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a b s t r a c t

In verifiable multi-secret sharing schemes (VMSSs), many secrets can be shared but only
one share is kept by each user and this share is verifiable by others. In this paper, we
propose two secure, efficient, and verifiable (t, n) multi-secret sharing schemes, namely
Scheme-I and Scheme-II. Scheme-I is based on the Lagrange interpolating polynomial and
the LFSR-based public key cryptosystem. The Lagrange interpolating polynomial is used to
split and reconstruct the secrets and the LFSR-based public key cryptosystem is employed
to verify the validity of the data. Scheme-II is designed according to the LFSR sequence and
the LFSR-based public key cryptosystem. We compare our schemes with the state-of-the-
art in terms of attack resistance, computation complexity, and so on, and conclude that our
schemes have better performance and incur less computation overhead. Our schemes can
effectively detect a variety of forgery or cheating actions to ensure that the recovery of the
secrets is secure and creditable, and the length of the private key is only one third of that
of others for the same security level.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Secret sharing has become one of the most important research areas in modern cryptography since it was proposed in
1979 [1,2]. Nowadays it has beenwidely adopted bymany emerging applications, including opening a bank vault, launching
a nuclear attack, transferring electronic funds, to name a few. Secret sharing plays a significant role in protecting secret
information from becoming lost, being destroyed/altered, or falling into the wrong hands [3,4].

Several drawbacks of the original (t, n)-threshold secret sharing schemes [1,2] have been identified [5], which are listed
as follows:

1. Each secret sharing process involves only one to-be-shared secret.
2. The secret shares can be used only once. After a secret is recovered, the dealermust redistribute a fresh share, also known

as a shadow, over a secure channel to every participant.
3. These schemes assume that the dealer and the participants are honest. Nevertheless, a dishonest dealer may distribute

a fake shadow to a certain participant, and a malicious participant may provide a fake share to other participants. Such
behaviors can significantly affect the effectiveness of secret sharing schemes.

To overcome the first two drawbacks, multi-secret sharing (MSS) was proposed [6–9]. Such a scheme requires that
multiple secrets are shared and each participant holds one share of each secret. For example, the multistage secret sharing
scheme proposed in [6] employs a one-way function to overcome the second drawback, while the YCH scheme [9] utilizes
a two-variable one-way function based Shamir’s secret sharing [1] to tackle both drawbacks. Although MSS schemes have
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many useful applications [10–13], they cannot verify the honesty of either the dealer or the participants, which means that
they cannot handle the scenarios where dishonest dealers and/or participants exist.

The third drawback is tackled by adding the concept of verifiability. In verifiablemulti-secret sharing (VMSS), the validity
of the shares can be verified; hence dishonesty of the participants and/or the dealer can be identified. The realization of VMSS
was first presented by Chor et al. [5] in 1985, and then further investigated bymany other researchers [14–17]. In 2005, Shao
and Cao [18] introduced the discrete logarithm (DL) into the YCH scheme [9], which is believed to be relatively efficient but
does not have the property of verification, to yield an efficient verifiable multi-secret sharing. This new scheme requires the
dealer to distribute one secret shadow to each participant over a secure channel. Later, in 2007, Zhao et al. [19] proposed a
practical VMSS termed ZZZ, which combines the YCH scheme with the Hwang–Chang (HC) scheme [20] to employ the RSA
cryptosystem and the Diffie-Helman key agreement mechanism. The ZZZ scheme does not need a secure channel, but this
benefit comes with a high computation overhead. In 2008, Dehkordi and Mashhadi [13,21] presented two efficient VMSS
schemes, which employ the intractability of the discrete logarithm and the RSA cryptosystem to improve the YCH scheme.
But these two schemes are too resource-intensive, resulting in lower speeds. In 2010, a new VMSS scheme based on the
cellular automata theory [22] was proposed. This scheme has a linear computational complexity, but it fails to resist certain
attacks such as the conspiracy attack, as analyzed in this paper.

We present two novel efficient VMSS schemes in this paper, denoted by Scheme-I and Scheme-II, to overcome the three
drawbacks mentioned above. To split and reconstruct the secrets, Scheme-I adopts the Lagrange interpolating polynomial
while Scheme-II utilizes the homogeneous LFSR sequence. The verification phases of both schemes exploit the LFSR public
key cryptosystem and the LFSR-based public key distribution [23,24]. Our analysis indicates that these two schemes are
computationally secure and efficient. For the same strength of security, the lengths of the private keys obtained from our
schemes are only one-third of those computed by others. Note that the validation of Scheme-I and Scheme-II are established
on the different theories in comparison with the previously proposed schemes.

The structure of the paper is organized as follows. In the next section, the homogeneous LFSR sequence and the third-
order LFSR are briefly introduced. A review of the YCH scheme is also given in this section. We propose our schemes and
analyze their feasibility in Section 3. Sections 4 and 5 detail our security analysis and performance analysis, respectively.
We conclude this paper in Section 6.

2. Preliminaries

In this section, we briefly introduce the homogeneous LFSR sequence, the third-order LFSR, the LFSR public-key
cryptosystem, and the YCH scheme.

