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Abstract—In this paper we investigate the dynamic traffic
relationship characterized by a similarity value from one road
point to another in vehicle networks. Due to the regularity
of human mobility, traffic exhibits strong correlations in both
temporal domain and spatial domain. By exploiting the similarity
values, we derive application-specific message update rules for
affinity propagation, based on which we propose an instant traffic
clustering algorithm to partition the road points into time variant
clusters, where the traffics within the same cluster are strongly
spatially correlated. Online traffic clustering is also considered
by clustering combination via evidence accumulation for further
influence study. We also present a neural network based traffic
prediction algorithm to predict the traffic conditions cluster by
cluster for a future time based on the current and historical traffic
data. Simulation study on real traffic data demonstrates that
our proposed algorithms are able to identify the true influences
among road points and provide accurate traffic predictions.

I. INTRODUCTION

Traffic prediction has been of broad interests to many
applications in vehicle networks for a long time [1]–[3].
Current work on predicting roadway traffics [4]–[13] focuses
on modeling the traffic flows by analyzing the time series data.
The corresponding results reveil that it is very hard to find a
deterministic prediction model on general traffic flows [14], as
the existing models either suffer from low prediction accuracy
or only work in a particular period.

Few work has taken into account the spatial correlations of
traffics at different road points. Boosting traffic may propagate
from one point to another, while cars from traffic-free roads
may accumulate at some road point and cause congestions.
Therefore, the traffic volume/speed at one road point is af-
fected by that of others. Then which points affect a certain road
point? Addressing this question by including all road points
in a given map would be computationally intensive, while
simply considering only the nearby points may lose important
information and result in low performance for long term traffic
prediction. In [8], [12], [15], stationary correlations within a
fixed set of neighboring nodes is assumed but this assump-
tion is not reasonable because in reality the influence scale
from one road point to another varies considerably. Another
question is how to specify the spatial influence. Kamarianakis
and Prastacos [8] suggest that it only depends on the distance
between the road points, which ignores other important factors
such as the traffic volume/speed. In this paper, we intend

to learn the dynamic relationships among the road points.
A traffic influence metric termed “similarity” to quantify the
influence of one road point to another is first proposed. Then
an instant and an online traffic clustering algorithm based on
affinity propagation and evidence accumulation, respectively,
are designed to partition the road points into time variant
clusters, where traffics within the same cluster are strongly
spatially correlated. Finally we design a neural network based
traffic prediction algorithm to predict the traffic for a future
time cluster by cluster based on the current and historical data.

The major contributions of the paper are summarized as
follows:

• We define a traffic condition factor, based on which a
similarity value quantifying the influence of one road
point on another is elaborated. This similarity value
captures the dynamic relationship between road points.

• We derive our application-specific message passing up-
date rules for affinity propagation, based which an instant
traffic clustering algorithm to classify the road points into
time-variant clusters is proposed, where points within the
same cluster are strongly spatially correlated.

• We also propose an online traffic clustering algorithm
by clustering combination via evidence accumulation to
produce a general clustering to further investigate the
influence of different road points.

• We design an online neural network based traffic predic-
tion algorithm, which captures both the temporal and the
spatial influences among the road points.

• We conduct an extensive simulation study over real
traffic data to evaluate the performances of the proposed
methods. The superiority of our design compared to other
popular ones is validated by the simulation results.

The rest of the paper is organized as follows: Section II sum-
marizes the related work and Section III presents the network
model. Section IV provides the mathematical foundations of
Affinity Propagation, derives our application-specific update
rules, and proposes our traffic clustering algorithms. Section
V details the neural network based online traffic prediction
algorithm. Our simulation results over real traffic data are
reported in Section VI. Section VII concludes the paper and
discusses future research.
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II. RELATED WORK

In this section, we summarize the most relevant research on
traffic clustering and prediction based on influence analysis.

Clustering has been widely applied to various applications
in vehicle networks. Earlier research [16], [17] employs clus-
tering architectures to support efficient routing and expand
the communication range. Recently, the growing interest in
Intelligent Transportation Systems inspires the investigation
on inter-vehicle communications [18]–[20], which integrates
clustering with MAC protocols to control the realtime data
transmissions (e.g., video/audio, road/vehicle traffic/weather
information) in order to optimize the communication per-
formance within a mobile ad hoc network. Clustering is
also adopted for vehicle classification to model the trajectory
distributions and learn the motion patterns based on pairwise
similarities [21]–[23]. Fuzzy clustering is employed in [15]
to estimate the traffic data via spatial interpolation. But the
utilization of clustering in traffic prediction is very limited.
In this paper, we employ clustering to demonstrate that traffic
data exhibits strong spatial and temporal correlations among
the road points and make use of these correlations to predict
the traffic conditions.

