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Abstract—Target counting in sensor-based surveillance systems
is an interesting task that potentially could have many important
applications in practice. In such a system, each sensor outputs
the number of targets in its sensing region, and the problem is
how one can combine all the reported numbers from sensors to
provide an estimate of the total number of targets present in
the entire monitored area. The main challenge of the problem
is how to handle different sensors’ outputs that contain some
counts of the same targets falling into the overlapped area from
these sensors’ sensing regions. This paper introduces a statistical
approach to estimate the target count in such a surveillance
system. Our approach avoids direct handling of the overlapping
issue by adopting statistical methods. First, depending on whether
or not certain prior knowledge is available regarding the target
distribution, the procedure in minimizing the residual sum of
squares or kernel regression is used to estimate the distribution of
targets. Then the estimated count of the total targets is obtained
by the method of likelihood estimation based on a sequence
of binomial distributions that are derived from a sampling
procedure. Comparisons based on simulations show that our
proposed counting approach outperform the state of art counting
algorithms. Extensive simulations also show that our proposed
approach is very fast and very promising in estimating the target
count in sensor-based surveillance systems.

I. INTRODUCTION

Wireless sensor networks have been widely used to monitor
various activities in many different types of environments [1]–
[6]. One of important monitoring tasks is the estimation of the
total number of targets within a region at a specific time. For
example, one may want to estimate the size of a group of
sea birds in a certain seashore area at specified times for a
given day. A sensor network can be deployed for this purpose
to gather relevant data and make inferences periodically.
Although it is often difficult to obtain the exact count, target
counting algorithms with a high counting accuracy are always
sought.

In general, there are two types of errors that lead to
inaccurate counting: miss-detection and double-counting [7].
A target may fail to be detected by a sensor even if the
target is in the sensor’s sensing region. This is often due to
imprecision of the hardware. A target in the overlapped area
of different sensors’ sensing regions may be detected by more
than one sensor. This can result in double counting, where
a target may be counted for at least two times in the final
estimate. Double counting tends to occur as sensors are more
densely deployed and more targets are present. Usually, the

issue of miss-detection can be handled by using hardware-
based detection algorithms or building more sensitive sensors.
However, double-counting is normally resolved or mitigated
by analyzing information obtained from sensors.

In this paper, we propose a simple but effective statisti-
cal approach to estimate the total number of targets in a
sensor-based surveillance system, given the count of targets
reported by each sensor within its sensing region. The issue
of miss-detection is not considered here. However, the issue
of overlapping or double-counting has been avoided with
our method. In our approach, we first rebuild the target
distribution in the monitored area using regression techniques.
Parametric or non-parametric methods are used to estimate
the target distribution, depending on whether or not certain
prior knowledge is available regarding the distribution. Then
a sampling procedure is used to randomly select subsets of
sensors, where sensors from the same subset do not have
overlapped sensing regions. Finally, the total count of targets
is estimated through binomial distributions and the method of
maximum likelihood estimation. Based on our knowledge, the
work presented in this paper is the first that employs statistical
methods to effectively deal with the double counting problem
in wireless counting sensor network.

The first and the most relevant research work that deals
with double counting in the context of sensing is [7]. The
counting method in [7], largely based on the probability theory,
mainly works for the scenario where (1) targets are uniformly
distributed, (2) the number of targets present in the monitored
area is not large, and (3) two sensing regions from two sensors
do not overlap heavily.

Compared to the state-of-the-art, our paper has the following
novel contributions.

1) Regression techniques (minimizing the residual sum
of squares and kernel regression), sampling, and the
method of likelihood estimation have been integrated
into an approach for target counting. It is the first time
that a completely statistical approach is introduced to
estimate target counts in the field of wireless sensor
networks.

2) Our approach avoids direct handling of the issue of
double counting or overlapping of sensing regions.

3) Our approach works for any number of targets present
in the monitored area.

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 226



4) The proposed counting approach works for any dis-
tribution of targets. Targets can come from a specific
distribution, or they can form clusters.

5) The proposed counting approach can provide real time
estimates of target counts.

6) The proposed approach outperforms the state-of-the-art
counting algorithms in terms of counting accuracies.

The rest of the paper is organized as follows. In Sec-
tion II, we review the most related research in target counting.
Our network model and other background information are
introduced in Section III. In section IV we discuss how to
estimate the distribution of targets by using parametric and
non-parametric statistical methods. The sampling procedure
used to select subsets of sensors and the method of likelihood
estimation used to estimate the target count are provided in
Section V. Simulation results are reported in Section VI. And
this paper is concluded with a discussion on future research
in Section VII.

