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Abstract—Mobile P2P networking is an enabling technology
for mobile devices to self-organize in an unstructured style and
communicate in a peer-to-peer fashion. Due to user mobility
and/or the unrestricted switching on/off of the mobile devices,
links are intermittently connected and end-to-end paths may not
exist, causing routing a very challenging problem. Moreover, the
limited wireless spectrum and device resources together with
the rapidly growing number of portable devices and amount
of transmitted data make routing even harder. To tackle these
challenges, the routing algorithms must be scalable, distributed,
and light-weighted. Nevertheless, existing approaches usually
cannot simultaneously satisfy all these three requirements. In
this paper, we propose two opportunistic routing algorithms for
intermittently connected mobile P2P networks, which exploit the
spatial locality, spatial regularity, and activity heterogeneity of
human mobility to select relays. The first algorithm employs a
depth-search approach to diffuse the data towards the destina-
tion. The second one adopts a depth-width-search approach in a
sense that it diffuses the data not only towards the destination
but also to other directions determined by the actively moving
nodes (activists) to find better relays. We perform both theoretical
analysis as well as a comparison based simulation study. Our
results obtained from both the synthetic data and the real world
traces reveal that the proposed algorithms outperform the state-
of-the-art in terms of delivery latency and delivery ratio.

Index Terms—Intermittently connected mobile P2P networks;
opportunistic routing; human mobility

I. INTRODUCTION

Nowadays, billions of mobile devices are connected mainly
through the assistance of infrastructures, which may often
be undesirable due to high cost, lack of flexibility, and low
utilization of the local wireless resources. Moreover, because
infrastructures usually have limited wireless coverage and are
vulnerable to nature disaster or other failures, only using this
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way may lead to network islands. As a result, a new network-
ing paradigm named mobile peer-to-peer (P2P) networking has
drawn enormous attention in recent years.

In a mobile P2P network, mobile devices can communicate
in a peer-to-peer fashion and self-organize in an unstructured
style without the need of any infrastructure, making the
local wireless connectivity better exploited. But under such
a networking paradigm, data delivery is nontrivial [1]–[4] as
end-to-end paths may not exist due to user mobility and/or the
unrestricted switching on/off of the mobile devices. Moreover,
the limited wireless spectrum and device resources (storage,
computation capability, battery power, etc.), together with the
rapidly growing number of portable devices and amount of
transmitted data, make routing even harder. Thus an effective
and efficient routing algorithm in intermittently connected
mobile P2P networks should satisfy the following three design
requirements:

1) Scalable. With the number of nodes in the network
increases, the complexity of the algorithm as well as the
information each node carries, maintains, and exchanges
with others should not rapidly increase.

2) Distributed. Each node should determine its next hop
independently, which means that no centralized routing
decision/computation should get involved.

3) Light-weighted. Each node should incur low computa-
tion and storage overheads, which implies the simplicity
of the routing algorithm.

As indicated in Section II, none of the existing routing
algorithms could simultaneously satisfy all these three require-
ments. In this paper, we propose two opportunistic routing
algorithms for intermittently connected mobile P2P networks.
The first one takes a depth-search approach to diffuse the data
towards its destination direction. This algorithm exploits the
spatial regularity and spatial locality of the mobility of the de-
vice carriers, i.e. human beings1, to find relays. Because depth-
search delivers the data towards a single direction, adopting
this strategy may miss better relays from other directions.

To make up this deficiency, a depth-width-search approach
is proposed, which exploits not only the spatial regularity
and spatial locality of human mobility, but also its activity
heterogeneity. Thus, the data can be diffused towards not only
the destination direction but also other directions determined
by the actively moving nodes (activists) in order to find better
relays. Since our algorithms require each node to maintain

1In this paper, we focus on the mobile devices carried by human beings
because the number of such devices is prominent in the market.
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only the mobility characteristics of itself, which is a relatively
stable piece of information in a dynamically mobile environ-
ment, they scale well in network size and incur low burden on
each node. Moreover, our algorithms are distributed in nature
as they involve no centralized decision/computation.

Our design is inspired by the following observations: the
mobility of the mobile devices is mainly controlled by their
carriers, the human beings, and the mobility of human beings
is driven by their sociality, which is stable in long term. Thus
by exploiting the stable characteristics of human mobility in
both the time domain and the space domain, the relay selection
can be simplified and the effectiveness as well as the efficiency
of routing decisions can be guaranteed.