2.1. Homogeneous LFSR Sequence

Let F = GF(p), where p is a prime. Denote by f (x) = xt − c1xt−1
−· · ·− ct−1x− ct a polynomial over F , with c1, c2, . . . , ct

being constants in F . We say that s = {sk | k = 0, 1, 2, . . . , } is a homogeneous LFSR sequence of order t (generated by f (x))
if s satisfies the following linear recursive relation:

sj+t =

t
i=1

cisj+t−i, j = 0, 1, . . . . (1)

The vector (sk, sk+1, . . . , sk+t−1), which contains t consecutive terms of s, is called the k-th state of s, denoted by sk. The
initial state of s is (s0, s1, s2, . . . , st−1).

From basic field theory,

xt = c1xt−1
+ c2xt−2

+ · · · + ct−1x + ct (2)

is called the characteristic equation of Eq. (1). The roots of Eq. (2) are called the characteristic roots of Eq. (1). We assume that
Eq. (2) has t characteristic roots, and these roots do not have to be distinct. Let x1, x2, . . . , xl be the distinct characteristic
roots, with multiplicitiesm1, m2, . . . ,ml, respectively, such that

l
i=1 mi = t . Then Eq. (2) can be presented by

(x − x1)m1(x − x2)m2 · · · (x − xl)ml = 0. (3)

We are particularly interested in the sequence uj+t = c1uj+t−1 + c2uj+t−2 + · · · + ctuj, j = 0, 1, . . .. Some properties of
its characteristic equation are summarized by the following two theorems.

Theorem 1. If the characteristic equation of the sequence ui has distinct characteristic roots x1, x2, . . . , xt , we have

ui = A1xi1 + A2xi2 + · · · + Atxit , (4)

where A1, A2, . . . , At are constants that can be computed from c1, c2, . . . , ct .
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Proof. Let f (x) = u0 + u1x + · · · + ut−1xt−1
+ utxt + · · · . Then

f (x) = u0 + u1x + · · · + ut−1xt−1
+ (c1ut−1 + c2ut−2 + · · · + ctu0)xt + (c1ut

+ c2ut−1 + · · · + ctu1)xt+1
+ (c1ut+1 + c2ut+2 + · · · + ctu2)xt+2

+ · · ·

= ctxt(u0 + u1x + u2x2 + · · · ) + ct−1xt−1(u0 + u1x + u2x2 + · · · ) − ct−1u0xt−1

+ · · · + c1x(u0 + u1x + u2x2 + · · · ) − (c1u0x + · · · + c1ut−2xt−1) + u0 + u1x + · · · + ut−1xt−1

= ctxt f (x) + ct−1xt−1f (x) + · · · + c1xf (x) + g(x),

where g(x) = (1 − ctxt − ct−1xt−1
− · · · − c1x)f (x). Since g(x) is a polynomial with a degree t ,

f (x) =
g(x)

(1 − ctxt − ct−1xt−1 − · · · − c1x)
. (5)

When the characteristic equation xt = c1xt−1
+ c2xt−2

+ · · · + ct−1x + ct has distinct characteristic roots x1, x2, . . . , xt ,
1 − ctxt − ct−1xt−1

− · · · − c1x = (1 − x1x)(1 − x2x) · · · (1 − xtx),

f (x) =
g(x)

(1 − x1x)(1 − x2x) · · · (1 − xtx)
. (6)

From the partial fraction decomposition theorem, we have

f (x) =
A1

1 − x1x
+

A2

1 − x3x
+ · · · +

At

1 − xtx
, (7)

where A1, A2, . . . , At are constants computed from c1, c2, . . . , ct , and
Aj

1−xjx
= Aj


+∞

i=0 xijx
i. Then f (x) =


+∞

i=0 (A1xi1 + · · ·+

Atxtt)x
i. Thus ui = A1xi1 + · · · + Atxit , which completes the proof. �

Theorem 2. Assume that ui is an LFSR sequence having distinct characteristic roots x1, x2, . . . , xl with respectively the
multiplicities m1,m2, . . . ,ml such that m1 + m2 + · · · + ml = t. Then

ui = A1(i)xi1 + A2(i)xi2 + · · · + Al(i)xil, (8)

where Aj(i) = P1 + P2i + P3i2 + · · · + Pmj i
mj−1, j = 1, 2, . . . , l, and P1, P2, . . . , Pmj are the undetermined coefficients that can

be computed from c1, c2, . . . , ct .

Proof. Let f (x) = u0 + u1x + · · · + ut−1xt−1
+ utxt + · · · . From Theorem 1, f (x) =

g(x)
(1−ct xt−ct−1xt−1−···−c1x)

. When

the characteristic equation xt = c1xt−1
+ c2xt−2

+ · · · + ct−1x + ct has repeated roots x1, x2, . . . , xl with multiplicities
m1,m2, . . . ,ml such thatm1 +m2 +· · ·+ml = t , (1− ctxt − ct−1xt−1

−· · ·− c1x) = (1− x1x)m1(1− x2x)m2 · · · (1− xlx)ml .
Hence

f (x) =
g(x)

(1 − x1x)m1(1 − x2x)m2 · · · (1 − xlx)ml
. (9)

From the partial fraction decomposition theorem, Eq. (9) can be decomposed as follows:

f (x) =
P1(1)

1 − x1x
+

P1(2)

(1 − x1x)2
+ · · · +

P1(m1)

(1 − x1x)m1
+

P2(1)

1 − x2x
+

P2(2)

(1 − x2x)2

+ · · · +
P2(m2)

(1 − x2x)m2
+ · · · +

Pl(1)

1 − xlx
+

Pl(2)

(1 − xlx)2
+ · · · +

Pl(ml)

(1 − xlx)ml
.