Traffic prediction has attracted a lot of attention from both
research and industry communities. Prior effort mainly focuses
on two directions: (1) statistical methods such as regression
( [5]–[8], [12]) and Kalman filters ( [9], [10]) are employed
for traffic modelling; and (2) neural network methods ( [4],
[11], [13]) are adopted to automatically learn the non-linear
relationships between successive traffic time series. These
approaches intend to capture the traffic characteristics from
continuous traffic flows, and their results indicate that it is hard
to find a deterministic model that is suitable for general traffic
– they either suffer from low prediction accuracy or are only
applicable in a particular period. Though most of the current
prediction methods focus on a single flow, [8], [12], [15] take
the spatial influence from other flows into account. In [8],
it is assumed that the spatial correlations between the traffic
flows are stationary. In [12] and [15], the correlations within
a fixed distance neighborhood are considered. These works
provide very limited insights into the traffic characteristics as
in reality, the influence scale of the flows vary considerably
over both time and space.

This paper is motivated by the studies of social influence
among human beings in social communities [24]. We inves-
tigate the dynamic relationships among the road points and
propose a traffic clustering algorithm to partition them into
time variant clusters, where the traffic within the same cluster
are strongly spatially correlated. An online traffic prediction
algorithm is then designed to predict the traffic conditions at
a future time cluster by cluster.

III. NETWORK MODEL

We model the traffic system as a directed time-variant
node-weighted graph G(V,E, µt), where V is the set of N
road points, E is the set of directed edges representing the

connections among the road points and the directions of the
traffics on the edges, and µt is the traffic state of the system
at time t. In our consideration, µt = [vt1, vt2, · · · , vtN ], with
vti being the average vehicle speed at sensor i in time t.
Note that µti can be collected by placing a sensor [3], [25] at
road point i. This indicates that each road point is assumed to
measure the average vehicle speed in one direction. Therefore
at crossroads, multiple read points are needed in order to
monitor the traffic at different directions.

We further observe that in practice, weekdays and weekends
usually exhibit significantly different traffic conditions while it
is shown that all weekdays (weekends) have similar congested
and congestion-free traffic patterns; therefore we group the
days and treat different groups separately. Thus a better model
for the traffic system under our consideration is a graph G,
denoted by G(V,E, µτ

t ), where the superscript τ stands for
the group τ to differentiate the days. For simplicity, in our
presentation we omit either τ or t or both if this does not cause
any ambiguity from context. But we would like to emphasize
that our algorithms are not dependent on any grouping result.

Our major objectives are to cluster the traffic state, from
which the congested road points and the corresponding ones
that are being influenced can be identified, and to predict
the traffic conditions at a future time instance based on the
current and historical traffic data1. As discussed in previous
works [5]–[7], [9], the congestion condition on a road point
greatly influences that of its surrounding ones. This is because
a congested road point plays the role of a flow center that
usually has the highest traffic volume and accumulates/diffuses
its traffic from/into other points. On the other hand, the
surrounding points are potential supporters that direct their
traffic to/from the congested point and aggravates/soothes the
congestion. Therefore, a congested point and its surrounding
ones are strongly temporally and spatially correlated. Then
how to quantify the mutual influence of the road points?

To tackle this problem, we classify the road points into
clusters, with each having one center. The traffic conditions of
the points within each cluster are strongly spatially correlated.
A cluster center, which is usually the most congested in the
cluster, influences others within the cluster the most. Therefore
a clustering algorithm is first sought to divide the given traffic
map into clusters with each containing strongly correlated and
mutually influencing road points. In other words, congestions
at a specific time are identified by clustering.

On the other hand, traffic would vary at different time
instances. A road point congested at time t1 would become idle
at time t2. Therefore at different times, one point’s influence
scale on others would be different. Thus any fixed partition
of the road points into clusters with strongly correlated traffic
could not reflect the time-variant property of the traffic states
and the traffic relationship among different points.

To address this issue, we assume that time is slotted, and
that the sensor readings are collected at the beginning of each

1We use traffic state, traffic condition, and traffic data interchangeably in
this paper.
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time slot. The duration of one slot is a unit of time. In this
paper, we perform clustering over the traffic data collected at a
time instance t to partition the road points into a set of disjoint
clusters with each having spatially mutually influencing road
points in terms of the traffic condition. Then the sets of clusters
constructed at the same time instance but on different days
are combined to yield a single set of clusters for further intra-
cluster influence analysis. Finally we investigate how to predict
the traffic condition at a future time based on the current and
historical traffic data. The following challenging questions will
be addressed:

1) How to classify the road points based on the traffic data
collected at a specific time to yield clusters that contain
spatially mutually influencing road points?

2) How to online combine a newly generated set of clusters
with those generated at the same time instance but on
previous days for further traffic influence analysis?

3) How to predict the traffic states at a future time based
on the current and historical traffic data?

In the following section we establish the mathematical
foundations of Affinity Propagation (AP) and propose our
algorithm for traffic clustering. AP is adopted because it can
easily capture and handle the influence between road points
via passing real-valued messages to maximize the similarities
of the road points and their corresponding cluster centers.

IV. AFFINITY PROPAGATION BASED TRAFFIC CLUSTERING

In this section, we provide the mathematical foundations of
affinity propagation, derive its update rules, and then propose
a simple algorithm for traffic clustering.