The rest of the paper is organized as follows. The related
work is presented in Section II. Section III introduces the
human mobility characteristics exploited in our algorithms and
presents our routing model. The corresponding algorithms are
detailed in Section IV. Section V provides our theoretical
analysis on the proposed algorithms and the corresponding
numerical validation. The simulation study is reported in
Section VI. This paper is concluded by Section VII.

II. RELATED WORK

Existing routing algorithms for intermittently connected
mobile P2P networks can be classified into two categories:
deterministic and stochastic. Deterministic approaches [5]–[9]
provide deterministic routing decisions assuming that some
kinds of network connectivity information are known a priori.
For example, Jain et al. [5] modify the Dijkstra’s algorithm
to compute the routes when the network connectivity patterns
are known. In [6], a graph indexing system is proposed to
minimize the long range communication cost for multicast,
given the trajectories of moving peers and traffic demand are
known in advance. By assuming that the contact rate between
any two nodes in the network is available, [7] formulates
a unified Knapsack problem for relay selection to support
multicast, [8] studies the co-evolution of content popularity
and delivery, and [9] proposes a data dissemination algorithm
to select a relay in light of its social contact patterns and
interests.

However, it is challenging to obtain the network connec-
tivity information due to the uncertainty and dynamism of
intermittently connected mobile P2P networks. Hence deter-
ministic approaches are hard to implement in practice. This
stirs the research of stochastic approaches [10]–[16], which
are summarized as follows.

Gao et al. [10] exploit the transit contact pattern for each
node, through which a node with a higher contact chance is
selected as a relay. BUBBLE rap [11] combines the knowledge
of the community structure with node centrality to make
forwarding decisions. If the current relay does not meet a
node whose community is the same as that of the destination,
it selects the next hop according to the global centrality
of the encountered nodes; if meets, it then considers the
local centrality. SimBet routing [12] computes each node’s
centrality within the network and its social similarity to the
destination for relay selection. Dang et al. [13] propose a

cluster-based routing protocol, where a cluster is formed and
a gateway is selected based on the nodal contact probabilities.
Nodes within the same cluster use direct transmissions to
communicate. When two nodes belonging to different clusters
want to communicate, their gateways must relay the data.

The schemes mentioned above [10]–[13] all infer some
kind of network connection information through the history
nodal contacts. Epidemic [14], on the other hand, selects
relays randomly without inferring any network connection
information. To enhance the delivery ratio, Epidemic dissem-
inates a large number of copies of each data, which incurs
a heavy communication overhead. To trade off between the
communication overhead and the delivery ratio, the binary
spray algorithm [15] and the utility-based spray algorithm [16]
are proposed. The binary spray algorithm employs a copy
quota Q to limit the maximum number of copies spread in
the network. If a node holding the data meets another one
without the data and the copy quota of this node is larger
than 1, it delivers the data to the other node with half of the
copy quota and keeps the other half for itself. The utility-
based spray algorithm [16] requires each node i to maintain
a utility function Ui(j) for every other node j in the network
and selects relays according to the utilities of the nodes.

We claim that none of the existing algorithms simultane-
ously satisfies the three design requirements described in Sec-
tion I for intermittently connected mobile P2P networks. For
example, [5] is a centralized scheme, whose route computation
complexity increases rapidly with the increase of the network
size; though [7], [9], [10] are distributed, the computation
overhead on each relay is high and increases rapidly when
the number of nodes in the network increases; [13] selects
cluster heads as gateways, resulting in the potential commu-
nication bottleneck problem; [10], [12], [16], [17] force each
node maintain an entry for every other node in the network,
thus scaling badly in network size; [11] needs to detect the
community before relay selection, while the complexity of
community detection increases exponentially with the network
size; [14] adopts the flooding policy to deliver the data, which
makes the delivery cost dramatically increase with the increase
of the network size; though [15] limits the copy quota for each
data, a large copy quota is needed for a good delivery ratio
due to its simple relay selection strategy, again resulting in a
poor scalability.

On the other hand, our proposed algorithms scale well and
incur low overhead because the information maintained at
each node is relatively stable and the relay selection is node-
based rather than node-relationship-based, which implies that
our algorithms require no frequent information updates and
the overhead on each node does not increase rapidly with
the increase of the number of the nodes in the network. In
addition, our algorithms are distributed because they involve
no centralized routing decision/computation and communica-
tion hub. These advantages are achieved from exploiting the
characteristics of human mobility, which will be introduced in
the following section.
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III. MOTIVATION AND ROUTING MODEL

In this section, we first summarize the characteristics of
human mobility that motivates our algorithm design and then
detail our routing model.