II. RELATED WORKS

Research works on target counting are roughly categorized
into four types corresponding to minimalistic, complex, binary,
and energy-based modeling of wireless sensor network.

The works in [7]–[9] are representatives of the research
based on the minimalistic model, where each sensor outputs
the number of distinct targets in its sensing region. The work
in [7] estimates the target count by probability theory. The
authors claim that under the assumption of uniform targets,
the number of targets falling into a specific region follows
a Poisson distribution. So they first partition the monitored
area into non-overlapped subareas. Then the expected value
based on these subareas and the Poisson modeling is used to
estimate the number of targets in the monitored area. This
approach that aims at resolving the double counting issue has
several disadvantages. It is impossible to provide an estimate
for a big target count within a reasonable period of time. When
sensing regions overlap heavily, not only the counting accuracy
degrades but also the amount of time in computation increases
dramatically. Paper [8] proposes a target counting algorithm to
estimate the range of the number of targets in the monitored
area. The range is based on the worst case and thus might
be too wide to be applicable in real applications. Paper [9]
starts from topology integration and uses the expected value
as an estimate of the number of targets. Since there are no
experimental or simulation results provided, it is difficult to
evaluate the proposed method.

In the setting of complex sensor models, [10] also addresses
the double counting problems. However, in addition to the
number of targets within the sensing region of a sensor, more
information such as distances or angles is needed in their
algorithms.

Binary-sensing based approaches [11]–[13] estimate the
number of targets by assuming that a sensor reports a value
‘1’ if one or more targets are detected in its sensing region
and ‘0’ otherwise. The success of these algorithms relies on
the assumption of sparse targets.

Energy-based approaches [14]–[16] estimate the count of
targets by using the unit target energy volume and the esti-
mated energy volume of the energy landscape. These algo-
rithms assume the same energy level and energy decay model
for all individual targets.

Other algorithms in counting targets exist in the literature.
For example, [17] relies on probability theory to estimate the
number of targets, but the algorithm works only for sparse
targets. And in [18], a system is developed to measure the
vehicle count in a road network.

Regression is the process of constructing a curve, or math-
ematical function, which is closest to a series of data points
under a predefined metric. In statistics, regression analysis
involves the analysis between a single dependent variable
and a few independent variables. In wireless sensor networks,
polynomial regression has been used in [14] to recover an
approximate energy landscape. In [19], polynomial regression
is used to compress the data transported in wireless sensor
network communications. In our work, we use the regression
technique to estimate the target distribution over the two-
dimensional monitored area.

In this paper we propose a statistical approach for target
counting under a minimalistic model. While most existing
counting algorithms focus on estimating the number of targets
in each overlapped area of sensing regions of sensors, our
approach treats the total number of targets in the system as
a parameter to be estimated by statistical methods. With no
restriction on the distribution of targets and the number of
monitored targets, our approach provides a fast and effective
tool in target count estimation.

III. BACKGROUND INTRODUCTION

We consider the network model where sensors are deployed
in a grid or random uniform pattern in a monitored area that is
contained in the two-dimensional Euclidean space. These two
deployment patterns represent two widely used scenarios in the
literature. Suppose there are Ns sensors deployed in the field:
s1, s2, · · · , sNs . Let xi = (x(i)

1 , x
(i)
2 ) denote the location of

sensor si (i = 1, 2, · · · , Ns). The set of locations of all sensors
is represented by LS = {x1, x2, · · · , xNs}. Note that sensor
locations can be derived based on existing approaches such as
those proposed in [20], [21] The sensing region of a sensor
si, denoted by A(si), is modeled as a circular region with
center xi and radius h. Then all A(si) have the same size a =
πh2. Suppose at the time of investigation, sensor si outputs
a reading ri that equals the number of targets residing in the
sensor’s sensing region A(si). Let RS = {r1, r2, · · · , rNs}
denote the set of all such readings from all sensors. The entire
monitored area A of the surveillance system can be defined
as the union of the sensing regions of all sensors.

Suppose Nt targets are distributed in the monitored area
A according to a specific distribution with the probability
density function (pdf) f(x|θ). Here, x represents a two-
dimensional vector (x1, x2)′ and θ is the parameter or set
of parameters associated with the distribution. Examples of
the target distribution include a uniform or bivariate normal
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distribution. In this paper, we assume a general form of the
distribution of targets. Due to the use of different statistical
approaches, we consider two separate cases: (a) we have some
prior knowledge about f(x|θ); and (b) we do not have any
prior knowledge about f(x|θ). Case (a) does not necessarily
mean that we know completely about the distribution. For
instance, we may know the distribution is bivariate normal but
we do not know the exact parameter(s). Case (b) is equivalent
to the fact that we know nothing about the target distribution.

