n

1 2 n

T

T

Fig. 1. An illustration of the traditional spectrum sensing process.

The spectrum sensing process illustrated in Fig. 1 can be
modeled as a Hidden Markov Model (HMM). In [22], the
existence of a Markov chain in the channel utilization of a
PU over the time domain has been validated. Therefore, the
channel occupancy states Q = {q1, q2, · · · , qT }, determined
by the PU activities (on or off), form a Markov process. These
states are hidden since they are not directly observable. On
the other hand, SU generates its observation sequence O =
{o1, o2, · · · , oT } based on its spectrum sensing results, which
form the set of observation states. This Markov process is
a normal random process that depends on the activities of
the PU and the spectrum sensing accuracy of the SU. Thus
the spectrum sensing procedure can be modeled as a HMM.
Moreover, the hidden state space is defined as S={s0, s1}, with
s0=0 and s1=1 indicating that the channel is idle and busy,
respectively. Similarly, the observation state space is defined as
V ={v0, v1} , with v0=0 and v1=1 indicating that the spectrum
sensing result is idle and busy, respectively.

In this paper, we model the spectrum sensing process as
a nonstationary HMM (NSHMM) and infer its parameters
through Bayesian inference with Gibbs sampling. Then the
inferred parameters are employed to predict the channel
quality, which takes into account both the idle durations of
the channels and the spectrum sensing accuracy of the SUs
over the channels. For better understanding, we outline the
preliminary knowledge about HMM and Bayesian inference
in the following subsections.

B. Conventional HMM and Non-Stationary HMM

Consider a scenario with the hidden space S={s0=0, s1=1}
and the observation space V ={v0=0, v1=1}. A conventional
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Fig. 2. An example of a state sequence Q, where ki, i = 1, 2... denotes a
segment with ki adjacent 0’s (idle state) and li, i = 1, 2... denotes a segment
with li adjacent 1’s (busy state).

HMM can be described by its parameters ΛC=(ΠC , AC , BC),
where ΠC is the initial state probability distribution:
ΠC=[πi]1×2, πi=P (q1 = si), i ∈ {0, 1}; AC is the state
transition probability matrix: AC=[aij ]2×2, aij=P (qt+1 =
sj |qt = si), i, j ∈ {0, 1}; and BC is the emission probability
matrix: BC=[bjk]2×2, bjk=P (ot = vk|qt = sj), j, k ∈ {0, 1}.
According to (1) and (2), it is obvious that b01 = Pf and
b11 = Pd.

The parameters of a conventional HMM are all time-
stationary. For example, the probability that the state sequence
shown in Fig. 2 holds can be expressed as:

P (Q|ΛC) = π(0)ak1−1
00 a01a

l1−1
11 a10a

k2−1
00 a01a

l2−1
11 · · · (3)

It can be seen that the transition probability aij is a static
value independent of the duration of the state si. No matter
how many slots the state si has been lasted, the probability
that the next state is si (sj) is always aii (aij). Intuitively, this
is not reasonable as in practice it is more often the case that
the transition probability is a function of τ , the duration of a
particular state. Define aij(τ) as the probability that the system
switches from si to sj , given that the system has already been
on state si for τ consecutive time slots [23]:

aij(τ) = P (qt = sj |qt−1 = qt−2 = · · · = qt−τ = si) (4)

Therefore, the transition probabilities are functions of time;
thus they are non-static. The HMMs with non-static transition
probabilities are referred as non-stationary hidden Markov
models (NSHMMs). A NSHMM can also be described by
its parameters ΛN=(ΠN , AN (τ), BN ). Here, ΠN=[πi]1×2 and
BN=[bjk]2×2 have the same expression as those of the con-
ventional HMM while AN (τ)=[aij(τ)]2×2.

It has been proved in [24], [25] that the duration of a channel
state (idle or busy) is exponentially distributed. Let di denote
the duration of the state si, i = 0, 1. Then the probability
density function of di is:

f(di) = λie
−λidi (5)

where λi is the rate parameter of the exponential distribution
with E[di] = 1/λi.

Denote by ts the length of a time slot. Then the self
transition probabilities aii(τ), i = 0, 1, can be given by:

aii(τ) = P(duration of state si > τ )

= 1−
∫ τts

di=0

f(di)ddi

= e−λiτts

(6)

Since there are only two states in our hidden space, the
outward state transition probabilities aij(τ), j = 0, 1 and j 6=
i, can be given as

aij(τ) = 1− aii(τ)

= 1− e−λiτts
(7)

C. Preliminary Knowledge About Bayesian Inference

In this subsection, we briefly describe the Bayesian infer-
ence procedure to derive the probability distributions of the
system parameters. To proceed, it is necessary to introduce
three basic concepts, namely prior probability distribution,
likelihood function, and posterior probability distribution.