A. Characteristics of Human Mobility

Our algorithms exploit three characteristics of human mo-
bility introduced in our prior work [18] to simplify the
relay selection for effective and efficient routing decisions.
These characteristics are briefly reviewed in this section for
completeness. They are obtained by analyzing a real world
dataset, i.e. the Dartmouth College’s wireless local area net-
work (WLAN) traces [19]. This trace data records when each
node connects to or disconnects from which access point (AP)
in Dartmouth College during 2001 to 2004.

We analyze the data from the following four months:
09/21∼10/20 and 10/21∼11/19 in 2003, and 01/28∼02/26 and
04/20∼05/19 in 2004, during which about 5346∼6052 mobile
nodes roam among 532∼543 APs. These four months are
selected because their records are integral and the behaviors
of the users are regular (no special events and vacations). Our
analysis reveals the following human mobility characteristics:

i) Human mobility demonstrates a high degree of spatial
regularity. This indicates that each node has a significant
probability of returning to a few highly frequently visited
places. As shown in Figure 1(a), nodes are found at their first
two preferred places with a probability over 70%.

ii) Human mobility exhibits spatial locality. In other
words, people usually move within a local region. Figure
1(b) reports the probability density function of the average
displacement of all mobile nodes from their corresponding
centers (most frequently visited places). According to Figure
1(b), the probability of moving away from its center for a
node decreases sharply with the increase of the displacement,
exhibiting spatial locality of human mobility.

iii) The activities of human mobility are heterogeneous.
In real world, different nodes have different mobility activities
characterized by the number of different locations visited
within a given time. From Figure 2(a), we observe that about
52%∼58% nodes visit less than 10 APs; about 20% nodes
visit 10∼20 APs; about 2%∼3% nodes visit 40∼50 APs; some
nodes visit more than 80 APs; and one or several nodes even
visit more than 200 APs. Different mobility activities result
in different chances of contacting with others. Figure 2(b)
indicates that with the increase of the mobility activities, the
average number of nodes one can contact increases rapidly.

It is worth noting that similar human mobility characteristics
are also observed from other real world datasets. For example,
the dataset obtained by tracking the trajectories of 100,000
anonymized mobile phone users for a six-month period [20]
indicates that nodes stay in their first two preferred places with
a probability over 40%, demonstrating the spatial regularity of
human mobility; A three-month record [21] capturing the mo-
bility patterns of 50,000 nodes chosen from about 10 million
anonymous mobile phone users shows that a user is found with
the probability of 70% in his/her most visited location during
the observed hour; in addition, most individual’s daily activity
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Figure 1: [18] (a) A Zipf plot showing the average prob-
abilities of frequently visited places in four months. The X
label (R) is the rank of the APs listed in the order of visiting
frequencies, and the Y label is the probability of R. (b) The
probability density function of average displacement over all
nodes. We use the first frequently visited AP as the center
place of a node, and count the probability of each node’s
displacement (4r) from its center. The axes graph is the
logarithmic plot for better illustration.
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Figure 2: [18] (a) reports how many nodes visit how many
different APs in 30 days and (b) shows how the average
number of nodes a node contacts changes with the number
of different APs visited by the node within 30 days.

is confined to a limited neighborhood of 1 to 10 km and a
few users cover hundreds of kilometers. This trace data [21]
verifies the spatial regularity and spatial locality of human
mobility. The trace data [22] collecting approximately 275
freshmen PDA users for 11 weeks reveals that 50% users visit
21 APs or more, 20% users visit 56 APs or more, 10% users
visit 71 APs or more, and in extreme cases, some users visit
over 130 APs, which demonstrates the heterogeneous activity
of human mobility.

By taking advantage of the human mobility characteristics
summarized in this section, we design two routing algorithms
to disseminate the data through depth or/and width searches
as described in Section IV.

B. Routing Model

In this section, we introduce our network model in detail.
The whole intermittently connected mobile P2P network (Ω) is
divided into multiple zones (Zi), with ∪Zi = Ω and ∩Zi = ∅.
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These zones can have any shape. Each zone Zi is identified
by its center coordinates (xi, yi).

There are many methods for a node to figure out the center
coordinators of a zone. For example, the center coordinates
of a zone can be broadcasted by the access points or access
routers in an infrastructure-based network; or they can be
determined based on a mapping function if the node is aware
of its own physical location.

Definition 3.1 (Home): The home of node i, denoted by Hi,
is the set of zone(s) it visits at high frienquencies.