A. Problem Description

Given a traffic graph G(V,E, µ), for ∀i ∈ V , let N i
in and

N i
out be the sets of nodes within a predefined hop-distance

H whose traffic comes into and leaves from i, respectively.
Denote by dij the physical distance between i and j, where
i, j ∈ V . The traffic condition factor at each node i, denoted
by fi, can be defined as follows:

fi =
vmax
i

vi
, (1)

where vmax
i is the speed limit at node i, and vi is the average

velocity of the vehicles passing by i. Therefore for two road
points with the same speed limit, the lower the v, the busier
the traffic, and thus the larger the fi. Here vmax

i is used as
a parameter to characterize the traffic condition of i when
there is no congestion. Consider an urban road and a highway
with speed limits of 30 mph and 60 mph, respectively. An
average vehicle velocity of 30 mph indicates different traffic
conditions: the urban road is free of congestion while the
highway is congested! Correspondingly, their traffic condition
factors are 1 and 2, respectively.

Facilitated with these notations, we define sij , the similarity
characterizing how well the road point j is suited to be the

influence center of the road point i based on their traffic data:

sij =
fj

fmax
ij (dij + 1)

×
f ′j

max {f ′i , f ′j}
, (2)

where f ′i = |fi +
∑

m∈Ni
in
fm −

∑
n∈Ni

out
fn|, and fmax

ij is
the maximum fk, with k being a road point on the shortest
path from i to j, inclusively. The above definition of similarity
(2) has the following intuition: if a road point i has a high sij
with the road point j, j may have a high influence on i. This
definition is based on the following considerations:
• A road point should have the highest similarity with itself

(self-similarity). This implies that a road point should
influence itself the most. Accordingly, (2) yields

sij

{
= 1, if i = j;
< 1, if i ̸= j.

• Because the traffic condition at j affects whether it can
influence on that of i, sij is proportional to fj . This
can be justified as follows. A road point with a larger
traffic volume has a greater influence on its neighboring
road points than the one with a smaller traffic volume
as the traffic at a more congested road point will sooner
or later be distracted into other neighboring road points.
On the other hand, congested road points always have
high traffic volumes. Since we take influence centers as
potential congested road points, a center should have a
greater traffic volume than others.

• Since a road point j in general has less influence on i
if it is far away from i, sij is inversely proportional to
(dij + 1). Here we make this term never less than 1 to
guarantee a closed form for the case of i = j.

• If the net traffic contributed by the neighbors of a road
point is large, the possibility of this point being a center
is big. Therefore sij is proportional to f ′j . The inclusion
of the term max{f ′i , f ′j} has two purposes. First, it is
used for normalization; second, it tells that when the net
traffic contributed by the neighbors of i exceeds that of
j, the possibility of j being an influence center of i is
small.

• If a road point k residing on the path from i to j has
a very big f , the possibility of j being i’s center would
be low. In other words, k might be a better candidate
influence center for i compared to j. Therefore sij is
inversely proportional to fmax

ij .
Let F be the set of influence centers of the road points

in G, and xi ∈ F be the center of the road point i, i ∈
{1, 2, · · · , N}. Our objective is to find the set F such that
the sum of the similarities between the road points and their
corresponding influence centers is maximized. That is,

F = argmax
x1,x2,··· ,xN

{
N∑
i=1

sixi | xi = 1, 2, · · · , N

}
. (3)

This can be solved via affinity propagation (AP) [26]. AP is
a new clustering algorithm that identifies cluster centers and
forms clusters of data points by simultaneously considering
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all data points as potential cluster centers and exchanging
messages between them until a good set of cluster centers
and clusters emerges. Two types of messages are exchanged
between the data points, namely the responsibility rik, which
is sent from a data point i to a candidate center k, indicating
how well-suited the data point i would be as a member of the
candidate cluster formed by the center k, and the availability
aik, which is sent from a candidate cluster center k to a data
point i, indicating how appropriate that candidate k would be
as a cluster center for the data point i. After the messages have
converged, one can exploit the following method to identify
the cluster centers: for point i, the point j that maximizes
aij + rij is the cluster center (and the cluster) of the point i.

The update rules for the real-valued messages (responsibil-
ities and availabilities) exchanged between road points will be
derived based on a factor graph model in the next subsection.

B. The Update Rules of Affinity Propagation

We first present our factor graph model for the derivation
of the AP update rules. From (3), we observe that identifying
the influence centers can be viewed as searching over the
configurations of a valid set F so as to maximize the sum
of similarities. Let hk be the constraint function ensuring that
a road point k is a "true center" if and only if it is a center
of itself and at least one other point, and is a center of all its
directly connected neighbors. That is,

hk =


−∞, if xk = k, and for ∀t ̸= k, xt ̸= k;
−∞, if xk = k, but ∃i ∈ Nk such that xi ̸= k
0, otherwise.

(4)
where Nk denotes the directly connected neighbor set of node
k.

Note that this constraint function is different than the
one used in [26]. Therefore new update rules for affinity
propagation has to be derived. Considering the constraint in
(4), (3) is rewritten to obtain the following global function:

FG =

N∑
i=1

sixi +

N∑
k=1

hk. (5)

A factor graph A can be constructed based on the global
function defined in (5). Each variable xi in (5) is represented
by a variable node in A while each sixi or hk is represented
by a function node in A. Edges in the factor graph indicate
the dependence of the functions on the variables.