This paper focuses on estimating the total number of targets
(Nt) by using the sensors’ locations LS and sensors’ readings
RS . This estimation task is challenging since a target could
be caught and reported by several sensors simultaneously. An
intuitive method to estimate Nt might be that one simply adds
the readings from all sensors and then multiply the total by a
factor γ small than 1 to eliminate the effect from repeatedly
counting. This method would fail frequently since it is usually
difficult to find such a factor γ that could be influenced by a
lot of other factors such as the size of the network, the target
distribution, and the sensor deployment pattern, etc. Therefore,
novel procedures are needed in order to obtain a reliable
estimate of Nt. In the next two sections, we will discuss how
to estimate the pdf f(x|θ) of the target’s distribution for both
cases (a) and (b) by regression technique and then discuss
how to estimate Nt by the method of maximum likelihood
estimation.

IV. TARGET POSITION PROBABILITY DENSITY

DISTRIBUTION ESTIMATION

In this section, we will discuss in details how to estimate the
pdf f(x|θ) of targets’ distribution by using sensors’ locations
LS and sensors’ readings RS . Our approach is based on the
observation that the expected count of targets in an unit area
centered at x is approximately proportional to the value of
f(x|θ) at x. Below is a derivation leading to this observation.

Suppose targets are independently distributed according to
a distribution with the pdf f(x|θ). Consider the sensing region
A(si) from sensor si. It is seen that a target falls into A(si)
with the probability pi =

∫ ∫
A(si)

f(x|θ) dx1dx2. In general,
for Nt targets, the total number of targets, denoted by Ri,
that reside A(si) follows the binomial distribution B(Nt, pi).
Therefore, the expected count of targets in this sensing region
is the following conditional expectation

E(Ri | xi) = Nt ∗
∫ ∫

A(si)

f(x|θ) dx1dx2 (1)

According to Calculus, when f(x|θ) is a continuous function,
we have the following:∫ ∫

A(si)
f(x|θ) dx1dx2 ≈ f(xi|θ) ∗

∫ ∫
A(si)

dx1dx2

= f(xi|θ) ∗ a
(2)

Set

Yi =
Ri

a

We see that Yi represents the count of targets per unit area
around the sensor si. From (1) and (2), we obtain the following

E(Yi | xi) ≈ Nt ∗ f(xi|θ) (3)

The approximation (3) is derived at sensors’ locations.
However, it is easy to see that (3) actually holds for any
location x in the monitored area A, that is,

E(Y | x) ≈ Nt ∗ f(x|θ) (4)

where Y = R
a for R denoting the count of targets in the

circular region with center x and radius h. Therefore, the
expected count of targets per unit area at x is approximately
proportional to the value of f(x|θ) at x. Though simple, this
relationship between Y and f(x|θ) depicted in (4) is the basis
for the following two subsections where we estimate f(x|θ)
by using sensors’ location and readings. For simplicity, we
treat Y as a continuous variable.

A. Parametric Approach

In this subsection, we discuss how to estimate the pdf f(x|θ)
of the distribution of targets when the form of f(x|θ) is known
but θ is unknown. This corresponds to estimating f(x|θ) for
the case (a) stated in Section III.

We will utilize (4) to obtain the estimate of θ. From
the discussion proceeding (4), we know that the following
sequence is available as a given dataset for this estimation
problem:

(x1, y1), (x2, y2), · · · , (xNs , yNs), (5)

where xi = (x(i)
1 , x

(i)
2 ) is the location of sensor si and yi = ri

a
is the observed count of targets per unit area around sensor
si. Using the idea in regression, we obtain an estimate θ̂ of θ
by minimizing the residue sum of squares, i.e., by solving

min
θ

Ns∑
i=1

(yi − c ∗ f(xi|θ))2, (6)

where c is an unknown parameter. Thus, f(x|θ̂), denoted by
f̂(x), is an estimate of f(x|θ). In this paper, we used the
Levenberg-Marquardt algorithm (LMA) [22] in Matlab 2009a
to find a solution θ̂ to this minimization problem. LMA is a
well known iterative procedure used to solve a wide variety
of optimization problems.

B. Non-parametric Approach

Often in practice, the form of f(x|θ) is unknown. This is the
case (b) stated in Section III. We know that (4) gives a simple
relationship between the conditional expectation E(Y | x) and
f(x|θ). Therefore, to estimate f(x|θ), we only need to find
and rescale an estimator of E(Y | x). In this subsection, we
will discuss how to estimate E(Y | x) by kernel regression, a
non-parametric technique in estimating conditional expectation
of a random variable [23].