Now we examine each term in the equation,

P1(1)

1 − x1x
= P (1)

1

+∞
i=0

(x1x)i =

+∞
i=0

P (1)
1 xi1x

i,

P1(2)

(1 − x1x)2
=

1
x1


P1(2)

(1 − x1x)

′

=
1
x1

P (2)
1


+∞
i=0

(x1x)i


= P (2)
1


+∞
i=0

(i + 1)(xi1x
i)


,

· · · · · ·

P1(m1)

(1 − x1x)m1
=

dm1−1


P
(m1)

1
(1−x1x)


dxm1−1

·
1

xm1−1
1 (m1 − 1)!

=

dm1−1


+∞
i=0

xi1x
i


dxm1−1
·

P (m1)
1

xm1−1
1 (m1 − 1)!

=
P (m1)
1 i(i − 1) · · · (i − m1 + 2)

xm1−1
1 (m1 − 1)!

+∞
i=m1−1

xi1x
i+1−m1

=
P (m1)
1 (i + m1 − 1) · · · (i + 1)

(m1 − 1)!

+∞
i=0

xi1x
i.
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Then

f (x) =

+∞
i=0


P (1)
1 + P (2)

1 (i + 1) + · · · +
P (m1)
1 (i + m1 − 1) · · · (i + 1)

(m1 − 1)!


xi1

+


P (1)
2 + P (2)

2 (i + 1) + · · · +
P (m2)
2 (i + m2 − 1) · · · (i + 1)

(m2 − 1)!


xi2 + · · ·

+


P (1)
l + P (2)

l (i + 1) + · · · +
P (ml)
l (i + ml − 1) · · · (i + 1)

(ml − 1)!


xil


xi.

Thus

ui =


P (1)
1 + P (2)

1 (i + 1) + · · · +
P (m1)
1 (i + m1 − 1) · · · (i + 1)

(m1 − 1)!


xi1

+


P (1)
2 + P (2)

2 (i + 1) + · · · +
P (m2)
2 (i + m2 − 1) · · · (i + 1)

(m2 − 1)!


xi2 + · · ·

+


P (1)
l + P (2)

l (i + 1) + · · · +
P (ml)
l (i + ml − 1) · · · (i + 1)

(ml − 1)!


xil.

Therefore ui = A1(i)xi1 + A2(i)xi2 + · · · + Al(i)xil, where Aj is a polynomial with degreemj − 1. This completes the proof. �

2.2. The third-order LFSR sequence

Now we consider the third-order LFSR sequence [23,24]. Let f (x) = x3 − ax2 + bx − 1, where a, b ∈ F , be an irreducible
polynomial over F = GF(p). A sequence s = {sk} is said to be a third-order LFSR sequencewith the characteristic polynomial
f (x) if its elements satisfy

sk = ask−1 − bsk−2 + sk−3, (10)

where s0 = 3, s1 = a, and s2 = a2 − 2b. We denote sk as sk(a, b) and s as s(a, b), and call (a, b) the generator or base element
of the LFSR sequence s and k the exponent of sk.

Assume that α1, α2, α3 are the three roots of f (x) = 0 over F . According to Newton’s formula, the elements of s can be
represented as follows by the symmetric kth-power sum of the roots:

sk = αk
1 + αk

2 + αk
3, k = 0, 1, . . . . (11)

Let us denote the period of f (x) by per(f ). Notice that if f (x) is irreducible over F , the period of s(f ) is equal to per(f ).
The following results have been proved in [23,24].

Lemma 3. Let f (x) = x3 − ax2 + bx − 1 be a polynomial over F = GF(p), α1, α2, α3 be the three roots of f (x) in its extension
field GF(p3), and s be the characteristic sequence generated by f (x). Let fk(x) = (x − αk

1)(x − αk
2)(x − αk

3), thus

1. fk(x) = x3 − sk(a, b)x2 + s−k(a, b)x − 1, where s−k(a, b) = sk(b, a).
2. f (x) and fk(x) have the same period if and only if (per(f ), k) = 1.
3. If (per(f ), k) = 1, f (x) is irreducible over F if and only if fk(x) is irreducible over F .

Let f −1(x) = x3−bx2+ax−1. Then f −1(x) is the reciprocal polynomial of f (x) and s−k(a, b) is the characteristic sequence
over F generated by f −1(x). We call s−k(a, b) the reciprocal sequence of sk(a, b).

Theorem 4. Commutative law: Let f (x) = x3 − ax2 + bx − 1 be a polynomial over F , and s be the characteristic sequence
generated by f (x). For all integers k and e, the k-th term of the characteristic sequence generated by the polynomial fe equals the
e-th term of the characteristic sequence generated by the polynomial fk, which in turn equals the (ke)-th term of the characteristic
sequence generated by the polynomial f (x). In other words,

sk(se(a, b), s−e(a, b)) = ske(a, b) = se(sk(a, b), s−k(a, b)). (12)

Proof. Assume that α1, α2, α3 are the three roots of f (x) in the extension field GF(p3). Let s be the characteristic sequence
generated by f (x). Then

fe(x) = (x − αe
1)(x − αe

2)(x − αe
3)

= x3 − (αe
1 + αe

2 + αe
3)x

2
+ (αe

1α
e
2α

e
3)


1
αe
1

+
1
αe
2

+
1
αe
3


x − αe

1α
e
2α

e
3

= x3 − se(a, b)x2 + s−e(a, b)x − 1.
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Thus the k-th term of the characteristic sequence generated by the polynomial fe(x) can be expressed by

sk(se(a, b), se(a, b)) = (αe
1)

k
+ (αe

2)
k
+ (αe

3)
k
= (αk

1)
e
+ (αk

2)
e
+ (αk

3)
e
= sek(a, b).