There exist two simple strategies for a node to determine its
home: i) a node can statically configure the zones it usually
visits as its home; ii) it can dynamically add a zone to its
home once the visiting frequency of the zone is larger than a
given threshold. Similarly, a zone can be deleted from a node’s
home either statically or dynamically.

Definition 3.2 (Neighbor set): The neighbor set of node i,
denoted by Ni, is the set of nodes that can communicate
directly with i.

We assume that any two nodes located at the same zone
can communicate directly with each other. Therefore, all the
nodes covered by the zone where i resides belong to Ni. More
generally, Ni includes the nodes in a neighboring zone that
can communicate with i directly. Note that i /∈ Ni.

Definition 3.3 (Activist): If the number of different zones
visited by a node within a unit time exceeds a threshold, the
node is called an activist.

Definition 3.4 (Distance between homes): The distance be-
tween the homes of two node i and j is the minimum distance
between any two zones of Hi and Hj , i.e., ‖Hi − Hj‖ =
min{‖Zi − Zj‖ | Zi ∈ Hi, Zj ∈ Hj}.

Definition 3.5 (Home node): Node i is called a home node
of a packet if the distance between the home of i and that of
the destination of the packet is 0, i.e., ‖Hi −Hd‖ = 0.

In our model, once two nodes contact, they need to exchange
their home information. If a node is an activist, it should
indicate this status.

IV. OUR ALGORITHMS

In this section, we propose two algorithms to select relays
for routing in intermittently connected mobile P2P networks
exploiting the three characteristics of human mobility intro-
duced in Section III-A.

A. Depth-Search

As shown in Section III-A, human mobility exhibits a high
degree of spatial regularity and spatial locality. Thus, the
destination appears in the zones or near the zones of its home
with a high probability. Therefore to achieve a high delivery
ratio, it is better to select as relays the nodes that usually visit
such zones.

According to the above idea, we propose the depth-search
algorithm, which selects as relays the nodes whose homes’
distances to that of the destination are within a given threshold
L (Line 9). In particular, when L = 0, the depth-search
algorithm only selects home nodes as relays. The pseudo-code
of this algorithm is given in Algorithm 1, where Qj is the copy

Algorithm 1 The depth-search algorithm
1: repeat
2: Update the neighbor set of each node holding the data
3: for each node j holding the data do
4: for each node i ∈ Nj do
5: if i = d then
6: send(B, i, 1) return
7: end if
8: end for
9: if Qj > 1 ∧ ∃i ∈ Nj , s.t.‖Hi −Hd‖ ≤ L∧ i has

no copy then
10: send(B, i, bQj/2c)
11: Qj ← dQj/2e
12: end if
13: end for
14: until the data expires

quota of node j and function send(B, i,Q) sends data B to
node i with copy quota Q. The copy quota of a node limits
the number of copies delivered to other relays. If Q = 1, no
copy is allowed to deliver to other relays.

Algorithm 1 selects a relay according to the following
policy: for a node j currently holding the data, if it meets the
destination d, it should deliver the data to d directly (Lines
3-8); if it meets a node satisfying the relay condition and its
copy quota is larger than 1, it delivers the data to the node and
gives the node bQj/2c copy quota, leaving with itself dQj/2e
copy quota (Lines 9-12).

B. Depth-Width-Search

The depth-search strategy exhibits a single-direction search,
which may miss better relays from other directions. To make
up this deficiency, we propose the depth-width-search ap-
proach, which not only exploits the spatial regularity and
the spatial locality of human mobility, but also the activity
heterogeneity of human mobility. The underlying rationale lies
in that the nodes with high mobility activities usually have high
chances to meet with others, and thus the probability that it
meets better relays is high.

Therefore the depth-width-search approach selects as relays
the activists besides the nodes whose homes are near to the
home of the destination (Line 9). The pseudo-code of this
algorithm is presented in Algorithm 2.

It is worth noting that in a large network with sparse
mobile nodes, the source may spend a long time to find a
node satisfying the relay condition. In such a scenario, our
algorithms suffer from a so-called slow start phase, which
largely affects the data diffusion speed in the network. To
overcome this problem, we can slightly modify the algorithms
by adding the following consideration: if the source does not
meet a node satisfying the relay condition for a given amount
of time, it selects as a relay the node from its neighbor set
whose home is the nearest to the home of the destination.
There also exist other variations that can further enhance the
performance of our algorithms, which will not be detailed in
this paper due to space limitations.