Definition 1. In Bayesian inference, a prior probability
distribution (also known as prior) of a system parameter θ,
denoted by P (θ), is often an experimental subjective assess-
ment about θ before the data is taken into account.

Definition 2. Given some observed data X =
{x1, x2, · · · , xn}, the Likelihood function of parameter
θ, denoted by L(θ|X), is defined to be the probability
of the observed data given that parameter. That is,
L(θ|X) = P (X|θ). A likelihood function is often used
to estimate the system parameter from a set of statistical
data.

Definition 3. In Bayesian inference, the posterior probability
distribution (also known as posterior) is the distribution
of a system parameter θ conditioned on the data X =
{x1, x2, · · · , xn} observed from an experiment or survey.
Therefore, the posterior probability distribution of θ can be
denoted by P (θ|X).

Given Definitions 1-3, we get the fowling expression ac-
cording to Bayes’ rule:

P (θ|X) =
P (X|θ) · P (θ)

P (X)

∝ P (X|θ) · P (θ)

(8)

where ∝ means “proportional to”.
Bayesian inference intends to compute the posterior accord-

ing to (8), which indicates that the posterior can be derived
from the prior probability distribution and the likelihood func-
tion. Hence, the primary problem is to specify a prior for each
parameter. The selection of a prior has a significant influence
on the complexity of posterior computation. Therefore, a
special kind of prior called conjugate prior is adopted in this
paper to reduce the posterior calculation complexity:

Definition 4. The prior probability distribution and the pos-
terior probability distribution are conjugate if the posterior
P (θ|X) is in the same family as the prior P (θ). In this case,
the prior is called a conjugate prior for the likelihood.

Choosing a reasonable conjugate prior is often an effective
way to simplify the posterior calculation. Thus in this paper,
we first derive a reasonable conjugate prior for each system
parameter through theoretical analysis.
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IV. PRIOR DERIVATION FOR NSHMM PARAMETERS

According to the description in Section III-C, prior probabil-
ity distributions should be specified before Bayesian inference
can be conducted. In this section, we intend to define a
reasonable conjugate prior for each parameter of the NSHMM
through theoretical analysis.

A. Conjugate Prior Derivation for ΠN

Assume that the initial channel state is a random binary
variable X that takes value 1 with probability π1 and value 0
with probability π0 = 1 − π1. It is obvious that X follows a
Bernoulli distribution, denoted by X ∼ Bernoulli(π1). Given
an observed data X = x, the likelihood function of π1 is

P (X = x|π1) = πx1 (1− π1)1−x (9)

According to [26], we can adopt a uniform distribution be-
tween 0 and 1 as the prior for π1 if we have no knowledge of
its probability distribution. That is, π1 ∼ U(0, 1) and

P (π1) =

{
1, if 0 ≤ π1 ≤ 1;
0, otherwise. (10)

Then the denominator in (8) can be calculated by

P (X = x) =

∫
π1

P (X = x|π1)P (π1)dπ1

=

∫ 1

π1=0

πx1 (1− π1)1−xdπ1

=
Γ(x+ 1)Γ(2− x)

Γ(3)

(11)

Therefore, the posterior probability distribution of π1 is

P (π1|X = x) =
P (X = x|π1) · P (π1)

P (X = x)

=
Γ(3)

Γ(x+ 1)Γ(2− x)
πx1 (1− π1)1−x

=
Γ(x+ 1 + 2− x)

Γ(x+ 1)Γ(2− x)
πx+1−1
1 (1− π1)2−x−1

(12)

It can be seen that the posterior of π1 is a Beta distribution
Beta(x+1, 2−x). Note that a uniform distribution can also be
considered as a special Beta distribution Beta(1, 1); therefore
a Beta distribution is a reasonable conjugate prior when the
likelihood is a Bernoulli distribution.

B. Conjugate Prior Derivation for AN (τ)

According to our network model described in Section III,
there is a hidden state sequence Q = {q1, q2, · · · , qT } in
the spectrum sensing process. Let Yi be a random variable
denoting the average duration of the state si in the sequence Q,
and yi be a specific value of Yi. According to [24], [25], [27],
Yi follows an Exponential distribution, i.e., Yi ∼ Exp(λi).
From (5), the likelihood function of λi is:

P (yi|λi) = f(yi) = λie
−λiyi (13)

The expected duration of the state si, E[yi], satisfies 1 ≤
E[yi] = 1

λi
<∞, so that 0 < λi ≤ 1.