This proves the theorem. �

Fact 1 [23]: Let k be a fixed positive integer. If k satisfies gcd(k, pi − 1) = 1 for i = 1, 2, 3, then for ∀u, v ∈ F , the system
of equations sk(a, b) = u and s−k(a, b) = v has a unique solution (a, b) ∈ F × F . In other words, sk(a, b) and s−k(a, b) are
orthogonal in F with respect to the variables a and b.

Lemma 5 ([23]). Let f (x) = x3 −ax2 +bx−1 be an irreducible polynomial of the period Q = p2 +p+1 over F and s = {sk} be
the characteristic sequence generated by f (x). Let k and k′ be different coset leaders modulo Q , with both k and k′ being relatively
prime to Q . Then

(sk, s−k) ≠ (sk′ , s−k′). (13)

2.3. The LFSR-based public key cryptosystem

In this section, we illustrate the LFSR public key cryptosystem using the third-order characteristic sequences over ZN . We
choose two primes p and q such that N = pq. Then the period of the irreducible polynomial is δ = (p2 + p+ 1)(q2 + q+ 1).
All computations here are performed in ZN .

1. Public keys: e and N , such that gcd(e, pi − 1) = 1 for i = 2, 3.
2. Private key: d, such that de = 1 mod δ.
3. Enciphering: Given the plain text m = (m1,m2), where 0 < m1,m2 < N , the ciphertext c = (c1, c2) can be computed

as c1 = se(m1,m2) and c2 = s−e(m1,m2).
4. Deciphering: Given the ciphertext c = (c1, c2) and the decryption key d, the plain text can be computed by m1 =

sd(c1, c2) and m2 = s−d(c1, c2).

Let PK1 and PK2 be two public-key cryptosystems that are based on the key spaces G1 and G2, respectively. Denote by #G1
(#G2) the number of elements in G1 (G2). From the theory of cryptography, the public key and private key have the same
key space in any public key cryptosystem. Assume that for the same security level we have #G1

#G2
= r .

Definition 1. The compression ratio of the private key (public key) in PK2 with respect to that in PK1 is r .

Theorem 6. The compression ratio of the private key (public key) in an LFSR-based public key cryptosystem is 3 compared to a
typical public key cryptosystem over GF(p). This indicates that the number of bits for the private key (public key) of the LFSR-based
public key cryptosystem is one-third of that in a system over GF(p) for the same security level.

Proof. The LFSR-based public key cryptosystem is based on the third-order LFSR sequence over GF(p), which has the same
security level as one over GF(p3). From Definition 1, the compression ratio of the private key (public key) in an LFSR-based
public key cryptosystem is r =

#GF(p3)
#GF(p) = 3 compared with any typical public key cryptosystem over GF(p). �

2.4. Review of the YCH scheme

In this section, we briefly review a very popular (t, n)-threshold scheme, the YCH scheme [9].
Let S1, S2, . . . , Sk be the k secrets to be shared. Denote by f (r, w) any two-variable one-way function. The dealer randomly

selects n secret shadowsw1, w2, . . . , wn and distributeswi to participantMi via a secure channel. Then the dealer randomly
picks up an integer r and computes f (r, wi) for i = 1, 2, . . . , n. Next, it performs the following steps.

If k ≤ t .

1. Choose a large prime q satisfying Si < q for i = 1, 2, . . . , k, select integers aj such that 0 < aj < q for
j = 1, 2, . . . , t − k, and then construct the following (t − 1)-th degree polynomial h(x) mod q:

h(x) = S1 + S2x + · · · + Skxk−1
+ a1xk + a2xk+1

+ · · · + at−kxt−1 mod q.

2. Compute Yi = h(f (r, wi)) mod q for i = 1, 2, . . . , n.
3. Publish (r, Y1, Y2, . . . , Yn).

If k > t .

1. Choose a large prime q satisfying S1, S2, . . . , Sk < q, then construct the following (k − 1)-th degree polynomial
h(x) mod q:

h(x) = S1 + S2x + · · · + Skxk−1 mod q.

2. Compute Yi = h(f (r, wi)) mod q for i = 1, 2, . . . , n.
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3. Compute h(i) mod q for i = 1, 2, . . . , k − t .
4. Publish (r, Y1, Y2, . . . , Yn, h(1), h(2), . . . , h(k − t)).

