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Abstract
Every year, millions of people die from epidemic diseases

around the world. The current disease control is mainly con-
ducted by mass vaccination strategies to immunize as many
people as possible. However, due to side effects and high
costs, it is difficult to be implemented within a large popu-
lation. In this paper, we address this challenging problem
by designing a target vaccination strategy which efficiently
prevents diseases from spreading through the population by
vaccinating a small fraction of the population. We take ad-
vantage of social relationship details extracted from mobile
phone records to partition the whole population into com-
munities. A two-level vaccination strategy is then proposed
to prevent local and inter-community infections. We eval-
uate our approach by simulations over real world data and
compare its performance with those of other methods. The
experimental results show that our approach has the best per-
formance in that it can reduce the number of infections sig-
nificantly.

1 Introduction
To eliminate or alleviate the threat of epidemic diseases,

human beings have taken various measures to protect our-
selves. One such important measure is vaccination, where
people are given vaccines to obtain immunity against dis-
eases. When one individual gets immunized, he (she) not
only effectively protects himself (herself) from being infect-
ed, but also indirectly eliminates or lowers the probability of
the disease spreading from himself (herself) to others. Cur-
rent epidemic disease control is mainly conducted by mass
vaccination. However, due to side effects and high costs, it
is difficult to implement mass vaccination within a large pop-
ulation. Target vaccination [10,12], on the other hand, could
provide a significant improvement in disease control. By im-
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munizing a small fraction of the population, target vaccina-
tion strategies could not only prevent more infections from
happening but also save health costs dramatically. Previous
works on target vaccination normally choose individuals at
risk of being infected by comparing their contact frequen-
cies, while in fact the probability that an individual becomes
infected depends on the nature of the interaction (e.g., time,
interaction type) between the individual and the infected per-
son(s). In addition, since target vaccination strategies often
require the global network information to select nodes for
vaccination, how to collect and analyze such information be-
comes vital in this approach.(In this paper, a node simply
represents an individual.)

Mobile healthcare has attracted great attention from both
industrial and research communities with the rise of mobile
devices such as cell phones and wearable body sensors in
daily lives. With the help of mobile devices, health services
can be delivered quickly and conveniently. In this paper, we
study how to prevent infections locally and globally by us-
ing mobile phone records, which include the communication
time. In our approach, we first analyze phone records to cap-
ture the interaction pattern among individuals. We then use
such an interaction pattern to infer the transmissibility that a
disease is transmitted between two individuals. On the ba-
sis of the inferred transmissibilities, we partition people into
disjoint communities, where people in the same community
have a bigger chance to infect each other than people across
different communities. A two-level target vaccination strat-
egy is then proposed to provide both local and global con-
trol. The main contributions of our work are concluded as
follows.
• We determine the transmissibility of disease transmis-

sion among individuals by extracting social information
from phone records. Coupled with the transmissibili-
ties, a clustering algorithm is employed to partition the
population into communities, where people in the same
community share a stronger chance to infect each other
than people across different communities.

• We introduce the percolation theory to model the dif-
fusion of diseases, from which a percolation threshold
is derived to improve the performance of vaccination
strategies.

• We propose a two-level target vaccination strategy to



provide both local and global control over the dis-
ease propagation. The communities and the percolation
threshold are employed to guide the design of vacci-
nation strategies. In particular, we propose a bridge n-
ode identification algorithm to identify key nodes which
influence the disease transmission across communities.
To the best of our knowledge, this is the first work
which is used to prevent inter-community transmissions
of diseases.

• Simulations and comparisons are conducted to evaluate
the performance of the proposed vaccination strategy.
Results show that our vaccination strategy has the best
performance in that it can reduce the number of infec-
tions significantly.