5

Algorithm 2 The depth-width-search algorithm
1: repeat
2: Update the neighbor set of each node holding the data
3: for each node j holding the data do
4: for each node i ∈ Nj do
5: if i = d then
6: send(B, i, 1) return
7: end if
8: end for
9: if Qj > 1 ∧ ∃i ∈ Nj , s.t. (‖Hi −Hd‖ ≤ L ∨ i is

an activist) ∧i has no copy then
10: send(B, i, bQj/2c)
11: Qj ← dQj/2e
12: end if
13: end for
14: until the data expires

1 2 i Q

a1 a2

Ob1

b2

aiai-1 aQ-1

bQ

bi

Figure 3: A continuous time Markov model for analyzing the
data delivery.

V. THEORETICAL ANALYSIS AND NUMERICAL
VALIDATION

In this section, we elaborate on the theoretical analysis of
our algorithms and provide simulation results for validation
purpose.

A. Theoretical Analysis

We assume that there are Z zones and U nodes in the
network. The maximum number of copies a data packet can
have in the network is denoted by Q. Note that in our analysis
we omit the wireless transmission delay when calculating the
data delivery latency because it is negligible compared to the
duration that two nodes contact2.

Similar to [24], we employ a continuous time Markov model
to analyze our algorithms. As shown in Figure 3, a state
i indicates that there are i relays in the network and the
absorbing state O represents the state at which the data is
delivered to the destination. We let the transfer rate from state
i to state i+ 1 be ai while to state O be bi. In the following,
we elaborate on how to derive ai and bi.

Definition 5.1 (Potential relay of depth-search): A node u
with no copy of the data is a potential relay of the depth-
search algorithm if ‖Hu −Hd‖ ≤ L.

Definition 5.2 (Potential relay of depth-width-search):
A node u with no copy of the data is a potential relay of
the depth-width-search algorithm if it satisfies one of the
following two conditions: i) ‖Hu −Hd‖ ≤ L, and ii) it is an
activist.

Definition 5.3 (Distance between a zone and a home):
The distance between a zone i, i.e. Zi, and the home of a

2A similar assumption is adopted by [23].

node j, i.e. Hj , is the minimum distance between Zi and any
zone in Hj , i.e., ‖Hj − Zi‖ = min{‖Zj − Zi‖ | Zj ∈ Hj}.

Lemma 5.1: The probability (Πd) that a node becomes a
potential relay of the depth-search algorithm when there are i
copies of a data packet in the network is Πd = (U−i−1)OL

(U−1)Z ,
where OL is the number of zones whose distances to the home
of the destination are within L.

Proof: When there are i copies in the network, the
probability that any node except the destination has no such
copy is U−i−1

U−1 . For an arbitrary node, the probability that the
distance from its home to that of the destination is within L
is OL/Z. According to Definition 6.1, Πd = (U−i−1)OL

(U−1)Z .

According to Definition 4.2, if the number of different zones
visited by a node within a unit time is beyond a threshold, the
node is an activist. Given this threshold, the number of activists
in the network can be determined. We assume that there are
m activists in the network. Then with a proof similar to that
of Lemma 5.1, we have

Lemma 5.2: The probability (Πdw) that a node becomes a
potential relay of the depth-width-search algorithm when there
are i copies of the data in the network is Πdw = U−i−1

U−1 ·
(
1−

(1− OL

Z )(1− m
U )
)
.

Let Π be the probability that a node is a potential relay
of our algorithms. Then in depth-search, Π = Πd while in
depth-width-search, Π = Πdw. Let the average rate at which
any node contacts with others be λ.

Lemma 5.3: When there are i nodes except the destination
holding copies of a data packet, the data delivery rate (bi) can
be computed by iλ/(U − 1).

Proof: When i nodes have copies of the data in the
network, the probability that a node except the destination has
a copy is i/(U−1). Since the rate of the destination contacting
with other nodes is λ, we have bi = iλ/(U − 1).

To compute ai, we have to address the following question:
when there are i relays in the network, how many of them can
forward their copies to other nodes? To answer this question,
we need first to investigate another question: when there are
j relays in the network and the maximum copy-limitation is
Q, how do these j relays share the copy quota Q? According
to [24], this question is very similar to the integer partition
problem [25], which asks for the number of possible partitions
of a given integer. Let N(Q|j) be the average number of nodes
among the j nodes that can forward their copies to other nodes
when the maximum copy-limitation is Q. According to [25],
N(Q|j) can be calculated by:

N(Q|j) =

{
0 j = 0∑j

s=1 sM(Q−j|s)
M(Q|j) otherwise

(1)

with

M(Q|j) =


0 Q < j

1 Q = j∑j
y=1M(Q− j|y) Q > j

(2)

Lemma 5.4: The transfer rate (aj) from state j to state j+1
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is:

aj =


1 j = 0

N(Q|j)Πλ 1 ≤ j < Q

0 j = Q

(3)

Proof: Obviously, a0 = 1 and aQ = 0. When there are
1 ≤ j < Q relays in the network, in average N(Q|j) relays
have the capacity (whose copy quota is larger than 1) to send
the data to other nodes. Since any relay meets other nodes
with the rate of λ and each node it meets has the probability
of Π to satisfy the relay condition, aj = N(Q|j)Πλ when
1 ≤ j < Q.