For a (t, n)-threshold scheme, we need the secret shares of at least t participants to recover the k secrets S1, S2, . . . , Sk.
These participants pool their shares f (r, wi), based on which the polynomial h(x) mod q can be uniquely determined as
follows:

If k ≤ t

h(x) =

t
i=1

Yi

t
j=1,j≠i

x − f (r, wj)

f (r, wi) − f (r, wj)
mod q

= S1 + S2x + · · · + Skxk−1
+ a1xk + a2xk+1

+ · · · + at−kxt−1 mod q

else

h(x) =

t
i=1

Yi

t
j=1,j≠i

x − f (r, wj)

f (r, wi) − f (r, wj)
mod q +

k−t
i=1

h(i)
k−t

j=1,j≠i

x − j
i − j

mod q

= S1 + S2x + · · · + Skxk−1 mod q.

3. Verifiable multi-secret sharing scheme

In this section, we propose two new verifiable (t, n) multi-secret sharing schemes, denoted by Scheme-I and Scheme-II,
based on the LFSR sequence, the three-order LFSR public key cryptosystem, and Shamir’s scheme. In [23] the plain text is
encrypted over the LFSR base element, while in our proposed schemes the plain text is encrypted over the exponent element.

3.1. Scheme-I

3.1.1. Initialization phase
We adopt the same notations as those used in the YCH scheme and denote by S1, S2, . . . , Sk the k secrets to be shared.

Note that we do not require the communication channel between the dealer and each participant to be secure. First, the
dealer chooses two strong primes p and q and computes N = pq. Next, it selects two positive integers a and b to get
f (x) = x3 − ax2 + bx − 1, an irreducible polynomial over F = GF(p). Finally the dealer publishes N , a, and b.

Each participantMi randomly chooses an integer ei from the interval [2,N] as its own secret shadow such that gcd(ei, pk−
1) = 1 for k = 2, 3, and computes (sei(a, b), s−ei(a, b)). ThenMi provides (sei(a, b), s−ei(a, b)) and its identity number Idi to
the dealer. For any pair of participants Mi and Mj, the dealer must ensure that (sei(a, b), s−ei(a, b)) ≠ (sej(a, b), s−ej(a, b)).
Each participantMi publishes {idi, sei(a, b)}.

3.1.2. Construction phase
The dealer selects an integer e0 from the interval [2, δ] and computes d such that de0 = 1 mod δ, where δ is the period

of f (x) = x3 − ax2 + bx − 1. Then it performs the following steps:
1. compute (se0(a, b), s−e0(a, b)) and Ii = se0(sei(a, b), s−ei(a, b)) for each participant Mi;
2. publish {se0(a, b), s−e0(a, b), d};
3. choose a hash function H and compute Ri = H(Ii) for each participantMi;
4. if k ≤ t ,

(a) choose a prime q1 such that Si < q1, i = 1, 2, . . . , k;
(b) select t − k integers aj such that 0 < aj < q1, j = 1, 2, . . . , t − k;
(c) construct a (t − 1)-th degree polynomial h(x) = S1 + S2x + · · · + Skxk−1

+ a1xk + a2xk+1
+ · · · + at−kxt−1 mod q1;

(d) compute Yi = h(Ri) mod q1, i = 1, 2, . . . , n;
(e) publish {Y1, Y2, . . . , Yn};
else
(a) choose a prime q1 such that Si < q1, i = 1, 2, . . . , k;
(b) construct a (k − 1)-th degree polynomial h(x) = S1 + S2x + · · · + Skxk−1 mod q1;
(c) compute Yi = h(Ri) mod q1 and h(i) mod q1 for i = 1, 2, . . . , n;
(d) publish {Y1, Y2, . . . , Yn, h(1), h(2), . . . , h(k − t)}.

3.1.3. Recovery and verification phase
Let M = {M1,M2, . . . ,Mt}. The members of M will recover the secrets S1, S2, . . . , Sk based on the following procedure.

1. EachMi computes I ′i = sei(se0(a, b), s−e0(a, b)) to get the share, where ei is the shadow of Mi.
2. The participant in M verifies I ′i provided byMi. If sd(I ′i ) = sei(a, b), then I ′i is true; otherwise I ′i is false, which means that

Mi might be a cheater.
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3. Each participant computes R′

i = H(I ′i ).
4. Recover the secrets: the polynomial h(x) mod q1 can be uniquely determined as follows:

if k ≤ t

h(x) =

t
i=1

Yi

t
j=1,j≠i

x − R′

j

R′

i − R′

j
mod q1

= S1 + S2x + · · · + Skxk−1
+ a1xk + a2xk+1

+ · · · + at−kxt−1 mod q1

else

h(x) =

t
i=1

Yi

t
j=1,j≠i

x − R′

j

R′

i − R′

j
mod q1 +

k−t
i=1

h(i)
k−t

j=1,j≠i

x − j
i − j

mod q1

= S1 + S2x + · · · + Skxk−1 mod q1.

3.2. Scheme-II

Similarly to Scheme-I, Scheme-II does not require the establishment of a secure channel between each participant
and the dealer. Let S1, S2, . . . , Sk be the k secrets to be shared. First, the dealer chooses two strong primes p and q and
computes N = pq. Second, it selects two positive integers a and b to get f (x) = x3 − ax2 + bx − 1, an irreducible
polynomial over F = GF(p). Then the dealer picks up an integer α ≠ 0 and computes c1, c2, . . . , ct from the characteristic
equation (x − α)t = xt + c1xt−1

+ · · · + ct = 0. Next, it selects a different prime number q1 (q1 < p < N) such that
q1 > ci, i = 1, 2, . . . , t . Finally, the dealer publishes {N, a, b, α, q1}.