Let g(y, x) be the joint pdf of Y and X with X denoting a
random location in the monitored area A, gx(x) the marginal

228



pdf of X, and g(y|x) the conditional pdf of Y given X = x =
(x1, x2)′. We have

E(Y | x) = E(Y | X = x)

=
∫

yg(y | x)dy

=
∫

yg(y,x)dy

gx(x)

(7)

If we use (5) to estimate densities gx(x) and g(y, x) by
the technique of kernel density estimation, then gx(x) and∫

yg(y, x)dy can be estimated by

1
Ns

Ns∑
1

Kh1,h2(x − xi)

and
1

Ns

Ns∑
1

Kh1,h2(x − xi)yi

respectively, where by using a multiplicative kernel with the
same bandwidth h(= h1 = h2),

Kh1,h2(x − xi) =
1
h2

K
(x1 − x

(i)
1

h

)
K

(x2 − x
(i)
2

h

)

for a univariate kernel K(·). Therefore, from (7) we obtain
the following Nadaraya-Watson estimator of E(Y | x) :

∑Ns

i=1 K
(

x1−x
(i)
1

h

)
K

(
x2−x

(i)
2

h

)
yi

∑Ns

i=1 K
(

x1−x
(i)
1

h

)
K

(
x2−x

(i)
2

h

)

Then the above function divided by its integral over the entire
monitored area of the sensor filed will give one estimate f̂(x)
of f(x|θ). Thus

f̂(x) = C

∑Ns

i=1 K
(

x1−x
(i)
1

h

)
K

(
x2−x

(i)
2

h

)
yi

∑Ns

i=1 K
(

x1−x
(i)
1

h

)
K

(
x2−x

(i)
2

h

) (8)

where C is a constant.
Note that the distribution of sensors in our setting is known,

i.e., sensors are uniformly distributed. In this case, gx(x) is
a constant. Then by (7), the following function divided by
its integral over the entire monitored area will also give one
estimator of f(x | θ) :

Ns∑
i=1

K
(x1 − x

(i)
1

h

)
K

(x2 − x
(i)
2

h

)
yi (9)

That is,

f̂(x) = C

Ns∑
i=1

K
(x1 − x

(i)
1

h

)
K

(x2 − x
(i)
2

h

)
yi (10)

for a constant C.
In this paper, we use the Gaussian kernel K(u) = 1

2π e−
u2
2 ,

as it is one of the widely used kernels. And we choose the
bandwidth h to be the radius of the sensing region of a
sensor for simplicity. Note that only LS and RS are needed
in computing f̂(x).

V. TARGET COUNT ESTIMATION

For sensors whose sensing regions do not overlap, the sum
of their readings is the exact count of targets falling into
their sensing regions. This section discusses how to use this
observation and the estimated distribution of targets to estimate
the total number of targets in the monitored area A by the
method of maximum likelihood estimation.

A. Selecting Sensors with Non-Overlapped Sensing Regions

We begin with a brief discussion on selecting sensors with
non-overlapped sensing regions. Two sensing regions A(si)
and A(sj) from two sensors si and sj are overlapping if the
intersection of A(si) and A(sj) is not empty, i.e., A(si) ∩
A(sj) �= ∅. Clearly, A(si) and A(sj) are overlapping if and
only if the distance between si and sj is less than or equal to
2h, where h is the radius of a sensing region of a sensor. This
simple rule can be used to randomly select a set of sensors
that do not contain two sensors whose sensing regions are
overlapping. Suppose we repeat this selection process for m
times to obtain m such sets S1, S2, · · · , Sm, where A(si) ∩
A(sj) = ∅ for any two sensors from the same set Sk (1 ≤
k ≤ m).

We can also add one more confinement in constructing these
sets of sensors by requiring that each Sk is the largest in the
sense that the sensing region of any sensor outside Sk overlap
with at least one sensing region of a sensor inside Sk. In other
word, Sk is the largest if it is impossible to add another sensor
into Sk while keeping the non-overlapping status of the subset.

There are several advantages when using Sk. For example,
the integral of f(x | θ) over the union of sensing regions of all
sensors in Sk is the sum of the integrals of f(x | θ) over all
individual sensing regions. As another example, we see easily
that the sum of the readings of all sensors in Sk represents
the total number of targets falling into the monitored areas of
these sensors.

B. Target Count Estimation By the Method of Maximum
Likelihood

Now we discuss how to estimate the target count in the
monitored area A. We will use the estimated pdf f̂ from
Section IV, the sets Sk constructed in Section V-A, and the
method of maximum likelihood. The method of maximum
likelihood [24] is one of the most widely techniques for
obtaining estimates of parameters. With this method, the
maximum likelihood estimator (MLE) of the parameter(s) θ
is θ̂ at which the likelihood function obtains its maximum as
a function of θ.