The rest of the paper is organized as follows. Section 2
presents the most related work. Sections 3 and 4 discuss how
to compute the transmissibility of a disease between two n-
odes and describe how nodes are partitioned into communi-
ties. A two-level vaccination strategy is detailed in section 5,
and evaluated under various scenarios in section 6. Finally,
we conclude our work in section 7.
2 Related Work

Prior work on detecting communities mainly focuses on
comparing the intensity of human connections. In [13], the
authors form communities based on the number of nodes’
connections. They design a security strategy where nodes
with a larger number of connections in each community get
security patches earlier than other nodes, so that the worm
won’t infect the entire network. Similarly, the work in [9]
detects overlapping communities by comparing the number
of connections which have two ending points in two distinct
communities with a pre-defined threshold. Few studies on
community detection consider the variations in closeness of
connections. In this paper, we partition people into disjoint
communities by using the strength of the relationship among
individuals.

Motivated by recent advances of mobile phones, mobile
health care has been actively explored on various applica-
tions of mobile devices such as remote health monitoring
[4, 5, 11], diagnostic imaging and telemedicine [1], and tex-
t messaging [7]. However, few attention has been given to
investigating the use of mobile phones in vaccination strate-
gies. So far the only related work is given by [10]. The
authors there first extract “kernels” and “communities” by
checking the contact frequency on mobile phone bluetooth
records. Then they propose a vaccination strategy, where n-
odes in the kernel sharing more contacts with the infected
nodes have a higher priority to be vaccinated, and nodes in
the community sharing less contacts with the infected nodes
would receive vaccines only after every node in the kernel
has been vaccinated. This work is similar to ours in that
we both consider extracting social communities from phone
records. However, [10] ignores inter-community connection-
s that could lead to a huge number of infections across com-
munities. In addition, [10] does not specify the variations in
closeness of relationships, which play a key role in model-
ing disease spreading. Finally, our vaccination strategy pre-
sented in this paper is completely different from that in [10].
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Figure 1. The SIR epidemic model.

Our strategy consists of two phases with one focusing on lo-
cal prevention and the other on global prevention, while the
strategy in [10] relies on the kernels.
3 Percolation Theory

Consider an undirected weighted graph G(V,E,τ), where
V denotes the node set, E denotes the edge set and τ repre-
sents the time interval during which the communication data
are recorded. A node v ∈ V represents an individual, while
an edge ei j between nodes vi and v j indicates that there ex-
ist interactions between the two nodes of the pair. Note that
an interaction can be a phone call, a bluetooth connection,
or a message, depending on the nature of the mobile device
communications. Attached to the edge ei j is the weight wi j,
which is used to quantify the interaction between vi and v j. If
the interaction is made through phone calls, then wi j can be
the total time used in the phone conversations. If the interac-
tion is done through messages, then wi j can include informa-
tion such as the number of messages and sizes of messages.
3.1 The SIR Model

In this paper, we employ a SIR epidemic model, in which
individuals may be either susceptible to the disease, or in-
fected with the disease, or recovered and immune to the dis-
ease. The model has 3 health states: Normal, Infected and
Immune. Assume an infected person would stay Infected for
T consecutive time intervals, where all intervals are of the
same length. After these T intervals, the infected node be-
comes Immune, which means the node can not further get
infected or infect others. Ideally, people who get vaccinated
become Immune to the disease automatically. During each
time interval, we assume the strength of the relationship be-
tween vi and v j can be represented by a number pi j (∈ [0,1]).
If one node is infected and the other is normal, pi j could be
thought as the “probability” that the normal node gets infect-
ed due to the influence of the infected node. The definition of
pi j is discussed below. State transitions of SIR are described
in Fig.1.
3.2 The Definition Of pi j

The quantity pi j will be based on distances, numbers of
friends, and interactions. Specifically, we define pi j (i ̸= j)
in the following way:

pi j = f (di j,Ni,N j, |τ|,wi j, ∑
k∈V,k ̸=i

wik, ∑
k∈V,k ̸= j

w jk) (1)

where f is a multivariate function ranging from 0 to 1, di j
is the average physical distance between vi and v j, Ni repre-



sents the set of nodes which communicate with vi directly,
and |τ| denotes the size of the time interval. Below are some
notes regarding the above definition of pi j:
• In practice it is easier to compute f as a product of f1, f2

and f3, that is,

f (di j,Ni,N j, |τ|,wi j,∑k∈V,k ̸=i wik,∑k∈V,k ̸= j w jk)
= f1(di j)× f2(Ni,N j)×

× f3(|τ|,wi j,∑k∈V,k ̸=i wik,∑k∈V,k ̸= j w jk),

where f1, f2 and f3 are functions ranging from 0 to 1.
Clearly, this decomposition allows an easy integration
of any additional factor into the process in computing
pi j.