In Bayesian inference, the Gamma distribution is the conju-
gate prior to many likelihood distributions such as Exponential
[28]. Thus in the following we derive the posterior of λi
assuming that the Gamma distribution is a conjugate prior for
λi, i.e., λi ∼ Gamma(a, b). Then

P (λi) = f(λi) =
1

ba
1

Γ(a)
λa−1
i e−

λi
b (14)

Pi(λi|yi) ∝ P (yi|λi)P (λi)

∝ λa+1−1
i e

− λi
b

byi+1 (15)

∼ Gamma(a+ 1,
b

byi + 1
)

We conclude that the Gamma distribution is indeed a
reasonable conjugate prior for λi, which could be used to
derive the probability distributions of aii(τ) and aij(τ) for
i, j ∈ {0, 1}.

C. Conjugate Prior Derivation for BN
Consider the hidden state sequence Q = {q1, q2, · · · , qT },

qt ∈ S, t ∈ {1, · · · , T}, and the corresponding observation
sequence O = {o1, o2, · · · , oT }, ot ∈ V, t ∈ {1, · · · , T}. Let
ni, i = 0, 1, be the number of the state si in Q. Define a
random variable Zii to denote the number of observations vi in
state si. It is obvious that Zii follows a Binomial distribution:
Zii ∼ Binomial(ni, bii). Then the likelihood of bii is

P (Zii = z|bii) = Cznib
y
ii(1− bii)

ni−z (16)
∝ bzii(1− bii)ni−z, z = 0, 1, · · · , ni(17)

Assuming that the prior for bii is uniformly distributed in [0,1],
i.e., P (bii) = 1, 0 ≤ bii ≤ 1, according to [26]. Then the
posterior of bii can be given as follows:

Pi(bii|Zii = z) ∝ P (Zii = z|bii)P (bii)

= bzii(1− bii)ni−z

= b
(z+1)−1
ii (1− bii)(ni−z+1)−1

∼ Beta(z + 1, ni − z + 1)

(18)

Therefore, we conclude that Beta distribution is a reasonable
conjugate prior for bii.

D. Prior Specification for the NSHMM Parameters

In the previous subsections, we identify an appropriate
conjugate prior for each NSHMM parameter. In this subsec-
tion, we give specific definitions for these prior probability
distributions.

1) Define π1 ∼ Beta(α, β) and π0 = 1− π1.
2) Define λi ∼ Gamma(ηi, γi), i = 0, 1, and

aii(τ) = e−λiτts (19)
aij(τ) = 1− e−λiτts j = 0, 1, i 6= j (20)

3) Define bii ∼ Beta(εi, σi), i = 0, 1 and bij = 1−bii, j =
0, 1, i 6= j.
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The prior parameters include α, β, ηi, γi, εi, σi, i = 0, 1,
which are called hyperparameters. The hyperparameters can
be selected using the experimental knowledge about the prob-
lem [26]. In this paper, the experiential average value of
the parameters are used for hyperparameter selection. For
example, we know from experience that the average value
of π1 is π1. Since π1 ∼ Beta(α, β), the expectation of
π1, denoted by E[π1], equals α

α+β . Thus we can obtain the
following equation:

α

α+ β
= π1 (21)

It is clear that we can draw a liner relationship between
α and β. To obtain the specific values for α and β, we
should take the variance into consideration. The variance of
π1, denoted by V ar[π1] can be expressed as:

V ar[π1] =
αβ

(α+ β)2(α+ β + 1)
(22)

If we are confident about the experiential average value
π1, we can choose appropriate α and β values that lead to
a small variance V ar[π1]; otherwise, a big variance might be
preferred. However, since Bayesian inference is one of the ma-
chine learning approaches, the confidence on the experiential
values increases with the learning time, i.e., the time that the
SU has been spending on observing the channel occupancy
status. Therefore, V ar[π1] can be determined according to the
learning time of the SU. Then, α and β can be drawn from
(21) and (22).

A similar procedure can be applied to determine the hyper-
parameters ηi, γi, εi and σi, for i = 0, 1.

V. CHANNEL QUALITY ESTIMATION BASED ON BAYESIAN
INFERENCE

A. Bayesian Inference with Gibbs Sampling

After the determination of the priors, Bayesian inference
can be conducted to derive the posteriors of the NSHMM
parameters. Since Gibbs sampling is a candidate approach
to reduce the computation complexity of Bayesian inference
[23], we intend to implement Bayesian inference via a Gibbs
sampling procedure in this section.