To derive our own update rules for message passing in
affinity propagation, we apply the max-sum algorithm on the
factor graph. Two types of messages are passed between xi

and hk in the factor graph. Denote the message from xi to hk

by ρi→k(xi) and the message from hk to xi by αi←k(xi).
According the update rules of the max-sum algorithm, we
have:

ρi→k(xi) = sixi
+
∑
j ̸=k

αi←j(xi), (6)

αi←k(xi) = max
∼{xi}

{hk +
∑
j ̸=i

ρj→k(xj)}, (7)

where ∼ {xi} is the set of xi’s not including xi. Substitute
(6) and (4) into (7), we obtain

αi←k(xi) =
∼{xi}
max

xk = k and xt0 = k, ∀t0 ∈ Nk

and xt1 = k, ∃t1 ̸= k
or ∀i, xi ̸= k

∑
j ̸=i

ρj→k(xj),

which is further expressed as:

αi←k(xi) =



∑
j /∈(i,Nk)

maxxj ρj→k(xj)+

maxj /∈(i,Nk){ρj→k(k)−maxxj ρj→k(xj)}
+
∑

j∈Nk/{i} ρj→k(k), xi = k = i∑
j ̸=k maxxj ρj→k(xj), xi ̸= k = i∑
j /∈(k,Nk)

maxxj ρj→k(xj)+∑
j∈Nk/{i} ρj→k(k), xi = k ̸= i∑
j /∈(i,Nk)

maxxj ρj→k(xj)+∑
j∈Nk/{i} ρj→k(k) + max{ρk→k(k)

−maxxk
ρk→k(xk)+

maxj ̸=k,i(ρj→k(k)−maxxj ρj→k(xj)),
maxxk ̸=k ρk→k(xk)−maxxk

ρk→k(xk)},
xi ̸= k ̸= i

(8)
Decompose ρi→k(xi) and αi←k(xi) as the sum of a con-

stant and a varying component (w.r.t. xi) as follows:

ρi→k(xi) = ρ̃i→k(xi) + ρ̄i→k, (9)

αi←k(xi) = α̃i←k(xi) + ᾱi←k. (10)

Let ρ̄i→k = maxj ̸=k ρi→k(j) and ᾱi←k = αi←k(xi ̸= k),
Then α̃i←k = 0, for xi ̸= k. Therefore, we have:

ρ̃i→k(k) = sik −max
j ̸=k

{sij + α̃i←j(j)}, (11)

and

α̃i←k(k) = max
j ̸=i,j /∈Nk

min{ρ̃j→k(k), 0} (12)

+
∑

j∈Nk/{i}

ρ̃j→k(k), for k = i,

α̃i←k(k) = min{− max
j ̸=k,i,j /∈Nk

min{ρ̃j→k(k), 0} (13)

− min{ρ̃k→k(k), 0} −
∑

j∈Nk/{i}

ρ̃j→k(k),

max{ρ̃k→k(k), 0}}, for k ̸= i.

According to the above equations, α̃i←k(xi ̸= k) and
ρ̃i→k(xi ̸= k) are not used in the updates. Finally, we obtain
the message passing rules between the road points i, k:

rik = ρ̃i→k(k), (14)

aik = α̃i←k(k). (15)

where rik and aik are the messages of responsibilities and
availabilities exchanged between the data points in AP. With
update rules defined by (14) and (15), we are able to employ
AP for traffic congestion detection and prediction via cluster-
ing.
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C. Instant Traffic Clustering

Given a traffic graph G, we implement the affinity propaga-
tion (AP) algorithm to detect congestions and identify clusters.
The update rules proposed in section IV-B are adopted, and
the similarity sij between two road points i and j is computed
from the traffic state µ according to (2). With the update rules
and the similarity values sij , we apply affinity propagation to
recursively update the responsibilities rij and availabilities aij .
When rij and aij converge (do not change significantly within
a fixed number of iterations), the cluster center xi for each road
point i, and the corresponding clusters Cxi are determined.
The details of the algorithm is elaborated in Algorithm 1.

Algorithm 1 The Traffic Clustering Algorithm
Input:

• The traffic graph G;
• The traffic state µ.

Output:
• P : the partition of the road points into clusters;
• F : the set of cluster centers.

1: function TRAFFICCLUSTERING(G,µ)
2: Calculate the similarities sij between pairs of road points

according to (2);
3: Initialize all aij to be zero;
4: Initialize rij =

∑
i,j sij

N2 ;
5: while not convergent do ◃ Update messages
6: For each pair of points i, j, update rij according to (14);
7: For each pair of points i, j, update aij according to (15);
8: end while
9: F = {xi | xi = argmaxk{(aik + rik)}};

10: Compute all Cxi = {j | xj = xi};
11: P = {Cj | j is a cluster center};
12: Output P and F .
13: end function

D. Online Traffic Clustering

Notice that the traffic data µt collected by the sensors at the
same time t on different days are different, we would obtain a
number of different partitions Pt = {P 1

t , P
2
t , · · · } for time t,

where P i
t is the partition of the road points based on the traffic

data measured at time t in the ith day. Considering that each
P i
t characterizes only the traffic condition of a specific time on

one day while a combined summary of the traffic conditions
of all the historical data might reveal more insight in traffic
analysis, we construct a general partition of the road points
P ∗t based on the available partitions in Pt.

