
Timer-Based CDS Construction
in Wireless Ad Hoc Networks

Kazuya Sakai, Student Member, IEEE, Scott C.-H. Huang, Member, IEEE,
Wei-Shinn Ku, Member, IEEE, Min-Te Sun, Member, IEEE, and Xiuzhen Cheng, Member, IEEE

Abstract—The connected dominating set (CDS) has been extensively used for routing and broadcast in wireless ad hoc networks.
While existing CDS protocols are successful in constructing CDS of small size, they either require localized information beyond

immediate neighbors, lack the mechanism to properly handle nodal mobility, or involve lengthy recovery procedure when CDS
becomes corrupted. In this paper, we introduce the timer-based CDS protocols, which first elect a number of initiators distributively and

then utilize timers to construct a CDS from initiators with the minimum localized information. We demonstrate that our CDS protocols
are capable of maintaining CDS in the presence of changes of network topology. Depending on the number of initiators, there are two

versions of our timer-based CDS protocols. The Single-Initiator (SI) generates the smallest CDS among protocols with mobility
handling capability. Built on top of SI, the Multi-Initiator (MI) version removes the single point of failure at single-initiator and possesses

most advantages of SI. We evaluate our protocols by both the ns-2 simulation and an analytical model. Compared with the other known
CDS protocols, the simulation results demonstrate that both SI and MI produce and maintain CDS of very competitive size. The

analytical model shows the expected convergence time and the number of messages required by SI and MI in the construction of CDS,
which match closely to our simulation results. This helps to establish the validity of our simulation.

Index Terms—Connected dominating set, virtual backbone, ad hoc networks, distributed algorithms.

Ç

1 INTRODUCTION

WIRELESS ad hoc networks are well-suited for commu-
nications in sensor networks as well as the battlefield

and rescue missions where a fixed infrastructure is not
readily available [1]. The effectiveness of many commu-
nication primitives for wireless ad hoc networks, such as
routing [2], multicast/broadcast [3], and service discovery
[4], rely heavily on the availability of a virtual backbone. A
virtual backbone of a wireless network is typically the
connected dominating set (CDS) of the graph representation
of the network. It is defined as a subset of nodes in a
network such that each node in the network is either in the
set or a neighbor of some node in the set, and the induced
graph of the nodes in the set is connected.

In general, the smaller the CDS is, the less communication
and storage overhead the protocols making use of CDS will
incur. Hence, it is desired that the size of the CDS for wireless
ad hoc networks to be as small as possible. On the other hand,
it is known that the problem of finding the minimum CDS is
NP-hard [5]. The problem becomes even more intriguing

when no node has the view of the complete network
topology, which is generally the case in most wireless ad
hoc networks. As a result, the existing CDS protocols for
wireless ad hoc networks [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] emphasize on
constructing a small CDS distributively with localized
information. While these protocols are successful in creating
a small CDS, they either lack the mechanism to maintain the
CDS transparently when network topology changes from
time to time.Notice that the topology change can be the result
of node mobility, the power outage of some nodes in the
network, the deployment of additional nodes to the network,
or the combination of the aforementioned cases. The
reconstruction of CDS from scratch can keep the CDS from
being available for service for an extended period of time.

In this paper, we first introduce a timer-based Connected
Dominating Set protocol, namely Single-Initiator (SI). In the
first phase, SI distributively elects an unique initiator. In the
second phase, SI grows a dominator tree from the initiator
to form the CDS by using timers. While SI has advantage
over the CDS protocols in [6], [7], [9], [10], [12], [16], [17],
[18], [19], [20], [21] in terms of mobility handling, it suffers
from the issue of a single point of failure (i.e., the CDS has to
be reconstructed when the single-initiator leaves the net-
work). To resolve this issue, we introduce the second CDS
protocol, namely Multi-Initiator (MI). Unlike SI, MI uses a
set of initiators to grow a number of dominator trees and
then connect the trees to form the CDS. Since MI uses SI to
construct each dominator tree, it inherits the advantages of
SI (e.g., mobility handling) and at the same time avoid the
single point of failure issue. The simulation results of both
static and mobile wireless ad hoc network scenarios
validate that our timer-based CDS protocols construct and

1388 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

. K. Sakai and W.-S. Ku are with the Department of Computer Science and
Software Engineering, Auburn University, Auburn, AL 36849.
E-mail: {sakaika, weishinn}@auburn.edu.