Initially, we set the hyperparameters of the priors according
to the procedure given in Section IV-D. Specifically, we
assume that π1 ∼ Beta(α0, β0), aii ∼ Beta(η0i , γ

0
i ), and

bii ∼ Beta(ε0i , σ
0
i ), where i = 0, 1. Q0 is generated from

the specified hyperparameters. We will perform K iterations
to derive the posteriors. The hyperparameters for the k-th
iteration are denoted by αk, βk, ηki , γ

k
i , ε

k
i , σ

k
i , for i = 0, 1.

According to Gibbs sampling, at iteration k, the probability
distributions derived from iteration k − 1 can be considered
as prior probability distributions, and the parameters obtained
from iteration k − 1 can be considered as observations. Then
the following steps are carried out to derive the posterior
probability distributions for the kth iteration:

Step 1:

πk1 ∼P (π1|Ak−1
N , Bk−1

N , Qk−1, O)

=P (π1|Qk−1)

∝P (qk−1
1 |π1)P (π1)

=(π1)q
k−1
1 (1− π1)(1−q

k−1
1 )

· Γ(αk−1 + βk−1)

Γ(αk−1)Γ(βk−1)
(π1)α

k−1−1(1− π1)β
k−1−1

∝(π1)α
k−1+qk−1

1 −1(1− π1)β
k−1+1−qk−1

1 −1

∼Beta(αk−1 + qk−1
1 , βk−1 + 1− qk−1

1 )
(23)

Randomly draw a specific value for πk1 from the derived
posterior probability distribution Beta(αk−1 + qk−1

1 , βk−1 +
1− qk−1

1 ), and then we get:

πk0 = 1− πk1 (24)

Πk
N = (πk0 , π

k
1 ) (25)

Step 2:

λki ∼P (λ|Πk
N , B

k−1
N , Qk−1, O)

∝λie−λiδi · λη
k−1
i −1e

− λi

γ
k−1
i

=λη
k−1
i +1−1e

− λi

γ
k−1
i

1+γ
k−1
i

δi

∼Gamma(ηk−1
i + 1,

γk−1
i

1 + γk−1
i δi

)

(26)

where δi is the average duration of the state si in the state
sequence Qk−1.

Randomly draw λi, i = 0, 1, from the posterior probabil-
ity distribution, and calculate the self transition probabilities
akii(τ) for i = 0, 1, and the outward state transition proba-
bilities akij(τ) for j = 0, 1, j 6= i, according to (6) and (7),
respectively. Finally, we obtain

AkN (τ) =

(
ak00(τ) ak01(τ)
ak10(τ) ak11(τ)

)
(27)

Step 3:

bkii ∼P (bkii|Πk
N , A

k
N , Q

k−1, O)

=P (bkii|Qk−1, O)

∝Cωini (b
k−1
ii )ωi(1− bii)ni−ωi

· Γ(εk−1
i + σk−1

i )

Γ(εk−1
i )Γ(σk−1

i )
(bk−1
ii )ε

k−1
i −1(1− bk−1

ii )σ
k−1
i −1

∝(bk−1
ii )ε

k−1
i +ωi−1(1− bk−1

ii )σ
k−1
i +ni−ωi−1

∼Beta(εk−1
i + ωi, σ

k−1
i + ni − ωi)

(28)

where ni is the number of the state si in the state sequence
Qk−1, and ωi is the number of symbols vi in the state si.
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Randomly draw bkii, i = 0, 1, from the posterior probability
distribution, and then

BkN =

(
bk00 bk01
bk10 bk11

)
=

(
bk00 1− bk00

1− bk11 bk11

)
(29)

Step 4:
qk1 ∼ Bernoulli(πk1 ) (30)

For t ≥ 2,

qkt ∼P (qkt |Πk
N , A

k
N , B

k
N , O, q

k
t−1, q

k
t+1 − 1, · · · , qk−1

T )

=aqkt−1q
k
t
(τ(qkt−1)) · aqkt qk−1

t+1
(τ(qkt ))

·
T−1∏
i=t+1

aqk−1
i qk−1

i+1
(τ(qk−1

i )) · bqkt ot

(31)

where τ(q) is the duration of the state q.
We randomly draw qkt , t = 1, 2 · · · , T , from the posterior

and get the state sequence of iteration k:

Qk = (qk1 , q
k
2 , · · · , qkT ) (32)

After K iterations, we get the estimated parameters of
the NSHMM, denoted by Λ̂N = (Π̂N , ÂN (τ), B̂N ), and the
estimated rate parameter of the Exponential distribution of the
state duration, denoted by λ̂i, i = 0, 1. In the next subsection,
we propose a scheme to evaluate the channel quality using
these estimated parameters.