• An estimate of di j could be computed by using built-
in GPS or cell phone tower. f1 should be defined as a
non-increasing function of the distance.

• One choice for f2 is |Ni
∩

N j |+1
|Ni

∪
N j |+1 . The reasoning is based

on the observation that if two individuals share a big
percentage of friends (compared to the total number of
friends of these two individuals), then the relationship
between these two individuals is strong.

• An example of constructing f1, f2 and f3 is seen in sec-
tion 6.

• Each node can be treated in the way that it is most likely
to influence itself. Therefore, we define pii = 1.

3.3 Epidemic Threshold
Disease propagation can be viewed as a growing bond

percolation process on G. In this process, each edge of G
is labeled either infectious or not-infectious. For a pair of n-
odes vi and v j, if vi is infected, the link ei j would become in-
fectious with a transmissibility Pi j. In other words, v j would
be infected by vi with the transmissibility Pi j. The number of
people infected is growing when the above process repeats.

Consider a pair of two nodes vi and v j who are connected
in G. Assume vi is infected. Also assume that the infection
for v j at one time interval is independent of that at another
time interval. Then we see that the transmissibility Pi j that
v j would be infected in the next following T time intervals is

Pi j = 1− (1− pi j)
T , (2)

where pi j is given in (1). We can easily see the average value
of all Pi j is

P̄ = 1−
∑i ∑ j(1− pi j)

T

N2 , (3)

where N is the number of nodes in V . According to the per-
colation theory [8], when the average reaches a critical value
Pc, called the percolation threshold, the number of nodes in-
fected would be infinite. Following [8], we can obtain the
following percolation threshold

Pc =
∑k nkz

∑k nkk(k−1)
, (4)

where nk is the number of nodes each having k edges, z =
∑k knk
∑k nk

is the average number of edges of a node. When P̄ is

above Pc, even a single introduced infection would result in
an epidemic. When P̄ is below Pc, the disease would die out.

4 Social Community
Social network studies [9, 13] indicate that human beings

tend to form communities. People who are in the same com-
munity are often intensively connected, and people who are
in different communities are less connected. Since most dis-
eases are transmitted through human contacts, once an in-
dividual becomes infected, those who are in the same com-
munity with the infected individual are more likely to be in-
fected. Therefore, communities could provide a rough esti-
mation of the number of people at risk and enables quicker
reactions than considering all the people in the given entire
network. Prior approaches [6, 9] form communities based
on the graph connectivity, without taking into account the
indirect contacts between nodes or specifying the variation-
s in closeness of relationships. In this paper, we partition
the given network into disjoint communities by using pi j and
an exemplar-based clustering algorithm Affinity Propagation
(AP) [3].

We apply AP to the complete graph G′(V,E ′,τ), where
E ⊆ E ′. For each edge e′i j in G′, we assign pi j to it as the
weight. Note that e′i j may only exist in G′. In other words,
there might be no edge connecting vi and v j in G. This re-
flects the scenario in our real world where two people, who
have no direct contacts, may infect each other if they work in
the same building, or share the same type of transportation,
as diseases could be transmitted both by direct and indirec-
t contacts. One well known example is the biggest SARS
outbreak in Hong Kong in 2003, for which the infection o-
riginated from the plumbing in an apartment where a man
sick with the disease lived. Thus we believe that even v j is
not in vi’s direct contact list, v j still has a probability to get
infected by vi if pi j is sufficiently large.

When applying AP, our objective is to find a partition such
that the sum of pi j between a node and the center of the clus-
ter the node belongs to is maximized. Specifically, let xi be
the center of the cluster to which node vi belongs (Each cen-
ter is also a node). The AP algorithm seeks a solution to the
following optimization problem,

max
{ N

∑
i=1

pixi

}
.