Theorem 5.1: The probability density function of the
data delivery latency, denoted by fO(t), is

∑Q
i=1 bi ⊗ij=1

aj−1e
−(aj+bj)t.

Proof: Let Fi(t) and FO(t) be the distributions of the
probabilities at which the state is in i and O, respectively.
According to the Kolmogorov’s equation [26], we have:

F ′i (t) =


−(ai + bi)Fi(t) i = 1

−(ai + bi)Fi(t) + ai−1Fi−1(t) i = 2, ..., Q− 1

−biFi(t) + ai−1Fi−1(t) i = Q∑Q
j=1 bjFj(t) i = O

(4)
Since F1(0) = 1 and Fi(0) = FO(0) = 0, through Laplace
and inverse Laplace transforms, the probability density func-
tion of the data delivery latency, fO(t), can be computed by
(5), where ⊗ represents the convolution operation.

fO(t) =

Q∑
i=1

bi ⊗ij=1 aj−1e
−(aj+bj)t (5)

B. Numerical Validation

The probability density function fO(t) of the data delivery
latency is very important because both the average delivery
latency and the average delivery ratio can be deduced from
it. In fact, the average delivery latency can be calculated
by
∫∞
0
tfO(t)dt while the average delivery ratio within an

observation duration T is
∫ T
0
fO(t)dt. In this subsection, we

provide simulation results to validate the probability density
function fO(t) of the data delivery latency.

Our simulated network contains 50 × 50 zones and 100
mobile nodes. For these 100 mobile nodes, we randomly
allocate serval zones to each of them as their homes. They
move from one zone to another zone of their homes randomly.
The most ten active mobile nodes are selected as the activists.
We set Q = 10 or 20 and L = 20, which will be explained
in the following section. To validate fO(t), we employ 10000
different random seeds to produce 10000 different simulation
instances. The reported fO(t) is the statistical result of the
10000 simulation instances.

In this numerical analysis, the rate (λi) at which each node
i contacts with others is set according to the statistical value
obtained from the simulation study, through which the average
rate at which each node contacts with others (λ =

∑U
i=1 λi

U )
can be obtained. Figure 4 reports the results of the simulated

fO(t) and the numerical value obtained from the theoretical
analysis, from which we observe that the trends of both results
are matched.

In the next section, we further evaluate our algorithms using
both the synthetic data described above and the real world trace
data. We do not use the real world trace data for validating
fO(t) because the rate at which each node contacts with others
is quite different (see Figure 2(b)). Thus the λ computed by
normalizing λi deviates significantly from the actual rate at
which each node contacts with others. Though normalizing λ
results in a large deviation, it is unavoidable when modeling
the data diffusion speed. We would like to emphasize that this
is a commonly-accepted method to perform similar analysis
[24], [27], [28].

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our algo-
rithms based on the real world trace data and the synthetic data
introduced in Section V-B. We will compare our algorithms
with binary spray [15] (labeled by Binary) and BUBBLE rap
[11] (labeled by BUBBLE).

In the binary spray algorithm, a node with a copy quota
larger than 1 for a packet delivers its data to another node it
meets with half of its copy quota and leaves itself with the
other half if the encountered node has no copy of the data.

The BUBBLE rap algorithm is a famous opportunistic
routing algorithm for intermittently connected mobile P2P
networks. As introduced in Section II, BUBBLE combines
the knowledge of the community structure with node cen-
trality to make forwarding decisions. Hence, BUBBLE needs
community detection before selecting relays. Similar to [11],
we employ the K-CLIQUE [29] method to detect community
when implementing BUBBLE in our study.

To utilize the K-CLIQUE method, we must determine the
edge between any two nodes in advance. Again we employ
the method adopted by [11]: there is an edge between any
two nodes if their contact duration is greater than a threshold.
To determine the threshold, we use the traditional method for
analyzing complex networks3: the threshold is a value slightly
greater than the clique percolation threshold. In other words,
our threshold is selected to partition the whole network into
multiple communities rather than a big community plus some
fragments. In addition, we set K = 4, which is an empirical
value typically adopted by community detection.