Suppose Nt targets are independent and identically dis-
tributed in the monitored area A according to a distribution
with the pdf f(x|θ). Let Pi denote the probability that a target
falls into the area monitored by the sensors in the set Si

(1 ≤ i ≤ m). Then using an estimate f̂(x), we obtain an
estimate P̂i of Pi as follows:

P̂i =
∫ ∫

∪A(sj),sj∈Si
f̂(x)dx1dx2

=
∑

sj∈Si

∫ ∫
A(sj)

f̂(x)dx1dx2

(11)
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Let Ui denote the number of targets that fall into the
area monitored by the sensors in the set Si. We see that
Ui is a discrete random variable that approximately follows
the binomial distribution B(Nt, P̂i), where P̂i is known and
computed in (11) but Nt is unknown. Below we proceed
to find an MLE for Nt by using these binomial variables
U1, U2, · · · , Um

From the selection process of S1, S2, · · · , Sm, it follows
that the random variables U1, U2, · · · , Um can be treated as
independent. By the readings of sensors in Si, we obtain an
observed value ui for Ui, where

ui =
∑

sj∈Si

rj (12)

Therefore we have the likelihood function

l(Nt) =
m∏

i=1

(
Nt

ui

)
P̂ui

i (1 − P̂i)Nt−ui (13)

The MLE of Nt is obtained by maximizing the likelihood
function. However, the traditional method involving differen-
tiation is not easy to be carried out due to the factorials. There-
fore a different approach is needed to solve this optimization
problem. Since l(Nt) = 0 for Nt < maxi{ui}, it is seen that
the MLE is an integer Nt such that

Nt ≥ max
i

{ui} (14)

and
l(Nt)

l(Nt − 1)
≥ 1 ,

l(Nt + 1)
l(Nt)

< 1 (15)

Below we show that Nt satisfying (14) and (15) is unique.
In fact, it follows from (13) that

l(Nt)
l(Nt−1) =

∏m
i=1

(Nt
ui

)P̂
ui
i

(1−P̂i)
Nt−ui

(Nt−1
ui

)P̂
ui
i

(1−P̂i)Nt−1−ui

=
∏m

i=1

(Nt
ui

)
(Nt−1

ui
) (1 − P̂i)

=
∏m

i=1
Nt

Nt−ui
(1 − P̂i)

=
∏m

i=1(1 − P̂i)
∏m

i=1(1 + ui

Nt−ui
)

(16)

Consider the function

g(w) =
m∏

i=1

(1 − P̂i)
m∏

i=1

(
1 +

ui

w − ui

)

defined for w ∈ (maxi{ui}, +∞). Clearly, g(w) is continu-
ous and strictly decreases in its domain. In addition,

lim
w→+∞ g(w) =

m∏
i=1

(1 − P̂i) < 1,

and as w approaches maxi{ui} from the right g(w) → +∞.
Therefore, it follows from (16) that there exists only one
integer, denoted N̂t, such that (14) and (15) hold. This N̂t

is the MLE of Nt.

In practice, it is easy to find N̂t by (14) and (15). Starting
from maxi{ui}, we compute the ratio

l(Nt)
l(Nt − 1)

=
m∏

i=1

Nt

Nt − ui
(1 − P̂i) (17)

for each possible integer larger than or equal to maxi{ui}.
(Assuming the ratio becomes +∞ at maxi{ui}.) The last
integer with which the ratio is larger than or equal to 1 is
N̂t. Note that only (11) and (12) are needed in computing the
ratios.

VI. PERFORMANCE EVALUATION

In this section, we mainly report our simulation results to
demonstrate the strength of our statistical approach for target
counting in sensor-based surveillance systems. The wireless
sensor network under our study contains Ns = 100 sensors
and Nt = 10, 50, 100, 500, 1000 targets are present in the
entire monitored area A. Sensors are deployed over the region
of 100m ∗ 100m in two different patterns: the grid pattern
and random uniform pattern. For grid sensor deployment, the
center of each 10m ∗ 10m grid cell has one sensor. For
random uniform sensor deployment, each 10m ∗ 10m grid
cell contains one sensor whose location is random within the
grid. The radius of the sensing region of a sensor is set to be
14.2m(> 10∗√2m), to ensure that the region of 100m∗100m
is fully covered by the sensing regions of sensors even if
the sensors are randomly and uniformly deployed. Note that
sensing regions of neighboring sensors are heavily overlapped
in our setting. For targets, we consider two scenarios: targets
form one single cluster where only one distribution of the
targets is available, and targets form multiple clusters where
each cluster corresponds to one distribution of the targets
within the cluster. Details about the simulation results are
given in the following subsections.