Details about the AP algorithm can be found in [3]. The al-
gorithm divides V into k disjoint communities, where k can
be automatically determined by AP or previously specified.
For large scale networks, the map-reduce programming mod-
el [2] could be employed in a distributed fashion in order
to effectively apply AP. The whole network would be parti-
tioned into subsets, each of which would be processed with
AP independently. The results from all subsets would then
be merged.

5 Vaccination Strategy
Once a node becomes infected, it would report to the sev-

er. Then the vaccination strategy would be triggered. In
this section, we propose a target vaccination strategy which



chooses a small group of individuals for vaccination in or-
der to prevent a disease outbreak from developing into epi-
demic. The strategy consists of two phases: 1) emergency
health care, aiming at preventing local infections without re-
quiring the global knowledge of the network, 2) communi-
ty health care, aiming at stopping disease spreading across
communities. Here communities refer to those identified in
section 4 or the existing ones. For convenience, we consider
a sequence of consecutive time intervals each having a fixed
length |τ|. At the beginning of each time interval vaccina-
tion strategies are applied if possible. And at the end of each
time interval, cell phone communication records for the in-
terval are assumed to be available.

5.1 Emergency Health Care Scheme

Algorithm 1 Emergency Alerting(vi,c1,Pc)
Input:

• The infected node vi;

• The percolation threshold Pc;

• The remedy factor c1;

1: function EMERGENCY ALERTING(vi,c1,Pc)
2: Create a queue Q, push vi into Q, mark vi as visited, and set Pi = 1.
3: while Q is not empty do
4: Pop t from Q.
5: for all v j in t’s contact list do
6: Pj = Pt ×Pt j .
7: if v j is not visited, not infected and Pj > c1Pc then
8: Send an alert to v j .
9: Mark v j as visited.

10: Enter v j into Q.
11: end if
12: end for
13: end while
14: end function

In order to provide efficient health services, the emergen-
cy health care scheme targets a group of “local” nodes which
are close to the infected nodes, without requiring the global
health information. At the beginning of each execution of
the proposed scheme, we assume each individual vi keeps a
recent record of the quantity wi j regarding interactions with
other people. Then we can compute pi j, Pi j and Pc according
to equations Eq.(1), Eq.(2), and Eq.(4), respectively. These
numbers are saved in every mobile device. Our proposed
scheme then makes its recommendation of vaccination in the
following way. Once a node vi gets infected, his (her) mobile
device would send an alert to all of his (her) friends v j with
whom Pi j ≥ c1Pc, where c1 ≤ 1 is a predefined positive con-
stant. A node v j receiving an alert from vi would also send
an alert to v j’s friends vk with whom Pi j ×Pjk ≥ c1Pc. This
procedure repeats until none of the potential product of trans-
missibilities is at least c1Pc. All nodes who receive alerts are
recommended for vaccination. At the end of each time in-
terval, pi j will be updated in light of available mobile phone
records. The proposed emergency health care is described
in Algorithm 1. This Breadth First Search based algorith-
m would quickly spread the news to nodes who are at risk,
without waiting for the information of the entire network.

Algorithm 2 Community Alerting Scheme(P,vi,c2,Pc)
Input:

• The partition P;

• The infected node vi;

• The percolation threshold Pc;

• The remedy factor c2;

1: function COMMUNITY ALERTING SCHEME(P,vi,c2,Pc)
2: Find the community V in which vi is.
3: for every node v j in V do
4: Pj = 0.
5: for every other community Vs in P, Vs ̸=V do
6: Pj+= ∑m∈Vs Pjm.
7: end for
8: Pj = Pi j ×Pj
9: end for

10: Send alerts to v j in V if v j is not infected and Pj ≥ c2Pc.
11: end function