Each participantMi randomly chooses an integer ei from the interval [2,N] as its own secret shadow such that gcd(ei, pk−
1) = 1 for k = 2, 3 and computes (sei(a, b), s−ei(a, b)). Then it provides (sei(a, b), s−ei(a, b)) and its identity number Idi to
the dealer. For each pair of participantsMi andMj, the dealer must ensure that (sei(a, b), s−ei(a, b)) ≠ (sej(a, b), s−ej(a, b)).
EachMi publishes {idi, sei(a, b)}.

3.2.1. Construction phase
The dealer performs the following steps.

1. Randomly choose an integer e0 from the interval [2, δ] and compute d such that de0 = 1 mod δ, where δ is the period of
f (x) = x3 − ax2 + bx − 1.

2. Compute (se0(a, b), s−e0(a, b)) and Ii = se0(sei(a, b), s−ei(a, b)).
3. Choose a hash function H and compute Ri = H(Ii) for each participantMi.
4. Consider a homogeneous LFSR presented by the the following equation and compute ui for t ≤ i ≤ n + k:

u0 = R1, u1 = R2, . . . , ut−1 = Rt ,
uj+t + c1uj+t−1 + · · · + ctuj = 0 mod q1(j ≥ 0). (14)

5. Compute Yi = Ri − ui−1, t < i ≤ n and ri = Si − ui+n for 1 ≤ i ≤ k.
6. Publish {se0(a, b), d, r1, r2, . . . , rk, Yt+1, Yt+2, . . . , Yn}.

3.2.2. Recovery and verification phase
Now we shall show how a participant can verify other participants’ cheating actions and how t honest participants can

recover the shared secrets.

1. Each participantMi computes I ′i = sei(se0(a, b), s−e0(a, b)) to get the share, where ei is the shadow ofMi.
2. The participant can verify I ′i provided byMi: if sd(I ′i ) = sei(a, b), then I ′i is true; otherwise I ′i is false, which means thatMi

might be a cheater.
3. Suppose t arbitrary participants Mi pool their secret shares {Ri}. They could compute t terms of the homogeneous LFSR

by their shares based on the following equation:

ui−1 =


Ri if 1 ≤ i ≤ t,
Ri − Yi if t < i ≤ n.

We could take one of the following two methods to recover the shared secrets.
Method 1: Choose Lagrange interpolation and t pairs (i − 1, ui−1/α

i−1) to gain the (t − 1)-th degree polynomial
P(x) mod q1 according to the formula

P(x) =

 ui−1

αi−1


j≠i

x − j + 1
i − j

mod q1 = P1 + P2x1 + · · · + Ptxt−1 mod q1.
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From Theorem 2, we obtain uj = P(j)αj mod q1 for all j ≥ t and the shared secrets can be computed by Si = ui+n + ri for
1 ≤ i ≤ k.

Method 2: From Theorem 2, we can solve the following system of equations:
u0 = P1 ∗ α0

u1 = (P1 + P2) ∗ α

u2 = (P1 + P2 ∗ 2 + P3 ∗ 22) ∗ α2

· · ·

ui−1 = (P1 + P2(i − 1) + · · · + Pt(i − 1)t−1)αi−1 mod q1

(15)

to gain the unique solution P1, P2, . . . , Pt . Then we could obtain ui = (P1 + P2i + · · · + Pt it−1)αi mod q1 for ∀i ≥ t and
recover the shared secrets based on the formula Si = ui+n + ri for 1 ≤ i ≤ k.

3.3. Feasibility analysis

We shall analyze the feasibility of the share generation algorithm and the verification algorithm in Scheme-I and Scheme-
II in this subsection.
1. In both schemes, it is absolutely impossible for the dealer to become a cheater. Because each participant selects its own

shadow independently, we do not need a verification process between the dealer and the participants.
2. In both schemes, each participant Mi computes I ′i = sei(se0(a, b), s−e0(a, b)) = se0(sei(a, b), s−ei (a, b)) = Ii. Other

participants can use the published I ′i . Moreover, every participant can reuse his/her own shadow.
3. In verification, if a participant Mi does not have a cheating action, sd(I ′i ) = sd(sei(se0(a, b), s−e0(a, b))) =

sde0(sei(a, b), s−ei(a, b)) = sei(a, b) since de0 = 1 mod δ; otherwise,Mi might be a cheater.

4. Security analysis

Our schemes are based on the security of Shamir’s secret sharing scheme, the LFSR sequence, and the third-order LFSR
public key cryptosystem. In this section, we analyze the security strengths of the proposed schemes by examining how they
can counter several major possible attacks.

4.1. Security of Scheme-I

The security of Scheme-I is based on that of the third-order LFSR-based public key cryptosystem [23] and that of Shamir’s
secret sharing scheme [1]. Our analysis on the security of Scheme-I is presented below.

Attack 1: Participant Cheating.
Analysis: Assume that a certain participant, say Mi, intends to provide a wrong private key sej to gain the secret(s). Thus

Mi computes I ′i = sej(se0(a, b), s−e0(a, b)) and broadcasts it. However, when receiving I ′i provided by Mi, other participants
could verify the validity of I ′i by computing sd(I ′i ) = sej(a, b) ≠ sei(a, b) because the Idi and the sei of Mi are published.
Therefore it is easy to detect whether or notMi provides an incorrect I ′i .