Note that BUBBLE is a single-copy multiple-relay al-
gorithm while ours are multiple-copy multiple-relay ones.
Therefore for a fair comparison, we extend BUBBLE to
support multiple-copy delivery: when a source sends a data
packet to a destination, it sends Q copies, with each being
delivered according to the strategy in the original BUBBLE
rap algorithm. Once a copy arrives in the destination, the
delivery of the data terminates. It is worth noting that if a
node has a copy of the data, it will be ignored in the multiple-
relay multiple-copy version even though it is deemed optimal
according to the original BUBBLE strategy. In another word,

3The intermittently connected mobile P2P network is a typical complex
network.
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Figure 4: Theoretical results vs. simulation results: (a) Depth-search with Q = 10; (b) Depth-search with Q = 20; (c) Depth-
width-search with Q = 10; (d) Depth-width-search with Q = 20.

a relay cannot receive duplicate copies in the multiple-relay
multiple-copy version.

The performance metrics for our simulation study include
the delivery ratio and the delivery latency. It is less meaningful
to compare the delivery latency of two algorithms when their
successful communication pairs are not the same. The reason
is that the delivery latency of the communication pairs that
succeed in one algorithm but fail in another may worsen
the average delivery latency of the algorithm with a higher
delivery ratio4. Hence in the following, we only compare
the average delivery latency of the communication pairs that
succeed in all algorithms under our comparison study. Finally,
for simplicity, we assume that the lifetime of a data packet
equals the simulation duration.

A. Simulation Results Over the Synthetic Data
In this subsection, we evaluate our algorithms based on the

synthetic data introduced in Subsection V-B. We select 100
source-destination pairs from the 100 mobile nodes and test
the cases when L = 0, 10, 20, and 30. Our results indicates
that L = 20 yields the best performance because this setting
provides the best tradeoff between the number of relays and
the quality of relays.

Figures 5 and 6 respectively report the delivery ratio and
average latency of the four algorithms. We observe that our
algorithms outperform Binary in all settings and BUBBLE in
most cases. The performance of Binary is the worst because
it selects relays only based on whether or not the encountered
node has a copy of the data and ignores other key properties
of nodes. The performance gap between BUBBLE and our
algorithms is resulted from the fact that the former selects as
relays the nodes that usually contact the destination through
communities while ours select relays based on the zones they
usually visit. The contacts among the nodes in a community
are usually indirect, which may lead to unsatisfactory perfor-
mance. For example, if nodes a, b, and c belong to the same
community but a usually contacts with b, who usually contacts
with c. In the case that the destination is c, and the centrality
of a is higher than that of b, a data packet will be delivered
to a rather than b. Then c may not receive the data because it
cannot contact a directly.

4The source-destination pair that is hard to communicate successfully
usually has a longer delivery latency.

From Figures 5 and 6 we also observe that the delivery
ratio of the depth-search is slightly higher than that of the
depth-width-search, while the average latency of the latter is
smaller than that of the former. This is because the depth-
width-search also employs activists as relays, which have a
smaller probability of meeting the destination than the home
nodes or the nodes whose homes are near to that of the
destination, leading to a slight loss in terms of the delivery
ratio. However, activists may meet better relays from other
directions, resulting in a lower delivery latency.
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Figure 5: Delivery ratio
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thetic data.

5 10 15 20

130

140

150

160

170

180

Q

D
el

ay
 (

U
ni

t o
f t

im
e)

 

 

Binary
Depth
Depth−Width
BUBBLE

Figure 6: Average delay
comparison over the syn-
thetic data.

B. Performance Evaluation Over the Real-World Trace Data

In this subsection, we evaluate our algorithms using the
Dartmouth College mobility trace data [19]. We choose the
data collected from 09/21/2003 to 10/20/2003 because in this
period the records are integral and the nodes’ behaviors are
regular.

In our simulation study, each AP represents a zone, and any
two nodes within the same zone can communicate directly. Be-
cause the trace data contains over 5000 mobile nodes and the
running time increases rapidly with the increase of the number
of mobile nodes, we limit the number of nodes to a man-
ageable size. The same strategy is taken by [16], [30], [31],
which also use the Dartmouth College trace data. Different
from these existing literatures, we do not deliberately select the
well-connected mobile nodes such as “good neighbors” [30]
or “active nodes” [31] to construct the simulation topology.
Instead, we select mobile nodes completely randomly from the
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Dartmouth College trace data to retain as much as possible the
characteristics of the raw data.