B. Channel Quality Prediction

In our work, we employ two metrics to evaluate the channel
quality. The first one is the spectrum sensing accuracy of the
secondary user on the primary channel, which has influence on
the spectrum utilization efficiency of the secondary user; the
second one is the expected duration of the idle state, which
implies the channel availability to the secondary user.

First, we design an evaluation metric for the spectrum
sensing accuracy. It can be seen from [29] that a higher
detection probability Pd always comes with a higher false
alarm probability Pf . Therefore, Pd(1 − Pf ) can be used
to denote the spectrum sensing accuracy. In particular, IEEE
802.22 recommends that the false alarm probability (Pf ) and
the miss detection probability (1−Pd) should be lower than 0.1
[30]. Thus we assume Pf ∈ [0.01, 0.1] and Pd ∈ [0.9, 0.99].
As a result, Pd(1− Pf ) ∈ [0.81, 0.99].

In Section III-B, we point out that b01 = Pf and b11 =
Pd. Thus B̂N can be used to estimate the spectrum sensing
accuracy. Let MA be the evaluation metric for the spectrum
sensing accuracy. Then

MA = b̂11(1− b̂01) (33)

where b̂11 and b̂01 denote the estimated detection probability
and false alarm probability, respectively.

Second, we define ME = 1/λ̂0 to denote the estimated idle
duration of the primary channel.

Finally, the channel quality MQ can be estimated by combing
the two metrics MA and ME . Let

MQ = (1 + logε MA)ME (34)

where ε > 1 is a parameter indicating the preference of the
SU when estimating the quality of the primary channel. It can
be derived that

∂MQ

∂MA∂ε
= − MA

MEε
(

1

ln ε
)2 < 0 (35)

∂MQ

∂ME∂ε
= − ln MA(

1

ln ε
)2 > 0 (36)

Therefore, when predicting the channel quality MQ, SU could
choose a bigger ε to place more importance on ME or a smaller
ε to give more preference to MA.

VI. SIMULATION

In this section, we evaluate the performance of the proposed
scheme for channel quality prediction through simulation
study. The effect of the parameters, namely the estimated
spectrum sensing accuracy MA, the estimated idle duration
ME , and the preference parameter ε, on the estimated channel
quality MQ, are extensively investigated. In particular, the
effectiveness of our design is studied through two example
application scenarios. It should be noticed that our simulation

TABLE I
SIMULATION SETTINGS

Parameter Value
Length of the state/observation sequence (T ) 100

False alarm probability (Pf ) [0.01,0.1]
Detection probability (Pd) [0.9,0.99]

Rate parameter of the exponential [0.02,1]distribution (λi, i = 0, 1)
Preference parameter (ε) [1.1,10.0]

is not conducted over a physical network model since our work
does not rely on any physical layer setting. In a cognitive radio
system, each SU has a detection probability Pd and a false
alarm probability Pf on a primary channel. The only assump-
tion adopted by our work is that the primary channel states
(busy/idle) follow Exponential distributions, which has been
validated by many previous research [24], [25]. Following
our derivations, each SU can estimate the parameters through
Bayesian inference and then predict the channel quality using
the estimated parameters. In this simulation study, the state
sequences and the corresponding observation sequences are
generated from the parameters listed in TABLE I. Each SU
performs Bayesian inference with Gibbs sampling according
to the procedure described in Section V-A, and predicts the
quality of the channels according to (34).

Note that we have tried different values of ε ranging
from 1.1 to 10.0 but will report only the results when ε ∈
{1.2, 1.3, 1.4, 7.0} to demonstrate the trend of the influence
of ε on the performance of our design.
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Fig. 3. The effect of the estimated system parameters on the channel quality.
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A. The Effect of Estimated System Parameters

In this subsection, we study the effect of the estimated
system parameters on the channel quality. According to the
previous analysis, it is reasonable to assume that the values of
the estimated parameters fall into the following fixed ranges:
b̂11 ∈ [0.9, 0.99], b̂01 ∈ [0.01, 0.1], and λ̂i ∈ [0.02, 1], where
i = 0, 1. Therefore, MA ∈ [0.81, 0.99] and ME ∈ [1, 50].