Attack 2: Conspiracy attacks.
Analysis: Assume that twoparticipantsMi andMj collude in order to recover the secrets. For example, they could exchange

their sei and sej values. Thus Mi holds sej and Mj holds sei . Then Mi can compute sd(I ′j ) = sej(a, b) and Mj can compute
sd(I ′i ) = sei(a, b). ThereforeMi andMj might be able to pass the verification. However, this is not true because all participants
have published their Id and (Id, se) pairs, which means that the Id could not be tampered with. Thus other participants can
easily recognize the conspiracy of the participantsMi and Mj.

Attack 3: A plotter E may try to reconstruct the polynomial h(x) mod q1 when there are less than t participants available.
Analysis: If plotter E wants to use fewer than t shares to reconstruct the polynomial h(x) mod q1, the hardness is

equivalent to the case that E successfully breaks Shamir’s scheme, as Scheme-I is based on the security of Shamir’s scheme.
Attack 4: The plotter E tries to obtain the secret shadow ei of the participant Mi from the public information I ′i and

(sei(a, b), s−ei(a, b)).
Analysis: Assume that the plotter E intends to get the secret shadow ei of the participant Mi from the public

information I ′i and (sei(a, b), s−ei(a, b)). E can compute I ′i = sei(se0(a, b), s−e0(a, b)), and form the polynomial fei =

x3 − sei(se0(a, b), s−e0(a, b))x
2

+ s−ei(se0(a, b), s−e0(a, b))x − 1. Since fe0 = x3 − se0(a, b)x
2

+ s−e0x − 1 is irreducible,
fei is also irreducible according to Lemma 3. Assume that α and β are the roots of fe0 and fei , respectively. Then β = αei . Once
α andβ are known, deriving the exponent ei is equivalent to computing the discrete logarithm inGF(p3). Solving the discrete
logarithm in GF(p3) is much harder than that in GF(p). As we know that the discrete logarithm problem is NP-complete, it
is secure to reuse the secret shadow.

4.2. Security of Scheme-II

Attack 1: t − 1 or fewer participants try to recover the secrets.
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Table 1
A comparison study on the security strengths of the five schemes.
Property Type1 [21] Type 2 [21] Scheme in [22] Scheme-I Scheme-II

The dealer distributes the secret shadow No No Yes No No
Verify the cheating action among the participants Yes Yes Yes Yes Yes
Prevent t − 1 or fewer participants from recovering the secrets Yes Yes Yes Yes Yes
Resist the conspiracy attack No No No Yes Yes
No secure channel is needed Yes Yes Yes Yes Yes
Prevent the participants from revealing each other’s secret
shadow after the recovery phase Yes Yes Yes Yes Yes
Resist revelation of the secret shadow sj of the participant Mj
from the public information Yes Yes Yes Yes Yes
Resist the cheating actions among participants Yes Yes Yes Yes Yes

Analysis: There are two methods to recover the secrets. In Method 1, P(x) is based on the characteristic equation of the
homogeneous LFSR. Assume that t − 1 or fewer participants pool their secret shares. Then the participants could get t − 1
or fewer pairs (i, ui/α

i) of P(x). Therefore they have no way to reconstruct the (t − 1)-th degree polynomial P(x), which
means that they could not obtain any information regarding the secrets and the secret shadows. In Method 2, because there
are at least t unknown quantities, the shared secrets and secret shares could not be gained by solving t − 1 or less number
of simultaneous equations when t − 1 or fewer participants pool their secret shares.

Attack 2: Attackers want to reveal the secret shadow ei of the participant Mi from the public information sei .
Analysis: Assume that an attacker intends to get the secret shadow ei of the participant Mi from the public information

(sei , s−ei). It can form the polynomial fei(x) = x3 − seix
2
+ s−eix − 1 based on (sei , s−ei). Because f (x) = x3 − ax2 + bx − 1 is

irreducible over F , fei is also irreducible according to Lemma 3. Assume that α and γ are the roots of f and fei , respectively.
Then β = γ ei . Once α and γ are known, deriving the exponent ei is equivalent to computing the discrete logarithm, which is
an NP-complete problem. Therefore it is secure to reuse the secret shadow, which means that the attacker could not reveal
ei from the public information.

Attack 3: The attacker tries to reveal the secret share Ii from the public information se0 and sei .
Analysis: Because Ii = se0(sei(a, b), s−ei(a, b)) = sei(se0(a, b), s−e0(a, b)), the attacker must try to reveal ei and e0 first.

From Lemma 3, the security of e0 and ei is based on the discrete logarithm problem. Thus it is impossible for the attacker to
reveal Ii from se0 and sei .

Attack 4: The participantMi tries to reveal the secret shadow ej ofMj from Ij, where j ≠ i.
Analysis: Ij = sej(se0(a, b), s−e0(a, b)). According to Lemma3, computing ej from Ij needs solution of the discrete logarithm

problem. Therefore it is absolutely impossible for any participant to get other participants’ secret shadows.
To complete this section, we compare the security strengths of Scheme-I and Scheme-II with those of the two schemes

(Type 1 and Type 2) in [21] and the scheme in [22] in terms of countering the resistance attack. The results are reported in
Table 1.