5.2 Community Health Care Scheme
Despite relatively low interactions among communities,

the number of people potentially being influenced by inter-
community communication could be very large. A disease
can be transmitted to another community via just a single
or a few interactions. Once a disease is introduced to oth-
er communities, it could dramatically spread out. Take the
H1N1 flu in 2009 as an example. The flu first began in Mex-
ico and had been slowly spreading out for months before it
became globally epidemic. After the first patient was diag-
nosed in California, many cases were detected in the US in
a very short period of time. Therefore we need to preven-
t diseases spreading across communities. We define an in-
fected community as a community which has at least one
infected member. We also define a bridge node as a node
that belongs to an infected community and has close con-
nections with nodes in other communities. Bridge nodes are
viewed as messengers transmitting diseases among commu-
nities. Assume there are k communities: V1, . . . ,Vk. If vi in
Vr gets infected, we define v j in Vr to be a bridge node if
Pi j ×∑vm /∈Vr Pjm ≥ c2Pc, where c2 ≤ 1 is a predefined posi-
tive constant. Once the bridge nodes are detected, the server
would send alerts to them regarding vaccination recommen-
dations. Our community health care scheme focuses on de-
tecting all the bridge nodes in the population. The scheme is
described in Algorithm 2.

6 Simulation
6.1 Simulation Set-up

We validate the proposed vaccination strate-
gy by using real phone records from MIT reality
(http://crawdad.cs.dartmouth.edu/meta.php?name=mit/reality), where
the cell phone bluetooth connections of 103 people are
recorded. We use the data of the first 15 days (from Oct.
1, 2004 to Oct. 15, 2004) for constructing communities,
and computing the initial pi j and Pi j. The data of the next
10 days are used to evaluate the strategy that consists of
Algorithms 1 and 2. For convenience, we treat every day as
a time interval. In this paper, we use the bluetooth dataset to
capture the details of social relationship. Note that collecting



information regarding the social relationship can also be
done by using other communication records, i.e, phone calls
and twitter re-tweets.

Since the available dataset does not provide any informa-
tion regarding locations of individuals, we initially compute
pi j by using

pi j =
|Ni

∩
N j|+1

|Ni
∪

N j|+1
×

max{wi j,1}
min{|τ|,∑k∈V,k ̸=i wik,∑k∈V,k ̸= j w jk}

.

Here, wi j is equal to the average daily number of minutes
used for communications between node vi and node v j dur-
ing the first 15 days (from Oct. 1, 2004 to Oct. 15, 2004).
|τ| = 24× 60 = 1440 minutes. Both |Ni

∩
N j| and |Ni

∪
N j|

represent the average number from the first 15 days. The
number 1 appearing on each of the two numerators is used
to prevent pi j from becoming 0. This action is based on the
thought that a node always has a potential influence on any
other node. When updating pi j, we use the information from
the current day and previous 14 days and repeat the above
approach.

To verify the strength of the proposed strategy, we imple-
ment two other strategies for performance comparisons. One
strategy employs a random vaccine distribution in the sense
that a number of individuals are randomly chosen to be vac-
cinated according to the number of available vaccines. This
strategy has been widely used in the literature and will be
denoted as RD in this paper. Another implemented method
is the “kernel-community” strategy [10], which has been re-
ported very recently. Here we implement its centralized ver-
sion, which has proven to have a better performance than its
distributed version. Following the setting in [10], two param-
eters w1 and w2 of “kernel-community” scheme are set at 1
and 3, to determine members in kernels and communities.
We will use KC to denote the “kernel-community” scheme
in our simulations. We execute our proposed strategy for 50
runs. The average number of vaccines used by our strategy
will serve as one input of the other two strategies (i.e., RD
and KC).