Fig. 3 reports the effect of the estimated spectrum sensing
accuracy MA and the idle duration ME on the channel quality.
Obviously, MQ is an increasing function of both MA and ME .
This result indicates that a channel exhibits higher quality if it
can provide more transmission opportunities to the secondary
user and/or the secondary user can detect these opportunities
more accurately.

Figs. 3(a), 3(b), 3(c), 3(d) provide an intuitive explanation

regarding the effect of the preference parameter ε on the chan-
nel quality. When ε is small, the SU places more importance
on the spectrum sensing accuracy; therefore MA has great
influence on MQ. A channel with a lower MA must provide
more available idle opportunities (a bigger ME) to gain a higher
MQ. However, the influence of MA is gradually weakened with
the increase of ε. When ε = 7, MA has quite small influence
on MQ. In this case, the channel quality is almost completely
determined by its availability ME .

B. Application Scenario 1: Channel Ranking When Multiple
Primary Channels Exist

In cognitive radio networks, it is important to rank the
channels according to the predicted channel quality and form
an ordered sequence for spectrum sensing. Thus in this sub-
section, we investigate the performance of channel ranking
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based on the proposed channel quality prediction mechanism
when multiple primary channels exist. Since the idle duration
of a primary channel, i.e., the length of the time interval
the primary channel stays idle in the channel, is a critical
parameter in evaluating the channel quality, we consider a
network scenario with one SU and N PUs, with each of which
possessing one primary channel. The primary users are denot-
ed by PU1, PU2, · · · , PUN and the corresponding primary
channels are denoted by C1, C2, · · · , CN . Our simulation is
conducted on an example scenario with N = 10, but our
results can be readily generalized to the case when N is any
arbitrary positive integer. The parameters of the channels, and
the detection probabilities and false alarm probabilities of the
SU over the channels, are randomly selected and the settings
are given in TABLE II. Note that the false alarm probabilities
of the SU on different channels are the same since Pf mainly
depends on the threshold (sensitivity) of the energy detector.

TABLE II
THE PARAMETERS OF THE TEN CHANNELS

Channel C1 C2 C3 C4 C5

λ0 0.26 0.29 0.26 0.17 0.22
λ1 0.49 0.33 0.35 0.21 0.14
Pd 0.97 0.91 0.91 0.91 0.93
Pf 0.09 0.09 0.09 0.09 0.09

Channel C6 C7 C8 C9 C10

λ0 0.36 0.41 0.05 0.36 0.43
λ1 0.17 0.05 0.05 0.1 0.24
Pd 0.94 0.92 0.99 0.96 0.98
Pf 0.09 0.09 0.09 0.09 0.09

Fig. 4(a) reports the estimated MA and ME of the primary
channels. Taking both the spectrum sensing accuracy (indi-
cated by MA) and the idle duration of the channel (indicated
by ME) into consideration, SU estimates the quality of the
channels and rank them in the non-increasing order of MQ.
Fig. 4(b), 4(c), 4(d), 4(e) illustrate the results of channel
ranking when ε = 1.2, 1.3, 1.4, and 7, respectively. It can
be seen that the ordered channel sequence changes with ε.
When ε is small, MA plays an important role in determining
the channel quality; thus channels with higher MA values are
ordered in the top of the sequence. However, when ε is big, the
channel quality mainly depends on the availability ME ; thus
the channels with higher ME values are placed at the top of
the sequence.

C. Application Scenario 2: Dynamic Spectrum Access Based
on Channel Ranking When Multi-SU Multi-channel Exist

In this subsection, we investigate the performance of dy-
namic spectrum access based on the channel ranking obtained
from channel quality prediction. In channel ranking, each
SU forms an ordered channel sequence, denoted as Cr =
{Cr1 , Cr2 , · · · , CrN }, where ri ∈ {1, · · · , N} and N is the
number of primary channels in the network. Without loss of
generality, we set N = 100 and ε = 1.4 in the following
simulation study.

There are two types of spectrum access mechanisms:
Spectrum Access based on Random channel selection (SA-

R) in which each SU randomly selects one channel to sense
and access at each time slot; and Spectrum Access based on
Channel Ranking (SA-CR) in which each SU maintains an or-
dered channel sequence and sequentially sense and access the
channels based on the channel ranking. SA-R is a commonly
adopted spectrum access scheme in cognitive radio networks
[17], [18], [31]. In the following we compare the performance
of SA-CR and SA-R from three different aspects.