Since the number of nodes in the network needs to be
limited to a manageable size, we construct the simulation
scenarios according to the following steps:. We first randomly
choose 300 mobile nodes to construct a 300-node scenario,
and select 100 source-destination pairs from these 300 mobile
nodes. These 100 communication pairs remain unchanged
during our simulation study. Then we add 100 newly selected
random mobile nodes to the 300-node scenario to get a 400-
node scenario. Repeat this procedure we can construct a 500-
node scenario. For simplicity, we denote by U = x the x-node
scenario, where U is the network size.

We have tested the performance of our algorithms when
an activist is one of the 20, 30, 40 nodes that visit the largest
number of different zones during the 30-day period. We found
that if the data is delivered to a node that is more active
than others, the delivery ratio is improved. However, if the
threshold for activist selection is increased, the number of
relays is reduced, which decreases the delivery ratio. Our
results indicate that selecting the top 30 active nodes results
in the best performance. We also evaluate the performance of
our algorithms on different home size, which is defined to be
the number of zones in a home. Through extensive tests we
found that when the largest home size is limited to 10% of the
zones in the network, namely the average home size is about
10, a trade-off between quality and quantity of the relays can
be obtained.

Because the real world network is more complex than the
synthetic one, finding a good L for the Dartmouth trace data
is quite challenging. Hence we investigate the performance
of our algorithms for L = 0 and L = 300. Note that we
choose these two L values that differ significantly because
the performances of our algorithms exhibit a small difference
when the change of L is not large as the real world network is
large. Figure 7 illustrates the delivery ratios of our algorithms
for L = 0 and L = 300, the BUBBLE rap algorithm, and the
binary spray algorithm when U varies. Because the number of
communication pairs succeeding in all the six cases (two for
each of our algorithms, two for BUBBLE, and two for Binary)
is not large, we consider L = 0 and L = 300 separately
when investigating the average delivery latency. Figures 8 and
9 report the average delivery latencies of the communication
pairs succeeding in all the four algorithms for the cases L = 0
and L = 300, respectively.

According to Figure 7, the delivery ratios of our algorithms
are higher than that of the binary spray algorithm in all cases.
When U = 300, the delivery ratios of our algorithms are also
higher than that of the BUBBLE rap algorithm, and the gap
reduces with the increase of U . However, as shown in Figures
8 and 9, the average delivery latencies of our algorithms are
smaller than those of the BUBBLE rap algorithm and the
binary spray algorithm in all cases. In addition, though the
delivery ratio of the depth-search is slightly higher than that
of the depth-width-search, the delay of the latter is smaller
than that of the former.

It is worth noting that the storage costs of our algorithms
are higher than that of the binary spray algorithm because we

require each node to maintain the information of its home and
whether it is an activist. However, these costs are valuable
because our algorithms significantly outperform the binary
spray algorithm.

Also note that the time complexity of our algorithms are
lower than that of the BUBBLE rap algorithm because the
latter needs to detect the community before relay selection.
When using the K-CLIQUE method as in [11], the community
detection mainly involves two steps: i) finding all the K-
cliques; and 2) finding the communities by searching the adja-
cent K-cliques, where two K-cliques are adjacent if they share
K − 1 nodes. The first step determines the time complexity
of community detection. According to [29], the complexity
of identifying all K-cliques increases exponentially with the
increase of the network size. However, the complexities of
our algorithms increase only linearly with the increase of
the network size. Moreover, K-CLIQUE is centralized, which
does not fit the decentralization requirement of mobile P2P
networks.

VII. CONCLUSION

In this paper, we propose two opportunistic routing algo-
rithms for intermittently connected mobile P2P networks, with
both taking advantage of the human mobility characteristics,
namely the spatial regularity, the spatial locality, and the
activity heterogeneity of human mobility, for enhancing the
routing efficiency. The first one is a depth-search algorithm
that diffuses the data toward the destination direction while the
second one adopts the depth-width-search, which delivers the
data toward both the destination direction and other directions
guided by the activists. To validate the performance of our
algorithms, we first perform a theoretical analysis, and then
conduct a comparison based simulation study over both the
synthetic data and the real world traces. The results indicate
that our algorithms outperform the most related ones in terms
of the delivery ratio and average delivery latency.
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Figure 7: Delivery ratio comparison using the real world trace data.
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Figure 8: Average latency comparison using the real world trace data when L = 0 for our algorithms
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Figure 9: Average delay comparison using the real world trace data when L = 300 for our algorithms
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