There exist many clustering combination algorithms [27],
[28] to combine overlapping sets of clusters. In this paper,
we adopt the one based on evidence accumulation [27]. Given
Pt, a N ×N co-association matrix Lt = (Cij) is calculated
as follows:

Cij =
nij

M
, (16)

where nij is the number of times the point pair (i, j) appears
in the same cluster and M is the number of partitions in Pt.

Then a clustering algorithm can be applied on Lt to compute
the partition P ∗t .

The procedure mentioned above for clustering combination
computes P ∗t from all the M available partitions. This implies
that we have to store all partitions in Pt in order to obtain an
up-to-date P ∗t . To enhance efficiency, we design an algorithm
to update P ∗t online, i.e., to compute a new P ∗t from the cur-
rent P ∗t and the newly obtained PM+1

t . This online algorithm
needs to store only the co-association matrix Lt whose entries
should be updated according to (17) when receiving PM+1

t :

Cij =

{ Cij ·M+1
M+1 , if ∃C ∈ PM+1

t s.t. i, j ∈ C;

Cij ; o.w.
(17)

Such a co-association matrix is denoted by L ∗t . The online al-
gorithm for clustering combination is sketched in Algorithm 2.
In this algorithm, we adopt the simple single-link clustering
algorithm on L ∗t to compute P ∗t for simplicity.

Algorithm 2 Online Clustering Combination
Input:

• P ∗
t , L ∗

t , and M ;
• PM+1

t , a newly computed partition;
Output:

• The updated P ∗
t , L ∗

t , and M ;

1: function ONLINECLUSTERINGCOMBINATION(P ∗
t , L ∗

t , M )
2: Update each Cij based on (17) to obtain L ∗

t ;
3: M = M + 1;
4: Compute P ∗

t by applying the single-link clustering algorithm
on L ∗

t ;
5: Output the updated P ∗

t , L ∗
t , and M .

6: end function

V. ONLINE TRAFFIC PREDICTION

This section presents the details of our online traffic pre-
diction from current and historical traffic states via neural
networks.

A. Problem Formulation

Traffic prediction intends to predict the traffic states of the
road points at a future time instance given the current and the
past traffic conditions. As mentioned earlier, traffics at nearby
road points mutually influence each other in both the spatial
domain and the temporal domain. This motivates our inves-
tigations on traffic clustering (Section IV). Our experimental
study reported in Section VI-A further reveals that the clusters
in a specific time instance at different days stay relatively
stable, and that the influence of one road point on another
road point within the same cluster is much higher than that
on one in a different cluster. Therefore we can consider traffic
prediction cluster by cluster. In this section, we propose our
algorithm to predict the future traffic states of all road points
residing in the same cluster via neural networks. Previous
research [29] claims that training a neural network takes a time
that is super-linear to the input size. Therefore, constructing a
neural network for each cluster should save the training time
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significantly compared to the case when one neural network
is built from all input data.

Now we need to determine which partition (clustering)
should be used for traffic prediction. Let t0 be the current
time. Intuitively, the best choice should be P ∗t0 , which takes
into account all the traffic conditions of the road points at time
t0 in the past days. Nevertheless, when P ∗t0 is employed, all
historical traffic data must be stored as whenever there is a
clustering change in P ∗t0 , the neural networks corresponding
to the altered clusters must be dropped and new ones must be
constructed from the historical data for the new clusters. This
wastes both time and storage resources. For the same reason,
the clustering obtained from the current traffic state is not
favorable. Therefore we choose the clustering obtained from
the oldest historical traffic data. This should not significantly
affect our prediction result as real traffic data exhibits stable
clustering property, as indicated by the experimental results
in Section VI-A. With such a clustering, it is unnecessary to
store the historical traffic data as the neural networks can be
constructed and updated in realtime (online).

Let C be a cluster of size n in the clustering for traffic
prediction. Let τ0, τ1, τ2, · · · , denote the current and past
days, with a larger subscript indicating an older day. Our traffic
prediction problem can be formally stated as follows: Given
µτ0
t0 , µτi

t0 , and µτi
t′ , for i = 1, 2, · · · , how to predict µτ0

t′ , where
t′ is a time after t0?

This problem depiction implies that we intend to predict the
traffic state µτ0

t′ from the traffic conditions of the current time
t0 in the current and past days, and that of the time t′ in the
past days. This can be justified as follows:
• The traffic condition of each road point in the same

cluster C at a future time t′ is affected by those of the
road points in C at the current time t0. In other words,
the traffic states of the road points in a cluster influence
each other within the same day (temporally constrained
by day) and the same cluster (spatially constrained by the
cluster). This is why µτ0

t0 is employed for predicting µτ0
t′ .

• The traffic dynamism on different days in the same group
exhibit strong similarity resulted from the regularity of
human beings’ social life: we drive along the same routes
on all weekdays to go to work while at weekends we have
a more random mobility behavior. Therefore the influence
of µτi

t0 on µτi
t′ should be similar from day to day.