First, we consider a simple scenario where all the secondary
users keep on sensing the states of the channels to explore
possible transmission opportunities. We say “a SU captures a
transmission opportunity” if it correctly detects the idle state
of a channel at the beginning of a time slot. When a trans-
mission opportunity is explored, the SU starts its transmission
(facilitated by multiple access control) until the end of the
slot. Taking into account the fact that the available channels
are usually more than the number of users for typical CRN
applications [32], we vary the number of SUs from 1 to N

2 in
our simulation.

It can be seen from Fig. 5(a) that the captured transmission
opportunities in both SA-CR and SA-R increase with the
number of SUs in the network. When there are few SUs, some
channels can not be utilized. The possible transmission op-
portunities can be better excavated with more SUs. Moreover,
Figs 5(b), 5(c) and 5(d) indicate that the channel quality of
the explored transmission opportunities in SA-CR are better
than that in SA-R, in terms of the expected idle duration, the
detection probability, and the false alarm probability.

We also carry out a simulation study to investigate the
performance of SA-CR and SA-R on the successful transmis-
sion rate of the SUs and the average time cost for finding
available channels when the arrivals of the SUs follow a
Poisson distribution. Fig. 6 reports the impact of the arrival
rate on the performance of SA-CR and SA-R. It is obvious
that taking SA-CR instead of SA-R can significantly improve
the successful transmission rate and reduce the time cost for
each SU to find an available channel.

VII. CONCLUSION

In this paper, we study the problem of channel quality
prediction in cognitive radio networks. The proposed approach
adaptively infer the system parameters and then estimate the
channel quality based on the inferred parameters. We design
a channel quality metric MQ, which takes into account both
the spectrum sensing accuracy and the expected channel idle
duration time. Our future research involves further extensive
empirical investigations and analytical studies on the proposed
approach.

ACKNOWLEDGMENT

The authors would like to thank the support from
the National Natural Science Foundation of China (Grant
No. 61272503, 61272505 and 61172074), the Fundamen-
tal Research Funds for the Central Universities of China
(2012YJS007), and the National Science Foundation of the
US (CNS-1162057).

1472



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Arrival rate of SU

SA−CR
SA−R

(a) Successful transmission rate

0 2 4 6 8 10
1

2

3

4

5

Arrival rate of SU

SA−CR
SA−R

(b) Average time cost (in time slot) for finding
available channel

Fig. 6. The impact of SUs’ arrival rate.

REFERENCES

[1] M. Song, C. Xin, Y. Zhao, and X. Cheng, “Dynamic spectrum access:
From cognitive radio to network radio,” IEEE Wireless Communications,
vol. 19, no. 1, pp. 23–29, February 2012.

[2] T. Jing, X. Chen, Y. Huo, and X. Cheng, “Achievable transmission ca-
pacity of cognitive mesh networks with different media access control,”
in IEEE INFOCOM, March 2012, pp. 1764–1772.

[3] S. Wang, J. Zhang, and L. Tong, “Delay analysis for cognitive radio
networks with random access: A fluid queue view,” in IEEE INFOCOM,
March 2010, pp. 1–9.

[4] X. Wang, Z. Li, P. Xu, Y. Xu, X. Gao, and H.-H. Chen, “Spectrum
sharing in cognitive radio networks-an auction-based approach,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 40, no. 3, pp. 587–596, June 2010.

[5] L. Gao, X. Wang, Y. Xu, and Q. Zhang, “Spectrum trading in cognitive
radio networks: A contract-theoretic modeling approach,” IEEE Journal
on Selected Areas in Communications (JSAC), vol. 29, no. 4, pp. 843–
855, April 2011.

[6] W. Li, X. Cheng, T. Jing, Y. Cui, K. Xing, and W. Wang, “Spectrum
assignment and sharing for delay minimization in multi-hop multi-flow
crns,” IEEE Journal on Selected Areas in Communications (JSAC),
Special Issue on Cognitive Radio, March 2013.

[7] W. Li, X. Cheng, T. Jing, and X. Xing, “Cooperative multi-hop relaying
via network formation games in cognitive radio networks,” in IEEE
INFOCOM, 2013.

[8] H. Li, X. Cheng, K. Li, X. Xing, and T. Jing, “Utility-based cooperative
spectrum sensing scheduling in cognitive radio networks,” in IEEE
INFOCOM Mini-Conference, 2013.

[9] T. Jing, S. Zhu, H. Li, X. Cheng, and Y. Huo, “Cooperative relay selec-
tion in cognitive radio networks,” in IEEE INFOCOM Mini-Conference,
2013.

[10] Z. Chen, N. Guo, Z. Hu, and R. Qiu, “Experimental validation of channel
state prediction considering delays in practical cognitive radio,” IEEE
Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1314 –1325,
May 2011.