Before presenting our simulation results on target counting,
we make a note regarding numerical computation of the
probability P̂i in (11). Clearly, to obtain P̂i, we only need to
compute the integral

∫ ∫
A(sj)

f̂(x)dx1dx2 in (11). We do this
by the traditional approximation procedure. Specifically, we
divide the region A(sj) into 1m ∗ 1m cells, then approximate
the integral over each cell. If the center x∗ = (x∗

1, x
∗
2)

of a cell lies inside A(sj), the integral over the cell is
approximated by f̂(x∗) ∗ 1 ∗ 1 = f̂(x∗). And if the center
x∗ is outside A(sj), the integral is simply approximated by 0.
Then

∫ ∫
A(sj)

f̂(x)dx1dx2 is obtained by summing up these
approximated integrals over the cells.

A. Single Cluster

In this part, we report the target counting accuracy when
targets form a single cluster over the monitored area. Both
uniform and normal distributions of targets are considered. We
assume that the nature ( uniform or normal) of the distribution
is known to the investigator a priori but the exact form of the
normal distribution is unknown. Therefore, if the distribution
of the targets needs to be estimated, the parametric approach
in Section IV-A should be used. However, for a comparison,
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TABLE I
RELATIVE ERRORS FOR COUNTING UNIFORM TARGETS.

Nt = 10 Nt = 50 Nt = 100 Nt = 500 Nt = 1000

Grid Sensors No Estimation -0.2% -0.2% -0.2% 0.0% -0.1%
Non-Parametric Estimation 0.1% -0.3% 0.3% 0.0% -0.1%

Random Uniform Sensors No Estimation -0.3% -0.1% -0.2% -0.1% -0.1%
Non-Parametric Estimation 0.4% 0.3% -0.1% 0.0% -0.1%

TABLE II
RELATIVE ERRORS FOR COUNTING NORMALLY DISTRIBUTED TARGETS.

Nt = 10 Nt = 50 Nt = 100 Nt = 500 Nt = 1000

Grid Sensors
Parametric Estimation 0.5% 1.1% 1.2% 1.4% 1.1%

Non-Parametric Estimation 3.0% 2.8% 3.2% 3.2% 3.0%

Random Uniform Sensors Parametric Estimation 0.4% 1.0% 0.8% 1.2% 1.4%
Non-Parametric Estimation 2.6% 2.5% 2.0% 2.7% 2.5%

we also report the results when the non-parametric approach
in Section IV-B is used to estimate the distribution. To assess
the accuracy of our approach in target counting, we run the
simulation 200 times, and a final value of a performance metric
is reported. Details are given below.

For uniformly distributed targets, no parametric estima-
tion of the probability density function is needed in each
simulation. Specifically, we first generate Nt (fixed number)
targets that are uniformly distributed over the entire monitored
area. Though parametric estimation of the distribution of
the targets is not needed, we record the corresponding 100
pairs as listed in (5) and use Nadaraya-Watson estimator (8)
to provide a non-parametric estimation of the distribution
simply for a comparison. Then we randomly select m = 100
largest non-overlapped subsets S1, S2, · · · , S100, as described
in Section V-A. Compute P̂i in (11) (with the true f replacing
f̂ if no estimation is required). And compute ui (the observed
number of targets falling into the sensing regions of the sensors
in the set Si) in (12) . Finally, we use (17) to find the MLE
N̂t. After repeating the above process for 200 times, we use
the following Relative Error (RE) based on 200 runs as a
performance metric to evaluate the counting accuracy of our
approach:

RE =

∑200

i=1
N̂

(i)
t

200 − Nt

Nt
(18)

with N̂
(i)
t denoting the MLE of the target count at the ith

run. RE is the ratio of the difference between the averaged
estimated count and the true count to the true count. RE can
be positive (meaning overestimating) or negative (meaning un-
derestimating). The simulation results are reported in Table I.

For normally distributed targets, we estimate the distribution
and the target count in each simulation. Specifically, we first
generate Nt targets according to a bivariate normal distribution
N (μp,

∑
), where μp is fixed at the center of the monitored

area and
∑

=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
with σ1 and σ2 randomly

chosen from [10, 20] and ρ randomly chosen from (−1, 1).
We choose the interval [10, 20] to assure that the generated
targets are virtually within the monitored area. Then the
corresponding 100 pairs as listed in (5) are recorded, so that

(6) from the parametric approach can be used to estimate
parameters μp, σ1, σ2, and ρ. For a comparison, Nadaraya-
Watson estimator (8) from the non-parametric approach is
also used to estimate the pdf of the normal distribution. And
then we randomly select 100 largest non-overlapped subsets
S1, S2, · · · , S100, as described in Section V-A. Compute P̂i in
(11) and ui and use (17) to find the MLE N̂t. After repeating
the above process for 200 times, the final values based on the
performance metric RE in (18) is reported in Table II.