We define final infection ratio as ratio of the total num-
ber of infected people during the time of evaluation (from
Oct. 16,2004 to Oct. 26, 2004 in this study) to the size of
the entire population (103 in this study). The final infection
ratio will be used as the primary performance metric for the
evaluation of vaccination strategies in our simulations. We
will examine these strategies by varying different parame-
ters such as the initial infection ratio, the recovery cycle T ,
as well as c1 and c2. The initial infection ratio is defined
as the total number of infected persons on the first day (i.e.,
Oct. 16,2004) divided by the size of the population. The ini-
tial infected persons are chosen randomly in our simulations.
We report our experimental results by an average of 50 runs.
6.2 Simulation Result

Fig. 2 reports the final infection ratio vs. the initial in-
fection ratio, when the recovery cycle T = 6, c1 = 1, and
c2 = 1. For each initial infection ratio, the corresponding
number of vaccines required by our vaccination strategy is
given in Fig. 3. As discussed in the above subsection, the
number of vaccines required by our method is taken as the
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Figure 2. Final Infection Ratio vs. Initial Infection Ratio
(T = 6,c1 = 1,c2 = 1).
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Figure 3. The Number of Vaccines Used vs. Initial Infec-
tion Ratio (T = 6,c1 = 1,c2 = 1).

number of available vaccines for KC and RD. Several ob-
servations can be made from Fig. 2. First, we see that the
final infection ratio increases as the initial infection ratio in-
creases for all strategies. Second, our proposed method al-
most prevents all further infections except the initial ones,
because the final infection ratio is slightly higher than the
initial infection ratio. And third, our proposed strategy and
KC achieve a better performance than RD, which is consis-
tent with the reported work in [10,12]. In Fig. 3, the number
of vaccines required first increases as the initial infection ra-
tio increases, and then remains at 60. This fact suggests that
a fixed number of available vaccines could suffice to prevent
the disease spreading, no matter how big the initial infection
ratio is.

Fig. 4 reports the final infection ratio vs. recovery cycle
(T) when the initial infection ratio is set at 0.2, c1 = 1 and
c2 = 1. The corresponding number of vaccines used by our
proposed vaccination strategy is shown in Fig. 5. Several
observations drawn from both figures are listed below. First,
both the final infection ratio and the number of vaccines re-
quired increase as the recovery cycle T increases. This is
simply because a person infected with a long recovery cy-
cle tends to infect more people. Second, we observe that
compared to other strategies, our strategy achieves a lower
final infection ratio under all Ts. And third, the performance
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Figure 5. The Number of Vaccines Used vs. Recover Cy-
cle (The initial infection ratio = 0.03,c1 = 1,c2 = 1).

Table 1. The initial infection ratio and the number of
required vaccines under different c1 and c2 (The initial
infection ratio= 0.03 and T = 3).

c1 c2 Final Infection Ratio # Required Vaccines
0.7 0.7 0.07 47
0.9 0.9 0.07 44
1 1 0.07 42

0.9 0.7 0.07 45
0.7 0.9 0.07 47
0.7 1 0.07 48
1 0.7 0.07 43

0.9 1 0.07 42
1 0.9 0.07 44

difference between the proposed method and KC or RD is
growing larger with an increasing recovery cycle. This fact
shows the final infection ratio based on our proposed strat-
egy is less sensitive to the length of recovery cycle than the
other two strategies.

Table 1 reports the impact of c1,c2 on the performance
of the proposed vaccination stategy. We choose c1,c2 from
{0.7,0.9,1} independently. The recovery cycle is fixed at 3,
the initial infection ratio is set at 0.03. We observe that the
number of vaccines used by the proposed strategy changes

along with c1,c2 with a maximum number of vaccines 48 and
a minimum number of vaccines 42. These changes are due
to the fact that both c1 and c2 are used to find the candidates
for vaccination. This suggests the final infection ratio could
be minimized by using suitable values of c1 and c2, therefore
a better performance be obtained.
7 Conclusion

In this paper, we propose a two-level target vaccination
strategy based on mobile phone records. It is used to preven-
t diseases from spreading through the entire population by
vaccinating a small group of individuals. Simulation results
on real world data show that our proposed strategy is supe-
rior to other methods used for comparisons in several ways.
It reduces the number of infections dramatically. The num-
ber of final infections after execution of our strategy is less
sensitive to the recovery cycle. And with our strategy, the
same number of vaccines can be used effectively for a range
of large values of the initial infection ratio. Our future work
includes detailed studies on computing the influences among
individuals and deriving variations of the proposed strategy.
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