In the next subsection we propose our method of employ-
ing neural networks for traffic prediction. The basic idea is
sketched as follows. We train a neural network based on the
input output pair (µτi

t0 , µτi
t′ ) obtained from the past days and

then use this neural network to predict µτ0
t′ from µτ0

t0 .

B. Neural Networks for Traffic Prediction

According to the problem formulation stated in Section V-A,
the traffic state at time t′, µτ0

t′ , is determined by µτ0
t0 , and the

past traffic data µτi
t0 and µτi

t′ for i = 1, 2, · · · . Assume that
t′ ≃ t0 + ∆t0 , where ∆t0 is the number of time units that
makes t0 +∆t0 the best approximation to t′. To predict µτ0

t′ ,

we first predict µτ0
t0+1 from µτ0

t0 . Then we update the prediction
model by taking µτ0

t0+1 as a new input, based on which to
predict µτ1

t0+2. Repeat this procedure until µτ0
t0+∆t0

is derived,
which is used as the approximate µτ0

t′ .
Therefore we can focus on the problem of predicting µτ0

t0+1

from µτ0
t0 , given µτi

t0 and µτi
t′ for i > 1. The prediction

model under our consideration is summarized by the following
equation:

µ̂τ0
t0+1 = Qt0µ

τ0
t0 + σt0 , (18)

where σt0 is the standard derivation of a zero mean Gaussian
noise, and Qt0 = (qij) is a transition matrix that relates the
state at time t0 to the state at time t0 + 1, with the entry qij
indicating the influence of the traffic at point i in time t0 to
the point j in time t0 + 1. Note that our prediction model
is uniquely determined by (Qt0 , σt0). It is obvious that Qt0

is computed from µτi
t0 and µτi

t′ for i > 1, which reflects the
temporal and spatial influences among the road points within
the cluster C; and σt0 captures the noise of the model.

We employ a multilayer perceptron neural network with
the popular back propagation algorithm to estimate the model
parameter (Qt0 , σt0). Denote this neural network by NNτ0

t0
for the cluster C of size n. NNτ0

t0 can accept n input values
and dismiss n output values, and can be constructed iteratively.
Given (µτm

t0 , µτm
t′ ), (µτm−1

t0 , µ
τm−1

t′ ), · · · , where m is the total
number of days providing historical data, the neural network
is first trained with µτm

t′ as the output and µτm
t0 as the input.

When a new pair of traffic states (µτm−i

t0 , µ
τm−i

t′ ) is available at
step i, the neural network is trained with µ

τm−i

t′ as the output
and µ

τm−i

t0 as the input. By this way, NNτ0
t0 can be iteratively

trained online, and the link weights of NNτ0
t0 are completely

determined by µτi
t0 and µτi

t′ for i > 1 when the training process
is complete.

The prediction model parameter (Qt0 , σt0) is determined
by the link weights of NNτ0

t0 . Suppose that NNτ0
t0 has h

hidden layers, denoted by layer 1, 2, · · · , h, with hidden layer
i outputting ni values. Denote the input layer as layer 0 and
the output layer as layer h+1. The input layer accepts and the
output layer outputs n values. Let Ii and Oi be the input to
and the output from layer i. Then for the training process
at step i, I0 = µ

τm−i

t0 and Oh+1 = µ
τm−i

t′ , and for the
prediction process, I0 = µτ0

t0 and Oh+1 = µτ0
t0+1. In neural

networks, the output of any layer i is a transition function of
the weighted sums of the layer i − 1, which can be modeled
by Oi = QiIi + σi = QiOi−1 + σi for i = 1, 2, · · · , h + 1,
where Qi is a ni−1 × ni matrix of the link weights for layer
i and σi is a vector of size ni reflecting the noise introduced
by the transfer function at layer i. Given Qi and σi for
i = 1, 2, · · · , h + 1 from the trained neural network NNτ0

t0 ,
the model parameter (Qt0 , σt0) can be uniquely derived.

The procedure depicted above is summarized by Algo-
rithm 3, which provides online traffic prediction.

VI. EXPERIMENTAL RESULTS

We validate our algorithms on real traffic data extracted
from Sigalert (www.sigalert.com), which is a noncommercial
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Algorithm 3 Online Traffic Prediction
Input:

• The current traffic state µτ0
t0

;
• The trained neural network NNτ0

t0
.

Output:
• The estimated traffic µ̂τ0

t0+1;
• The updated trained neural network NNτ0

t0
.

1: function ONLINETRAFFICPREDICTION(µτ0
t0
, NNτ0

t0
)

2: Predict µ̂τ0
t0+1 based on the trained neural network NNτ0

t0
according to (18), with µτ0

t0
as input;

3: Update NNτ0
t0

when the real-time measurements µτ0
t0+1 is

obtained, with µτ0
t0

as input and µτ0
t0+1 as output.

4: end function

web-site providing real time traffic in major cities across the
US by reading the raw vehicle speeds from a cell phone based
network. We choose Washington, D.C for our study, which
includes 409 road points. The traffic data is measured once
every 5 minutes from May 1st, 2011 to August 30th, 2011.