5. Performance analysis

In this section, we discuss several important properties and analyze the performance of the proposed schemes.

5.1. Advantages of the proposed schemes

1. Multiple secrets can be reconstructed simultaneously within a secret sharing session.
2. Each qualified subset of participants is able to compute the shared secrets while the unqualified ones cannot obtain any

information about the secrets.
3. The knowledge of any t or more shares suffices to reconstruct the secrets and the knowledge of fewer than t shares is

not enough to reconstruct the secrets; i.e. Scheme-I and Scheme II are (t, n)-threshold schemes.
4. Eachparticipant is allowed to check the validity of the shares of other participants and itself; i.e. our schemes are verifiable.
5. Traditionally the dealer should also be verifiable as some/all of the participants may be prevented from reconstructing

the original secrets due to the dishonesty of the dealer. Thus each participant is allowed to check whether the dealer is
honest when distributing the shadows. However, in our schemes, the participants choose their own shadows, making it
impossible for the dealer to cheat them. Therefore we do not need to verify the validity of the dealer.

6. The shadow of each participant will never be disclosed in the recovery and verification phases and its reuse is secure; i.e.
our schemes aremulti-use schemes.

5.2. Computational complexity

It is obvious that the most time-consuming phases in our schemes are the verifiable phase and the recovery phase. In
this subsection, we discuss the security and computational complexity of these two phases and compare our schemes with
others.
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Table 2
A comparative analysis of the characteristics of our schemes and those in [21,22].
Property Type1 [21] Type2 [21] Scheme in [22] Scheme-I Scheme-II

Having verification property Yes Yes Yes Yes Yes
It is impossible for the dealer to cheat Yes Yes Yes Yes Yes
Efficient recovery, (re)construction and verification Yes Yes Yes Yes Yes
Security is based on different public key cryptosystem RSA RSA RSA LFSR LFSR
The length of the private key in 1024-bit finite fields 1024 bits 1024 bits 1024 bits 340 bits 340 bits
The length of the public key in 1024-bit finite fields 1024 bits 1024 bits 1024 bits 340 bits 340 bits
Shadows are reusable when participants join/leave the group Yes Yes Yes Yes Yes
The shadow is reusable when shared secrets are reconstructed Yes Yes Yes Yes Yes
The dealer does not know the shadow of each participant Yes Yes Yes Yes Yes
Time complexity of the recovery phase when (k > t) O(t2) O(t2) O(k2) O(k2) O(t2)

5.2.1. Verifiable phase
The two schemes (Type 1 and Type 2) in [21] are based on the RSA cryptosystem, with Type 1 requiring each participant

to have one exponent while Type 2 needs n exponents. The RSA encryption takes O(N3) unless small encryption exponents
are used. The scheme in [22] is based on the discrete logarithm problem. Our schemes are based on the LFSR-based public
key cryptosystem. Each participant Mi chooses ei as its secret shadow according to the underlying cryptosystem, with ei
being the private key, and the public key sei(a, b) being published. Note that the scheme in [22] and our schemes all require
each participant to choose its own shadow, therefore it is impossible for the dealer to cheat. However, the key length in our
schemes is much shorter. Considering a 1024-bit finite field at the same security level, the length of the private key can be
represented by 340 bits in our schemes while the private key in [21,22] is three times longer.

5.2.2. Recovery phase
In our schemes, the recovery phase is the most time-consuming one. In Scheme-I, participants take the Lagrange

interpolation polynomial to distribute secrets. The n-th degree polynomial can be reconstructed in time O(n2) by using
Lagrange interpolation. Therefore the recovery phase in Scheme-I can be reconstructed in time O(t2) when t ≥ k or O(k2)
when t < k. In Scheme-II, there exist two methods to recover the secrets, with the first one taking time O(t2). We can solve
the t simultaneous equations in the second method in time O(t2), which is much faster than Scheme-I when k > t . Table 2
illustrates a comparative analysis of the characteristics of our schemes and those in [21,22].

5.3. Dynamic multi-secret sharing

In our proposed schemes, the participant Mi, the secret ei, etc., can be dynamically operated. In this section, we discuss
the scheme by considering a dynamic refresh, delete, and addition in accordance with practical settings.

1. When a new participant Mnew joins the network, it selects its own shadow enew and provides senew (a, b) and idnew to
the dealer. The dealer computes (se0(a, b), s−e0(a, b)) and Inew = se0((senew (a, b), s−enew (a, b)). Then senew (a, b) and idnew are
published.

2. When we need to delete a participant Mdel, the dealer only needs to erase sdel(a, b) and Iddel. If the deleted participant
Mdel wants to adopt its sdel to reconstruct the secret, it could not pass the verification.

6. Conclusions

Based on the LFSR sequence, we have proposed two new and efficient verifiable multi-secret sharing schemes in this
paper. Our schemes have the same advantages compared to the previous ones, but have better performance and shorter
private/public key length in comparisonwith those in [21,22] for the same security level. Analyses indicate that our schemes
are computationally secure and efficient. Moreover, they are easy to implement and are applicable in practical settings.

Our future research lies in the following two directions. First, we intend to design a better VMSS, which has less
computation and storage requirements but is better suited for practical situations. Second, we will investigate how to
dynamically operate our schemes when a new secret is inserted or an old secret is deleted. This is a very important question
with a lot of practical applications.
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