From Tables I and II we observe the following. First, the
relative error under grid sensor deployment is similar to that
under the random uniform sensor deployment. Though it could
be anticipated, this observation indicates that our approach is
robust against spatial noise in sensor positions. Second, for
uniformly distributed targets, it is difficult to see if the relative
error from no estimation of the distribution is better than
that from non-parametric estimation. However, for normally
distributed targets, the relative error from the parametric esti-
mation of the target distribution is smaller than that resulting
from the non-parametric estimation. This observation shows
that the prior knowledge in the target distribution can help
us better rebuild the distribution and thus better estimate the
target count. The difference between parametric and non-
parametric methods is that in parametric estimation, we only
need to estimate the parameter(s) of the distribution, while
in non-parametric estimation the 3-dimensional surface of the
distribution has to be estimated.

B. Multiple Clusters

In this subsection, we evaluate the performance of our
counting method on multiple clusters of targets. Three cases
are considered, where the distribution of targets over the
entire monitored area A is much more complicated than
a single distribution. Case 1 (Figure 1(a)) involves piece-
wise uniformity of targets. Specifically, the monitored area
is divided into four subareas with approximately the same
size. Targets within each subarea is uniformly distributed, and
the ratio of the counts of targets in four subareas (in the
order of lower left, upper left, lower right, and upper right) is
1 : 2 : 3 : 4. Clearly targets form four clusters.

Case 2 (Figure 1(b)) contains two clusters of targets cor-
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Fig. 1. Clustered Targets over the Monitored Area.

TABLE III
RELATIVE ERRORS FOR COUNTING TARGETS IN MULTIPLE CLUSTERS.

Nt = 10 Nt = 50 Nt = 100 Nt = 500 Nt = 1000

Grid Sensors
Case 1 -0.2% -0.5% 0.1% 0.0% 0.2%
Case 2 2.5% 1.8% 1.8% 2.4% 2.1%
Case 3 1.2% 2.2% 2.0% 2.3% 2.4%

Random Uniform Sensors
Case 1 -1.0% 0.3% -0.3% 0.1% -0.1%
Case 2 3.0% 3.4% 3.4% 4.0% 3.5%
Case 3 0.9% 1.8% 1.9% 2.4% 2.2%

responding to one uniform distribution and one normal dis-
tribution. Specifically, the monitored area is divided into two
halves with approximately the same size. Over the lower half
targets are uniformly distributed. Over the upper half targets
are distributed according to a normal distribution as described
in Section VI-A but with some exception that now μ is taken
to be the center of the upper half and σ1 and σ2 are chosen
from [3, 8]. (This interval [3, 8] is chosen so that all generated
targets will virtually fall on the monitored area.) We assume
the ratio of the counts of targets in two halves is 1 : 1.

Case 3 (Figure 1(c)) is similar to case 1 but deals with
normal distributions. The monitored area is divided into four
subareas with approximately the same size. Targets within
each subarea has a normal distribution centered at the subarea.
All four normal distributions have the same parameter setting
as in case 2. The ratio of the counts of targets in four subareas
(in the order of lower left, upper left, lower right, and upper
right) is 1 : 2 : 3 : 4.

We assume no prior knowledge on any distributions of the
targets in the above three cases. Therefore, (8) in the non-
parametric procedure of Section IV-B is applied to estimate the
target distribution over the entire monitored area. Again 100
largest non-overlapped subsets S1, S2, · · · , S100 are randomly
selected for the use of the maximum likelihood estimation.
And for comparison, both grid sensor and uniform sensor pat-
terns are considered. The relative errors based on 200 runs of
simulations are provided in Table III. A couple of observations
follow immediately from the table. First, the results in the table
show that the relative error under grid sensor deployment is
similar to that under the random uniform sensor deployment.
Second, for any specific distribution pattern of the targets,
there is no much variation on the relative error as the number

of targets changes.

C. Comparison with Other Algorithms

This section provides a comparative study where we com-
pare our counting approach with the PC+ and PC- algorithms
proposed in [14]. We use the same basic setting as in [14]:
Ns = 100 sensors are deployed uniformly and randomly over
the 100m∗100m region. The radius of the sensing region of a
sensor is set to be 7m and 10m. (Note that due to use of such
values of the radius, the monitored area may not cover the
100m ∗ 100m region entirely.) Two types of distributions of
targets are considered: uniform distribution over the monitored
area and normal distribution as used in Section VI-A. And
the true number of targets Nt is set to be 10, 15, 20. We
randomly select m = 100 largest non-overlapped subsets
S1, S2, · · · , S100 and follow the steps in Section VI-A to
conduct target counting with our approach. The results based
on 200 runs of simulations are shown in Figures 2(a), 2(b),
3(a), and 3(b). In the figures, NE, PA, and NPA represents
our method when no estimation, parametric estimation, and
non-parametric estimation of the target distribution is made,
respectively.