A. Traffic Clustering

In this section we investigate the performance of traffic clus-
tering based on Algorithm 1 and 2. Recall that the similarity
sij characterizes how well the road point j is suited to be the
influence center of the road point i. The larger the value of
sij , the greater the influence from j to i. Notice that since G
is a directed graph, sij ̸= sji. Let the hop-count H used to
determine the neighborhood for similarity analysis be set to
4, which will be explained in the next subsection.

TABLE I
THE MEAN AND THE VARIANCE OF THE INFLUENCES BETWEEN ROAD

POINTS AT DIFFERENT TIME

Time (5:35 pm) Mean Variance
xj = j, i ∈ Cxj , i ̸= j 0.8023 0.3543
xj = j, xi ̸= i, i /∈ Cj 0.0947 0.0331
xj = j, i, k ∈ Cxj , i, k ̸= j 0.3676 0.2031
i ∈ Cxj , k ∈ Cxm , j ̸= m 0.0605 0.0277
Time (11:00 pm) Mean Variance
xj = j, i ∈ Cxj , i ̸= j 0.7872 0.3078
xj = j, xi ̸= i, i /∈ Cj 0.0901 0.0357
xj = j, i, k ∈ Cxj , i, k ̸= j 0.3132 0.1901
i ∈ Cxj , k ∈ Cxm , j ̸= m 0.0693 0.0235

Table I reports the mean and the variance of the influences
between the road points at time 5:35 pm and 11:00 pm. We
choose these two time instances because they represent a rush-
hour scenario and a non rush-hour scenario (common rush-
hours start from 7:30 am to 10:00 am in the morning and
from 4:30 pm to 7:00 pm in the afternoon for DC riders),
respectively. For each time instance, the four rows list the
influence statistics between a center and its member (xj = j,
i ∈ Cxj , i ̸= j), a center and a road point in a different
cluster (xj = j, xi ̸= i, i /∈ Cxj ), cluster members within
the same cluster (xj = j, i, k ∈ Cxj , i, k ̸= j), and cluster
members in different clusters (i ∈ Cxj

, k ∈ Cxm
, j ̸= m). It

is observed that the average influence between a center and

its member is the highest (0.8023 for 5:35 pm, and 0.7872 for
11:00 pm), while that of the non-center points within the same
cluster records the second (0.3676 for 5:35 pm and 0.3132 for
11:00 pm). For road points classified into different clusters,
their influence is much lower, implying that their traffics do
not impact on each other significantly. This clearly indicates
that our traffic clustering captures the strong spatial influence
between different road points. Moreover, the variance of the
influence for members within the same cluster is large. This is
because at any instant of time, some roads are congested while
others are not, and the road points at non-congested roads form
clusters too but their congestion influence on each other is
much weaker compared to those in congested roads. These
results directly explain why we consider traffic prediction
cluster by cluster instead of the whole traffic network.

An example clustering (cluster centers and their members)
identified by algorithm 1 at time 5:35 pm on May 2, 2011
is illustrated in Fig.1(a). The whole traffic map is divided
into 16 clusters, with all centers correspond to the heaviest
traffic areas. This observation is consistent with our intuition
argued in Section IV-A that influence centers are the potential
congested road points. Combining with Table I we observe
that the influence scale and the number of road points in a
cluster vary based on the traffic conditions of the road points
at each cluster.

Fig.1(b) reports the number of clusters in P ∗ identified by
the online clustering Algorithm 2. The results are based on
the data collected on May 2nd, on the first 40 weekdays,
and on the first 80 weekdays. Notice that the results from
different time intervals stay relatively stable. This is due to
the fact that people have a strong life routine at weekdays,
e.g., taking the same road going to work and back home at
almost the same time, which leads to a similar clustering at the
same time t on different days by Algorithm 1, which further
results in a similar clustering P ∗ by algorithm 2. Another
interesting phenomenon is that the number of clusters at rush-
hours in the morning is greater than that of the rush-hours in
the afternoon. This is because usually the number of people
who go to work during the rush-hours in the morning tends
to be larger, because the office hours of human beings usually
start at the same time but end at times with a large variation.
Based on these observations, we conclude that the clusters
identified by Algorithm 1 and 2 are able to reflect the actual
traffic situation, and the stable clustering property is attributed
to the regularity of human being’s strong life routine.

B. Traffic Prediction

We take the data of the first 80 weekdays from May 2, 2011
to August 19, 2011 for training the neural networks and use
the rest for testing. Let P 1

t be the clustering of time t obtained
from the first weekday. During the training process, we choose
a learning rate of 0.1 for the back propagation algorithm and
let the transition function be ′transig′. This process stops when
it reaches an error precision point of 0.1, or the maximum
number of epochs for supervised learning reaches 1000.
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(a) (b)

Fig. 1. Traffic clustering. (a) Clusters (centers shown as blue dots) identified
by Algorithm 1 in Washington, D.C at 5:35 pm on May 2, 2011; (b) The
number of clusters in P ∗ vs. time by Algorithm 2. The results are obtained
from the data on May 2nd, on the first 40 weekdays, and on the first 80
weekdays.