[11] V. K. Tumuluru, P. Wang, and D. Niyato, “Channel status prediction
for cognitive radio networks,” Wireless Communications and Mobile
Computing, vol. 12, no. 10, pp. 862–874, 2012.

[12] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for ofdm
systems with transmitter diversity in mobile wireless channels,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 17, no. 3,
pp. 461 –471, March 1999.

[13] K. Balachandran, S. Kadaba, and S. Nanda, “Channel quality estimation
and rate adaptation for cellular mobile radio,” IEEE Journal on Selected
Areas in Communications (JSAC), vol. 17, no. 7, pp. 1244 –1256, July
1999.

[14] G. Oien, H. Holm, and K. Hole, “Impact of channel prediction on
adaptive coded modulation performance in rayleigh fading,” IEEE
Transactions on Vehicular Technology, vol. 53, no. 3, pp. 758 – 769,
May 2004.

[15] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum
etiquette for cognitive radio networks,” in IEEE DySPAN, November
2005, pp. 269 –278.

[16] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in
cognitive radio networks: Dynamic game, inefficiency of nash equilibri-
um, and collusion,” IEEE Journal on Selected Areas in Communications
(JSAC), vol. 26, no. 1, pp. 192 –202, January 2008.

[17] D. Zheng, W. Ge, and J. Zhang, “Distributed opportunistic scheduling for
ad hoc networks with random access: An optimal stopping approach,”
IEEE Transactions on Information Theory, vol. 55, no. 1, pp. 205 –222,
January 2009.

[18] P. Chandrashekhar Thejaswi, J. Zhang, M.-O. Pun, and H. Poor, “Dis-
tributed opportunistic scheduling with two-level channel probing,” in
IEEE INFOCOM, April 2009, pp. 1683 –1691.

[19] A. Fehske, J. Gaeddert, and J. Reed, “A new approach to signal
classification using spectral correlation and neural networks,” in IEEE
DySPAN, November 2005, pp. 144 –150.

[20] F. Digham, M.-S. Alouini, and M. Simon, “On the energy detection of
unknown signals over fading channels,” in IEEE ICC, vol. 5, May 2003,
pp. 3575–3579.

[21] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Experimental study of
spectrum sensing based on energy detection and network cooperation,”
in The 2nd Annual International Wireless Internet Conference (WICON).
TAPAS Workshop, August 2006.

[22] C. Ghosh, C. Cordeiro, D. Agrawal, and M. Rao, “Markov chain
existence and hidden markov models in spectrum sensing,” in IEEE
PerCom, March 2009, pp. 1 –6.

[23] P. Djuric and J.-H. Chun, “An mcmc sampling approach to estimation
of nonstationary hidden markov models,” IEEE Transactions on Signal
Processing, vol. 50, no. 5, pp. 1113 –1123, May 2002.

[24] M. Wellens, J. Riihijarvi, and P. Mahonen, “Evaluation of adaptive
mac-layer sensing in realistic spectrum occupancy scenarios,” in IEEE
DySPAN, April 2010, pp. 1 –12.

[25] A. Min, K.-H. Kim, J. Singh, and K. Shin, “Opportunistic spectrum
access for mobile cognitive radios,” in IEEE INFOCOM, April 2011,
pp. 2993 –3001.

[26] S. Mao, J. Wang, and X. Pu, Advanced Mathematical Statistics. Higher
Education Press, 2006.

[27] V. Nekoukhou, M. H. Alamatsaz, and H. Bidram, “A discrete analog of
the generalized exponential distribution,” Communications in Statistics
- Theory and Methods, vol. 41, no. 11, pp. 2000–2013, 2012.

[28] J. Yan, “Bayesian survival analysis,” Journal of the American Statistical
Association, vol. 99, no. 468, pp. 1202–1203, 2004.

[29] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional
games for distributed collaborative spectrum sensing in cognitive radio
networks,” in IEEE INFOCOM, April 2009, pp. 2114–2122.

[30] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and
W. Caldwell, “Ieee 802.22: The first cognitive radio wireless regional
area network standard,” IEEE Communications Magazine, vol. 47, no. 1,
pp. 130 –138, January 2009.

[31] Y. Zhang, Q. Li, G. Yu, and B. Wang, “Etch: Efficient channel hopping
for communication rendezvous in dynamic spectrum access networks,”
in IEEE INFOCOM, April 2011, pp. 2471 –2479.

[32] M. Mishra and A. Sahai, “How much white space is
there?” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-3, Jan 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-3.html

1473