From these figures, the following observations are immedi-
ate:

1) All four methods achieve similar results for uniformly
distributed targets with the radius of the sensing region
h = 7. However, for all the other three cases, the
performance of PC+ and PC- is worse than that of our
approach.

2) The performance of PC+ and PC- on uniformly dis-
tributed targets is much better than that on normally
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Fig. 2. Comparison Results for Uniform Distributed Targets.
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Fig. 3. Comparison Results for Normally Distributed Targets.

distributed targets. This difference is not significant for
our counting approach.

Many other simulations have also been conducted to com-
pare PC+ and PC- with our approach. We have found that
the performance of PC+ and PC- is good and comparable to
ours if targets are uniformly distributed and sensing regions
of sensors slightly overlap. If the target distribution is not
uniform, the performance of PC+ and PC- will degrade in
general. If the sensing regions of sensors heavily overlap, the
amount of time needed for PC+ and PC- to reach an estimate
of target count would become huge and the estimated counts
of targets by PC+ and PC- would look unrealistic. In addition,
PC+ and PC- work slowly when Nt becomes large. These are
the reasons that we do not include large values (e.g., 14) of
the radius of sensing regions and large number of targets (e.g.,
Nt = 50, 100, etc.) in the above comparison.

D. Further Discussion

In addition to the above simulations, we have also conducted
many other simulations to evaluate the proposed counting
approach. We summarize the major findings as follows.

1) Grid sensor deployment is almost equivalent to random
uniform sensor deployment in terms of relative errors of
the proposed counting approach. This finding is expected

and has been shown in Sections VI-A and VI-B.
2) In general, if the distribution of targets can be ob-

tained through estimating the parameter(s), the paramet-
ric procedure should be used instead of using the non-
parametric procedure to estimate the entire distribution.
An example of this is provided in Section VI-A.

3) The proposed approach works for a small number of
targets as well as a large number of targets. The relative
error does not seem to change significantly as the
number of targets changes. See Tables I II, and III for
a demonstration.

4) For the use of the maximum likelihood estimation, one
can randomly select sets of sensors S1, S2, · · · , Sm,
each of which do not contain two sensors whose sensing
regions are overlapping. However, for a fixed m, largest
such sets should be used, since largest sets contain more
information on targets.

5) For non-parametric estimation of the target distribution,
both (8) and (10) can be used. However, in our sim-
ulations, we have found that in general, (8) actually
works better. One reason for this is that in our setting
(8) usually provides a better estimation of the target’s
distribution.

6) Our proposed target counting approach works best if
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targets are spread out over the entire monitored area.
If targets are clustered in a small area, a good way to
estimate the target count is applying our approach to an
appropriate small area that is larger than or equal to the
union of the sensing regions each containing at least one
target.

7) Our proposed approach in target counting is fast in
practice. For example, in all the experiments in Sec-
tions VI-A VI-B and VI-C, it takes 1 ∼ 3 seconds for
each run of simulation.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a solid statistical approach for target
counting in sensor-based surveillance systems. In this ap-
proach, regression techniques are first used to estimate the
distribution of target positions for two cases. If the parametric
form of the distribution is known, the parameter(s) is estimated
by minimizing the residual sum of squares. If no prior infor-
mation is available for the distribution, the kernel regression
method is used to estimate the distribution. Using the estimated
distribution of the targets, we can estimate the probability that
a target falls into a specific subarea of the entire monitored
area in the system. The estimated count of the targets is then
obtained by the method of likelihood estimation based on a
sequence of binomial distributions derived from the estimated
distribution of targets and a sampling procedure.

A large number of simulations have been performed and
the results show that our approach is effective in estimating
the actual number of targets present in the surveillance system.
Simulations also show that our counting approach is in general
superior to the most recent algorithms in the literature in terms
of execution time and counting accuracies.

Our future research would lie in the following directions:
i) examining alternative procedures in estimating the target’s
distribution; ii) analyzing the effect of noise in sensors’ reading
on the estimated count of targets; iii) seeking possibly better
metrics and methods to measure the performance in target
counting; iv) investigating the effect of various bandwidths
used in kernel regression on the counting accuracies; v)
examining in details the computational complexity of the
proposed approach; and vi) studying applications of target
count estimation to real life detection problems.
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