To verify the strength of our traffic prediction algorithm
(Algorithm 3), we implement two state-of-the-art algorithms
for performance comparison. The first one employs a statistic
approach based on time-series regression [12], which models
the traffic flows by considering the spatial correlations within
a fixed group of nodes. The second one takes a binary neural
network approach [13], which intends to match the current
traffic measurement with past “patterns”. These two algorithms
are denoted by ST and BNN, respectively.

The performance metric is termed Average Relative Error
(ARE), which is defined in (19):

ARE =

∑
Cj∈P 1

t

∑
i∈Cj

|vti − v̂ti|/vti
k

. (19)

where vti and v̂ti are the actual and predicted vehicle speed
at road point i, respectively, and k is the total number of road
points in the traffic network.

Fig.2(a) plots the average ARE of all road points in Wash-
ington, D.C for predicting 10-minute ahead when H varies.
It is observed that at first, ARE decreases as H increases.
When H = 4, the ARE reaches the lowest. And after that
it goes up. This is because when H is small, it could lose
important information relevant to the neighboring nodes at a
larger distance. On the other hand, a big H would be redundant
because in a short period of time, the traffic at a far away node
would not affect the current one. Therefore, we fix H = 4 for
the simulations in this paper.

Fig. 2(b) reports the mean and the variance of the ARE
values of all road points when predicting 10-minute ahead
from 6:00 pm to 9:00 pm on August 22, 2011. We choose
this time interval to study because it starts from a rush-
hour and ends at a non rush-hour, which provides an overall
understanding of the performance of our traffic prediction.
The results indicate that the proposed algorithm receives the
best prediction accuracy and it results in a stable variance,
while the other two algorithms have higher prediction errors
and variances, especially at the time interval between 6:00
pm and 7:30 pm when the actual traffic in Washington,
D.C fluctuates (traffic boosts at around 6:30 pm when High-
occupancy vehicle lanes open for single passengers, and falls
down after 7:00 pm). The ST algorithm generates larger errors
because it considers only the effect from directly connected

(a) (b)

Fig. 2. Traffic prediction. (a) ARE vs. H when predicting traffic 10-minute
ahead; (b) ARE (left axe) and its variance (right axe) vs. time when predicting
traffic 10-minute ahead.

(a) (b)

Fig. 3. Traffic prediction. (a) ARE vs. the prediction interval (x minute
ahead); (b) A snapshot of the speed prediction (10-minute ahead).

neighbors, making it act slowly to sudden changes at some
road points. Although the traffic exhibits a strong overall time
correlation, the traffic at each road point on each time instance
may change from the history record, making it hard for BNN
to match the traffic measurements of all points to the known
patterns. On the other hand, no matter how the actual traffic
changes, the relationship between the road points at the same
time instance of each day remains stable (Fig. 1(b)), leading
to a better prediction result by Algorithm 3. Note that since
Algorithm 3 computes a neural network for each cluster at
each time instance, each neural network NNt employed for
time t is trained by only 80 groups of data (one group at t each
day for 80 weekdays), while the other two algorithms in fact
work on the time series data of 80×24×60/5 = 23040 groups
(traffic is measured at 5-minute interval). We are confident to
claim that with a longer time to collect more real traffic data,
Algorithm 3 would yield even better results.

We also report the performance of Algorithm 3 vs. the pre-
diction interval in Fig. 3(a). The prediction accuracy decreases
as the prediction interval increases. Since we run Algorithm
3 to predict the traffic 5-minute ahead, and the prediction
result of a long prediction interval is obtained from the prior
predicted results, the prediction error is accumulated and
magnified at each step. Notice that even though the accuracy
is decreasing along with the increase of the time interval, the
proposed algorithm is still able to give a reasonable prediction.
For example, when predicting traffic 1-hour ahead, the ARE
of Algorithm 3 is only 0.1, which is still better than the other
two prediction methods.

Fig.3(b) presents a snapshot of the prediction results when
predicting traffic 10-minute ahead. It plots the predicted vehi-
cle speed against the actual speed of Route 233 in Washington,
D.C from 6:00 pm to 9:00 pm on August, 22nd, 2011. We
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observe that Algorithm 3 can provide a trustworthy prediction
of the traffic and has a stable performance over time, while
the other two algorithms generate large errors when the
corresponding actual measurement has a big change. This is
consistent with the results in Fig.2(b).

VII. CONCLUSION AND FUTURE RESEARCH

This paper addresses the problem of traffic clustering and
online traffic prediction in vehicle networks. We first propose
a traffic clustering algorithm to partition the road points
into time variant clusters, where the traffic within the same
cluster are strongly spatially correlated. An online algorithm to
combine the overlapping clusterings at the same time instances
is also proposed to compute a general clustering for further
traffic influence analysis. We also present an online traffic
prediction algorithm to predict the traffic conditions at a future
time cluster by cluster based on the current and historical
traffic data via neural networks. Simulation over real traffic
data demonstrates that our algorithms are able to identify the
influences among the road points, and provide more accurate
traffic predictions compared with the existing time series and
neural network approaches. As a future research, we will test
the performance of our algorithms when more traffic data is
collected. Moreover, we will design routing algorithms that
are adaptive to the predicted traffic conditions to save time
by avoiding the possible congested areas within a short time
interval.
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