. S.C.-H. Huang is with the Department of Electrical Engineering, National
Tsing Hua University, Taiwan. E-mail: chhuang@ee.nthu.edu.tw.

. M.-T. Sun is with the Department of Computer Science and Information
Engineering, National Central University, Taiwan.
E-mail: msun@csie.ncu.edu.tw.

. X. Cheng is with the Department of Computer Science, The George
Washington University, 801 22nd St. NW, Suite 704, Washington D.C.
20052. E-mail: cheng@gwu.edu.

Manuscript received 8 Feb. 2009; revised 21 May 2010; accepted 1 Oct. 2010;
published online 17 Dec. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2009-02-0045.
Digital Object Identifier no. 10.1109/TMC.2010.244.

1536-1233/11/$26.00 ! 2011 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

maintain CDS of competitive size with low overhead. An
analytical model of the convergence time and the number of
messages required by the SI and MI CDS protocols is
presented and the results obtained from the analytical
model match well with the results from the simulation.

The rest of this paper is organized as follows: The
existing CDS protocols for wireless ad hoc networks are
reviewed in Section 2. The two timer-based CDS protocols
are described in detail in Section 3. The simulation results
are shown in Section 4. An analytical model for the
convergence time and the number of messages is presented
for validation in Section 5. The conclusion and the future
direction of our work are provided in Section 6.

2 LITERATURE REVIEW

Constructing the minimum CDS is known to be NP-hard
[5]. While there has been research on how to approximate
the minimum CDS under the assumption that the complete
network topology is known [22], [23], [24], such an
assumption is not practical for wireless ad hoc networks.
The more practical approaches, such as [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
construct a CDS based on localized information. Among
them, the protocols in [6], [7], [8] are to construct fault-
tolerant k-connected m-dominating set where every node is
either in the set or has m neighbors in the set and the
removal of k! 1 nodes will not disconnect the induced
graph of the set. The protocols in [9], [10] are to construct
energy-efficient CDS where the remaining energy at each
node is taken into consideration in the CDS construction
process. The protocols in [11] construct a directional CDS in
an arbitrary directed graph, where each node has different
transmission range and equips a directional antenna. These
types of protocols construct CDS with special properties
and thus cannot be compared fairly with ours. The most
related approaches to our work are [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], which are to construct a small CDS
based on localized information. Depending on the nature of
the approach, these CDS protocols in [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21] can be classified into
substraction-based and addition-based.

. Substraction-based CDS construction—The sub-
straction-based CDS protocol begins with the set of
all nodes in the network, then systematically removes
nodes to obtain the CDS. The best known CDS
protocols in this category include Wu’s [12], Dai’s
[13], and Stojmenovic’s [14], [15] protocols. These
CDS protocols consist of two stages. In the first stage,
each node collects neighboring information by ex-
changing messages with its one-hop neighbors. If a
node finds that there is a direct link between any pair
of its one-hop neighbors, it removes itself from the
consideration of the CDS. In the second stage,
additional heuristic rules are applied to further
reduce the size of the CDS. Wu’s protocol [12] uses
Rules 1 and 2, where a node is removed from theCDS,
if all its neighbors are covered by one or two number
of its direct neighbors. The node id is used to avoid
simultaneous removal. Dai’s [13] generalizes this as
Rule k, in which coverage is defined by an arbitrary

number of connected neighbors. Note that Dai’s
protocol is reduced to Wu’s protocol when k is 1 or
2. Stojmenovic’s protocol in [14] improves Wu and
Dai’s protocols by two observations. First, the
number of neighbors (i.e., degree) is used to deter-
mine the priority of a node to be included in CDS
instead of id. Second, nodes in CDS do not exchange
their information. As a result, Stojmenovic’s protocol
incurs less control overhead. Enhanced Dominating
Set introduced in [15] further reduces the size of CDS
by applying two additional rules, the extended
coverage condition and the key reversal techniques.
The analysis and implementations presented in [25],
[26] show that protocols with one-hop information
results in a large CDS and using more than two hops
incurs heavy communication overhead. Therefore,
Wu, Dai, and Stojmenovic’s protocol with two-hop
information are practical. Since these protocols use
two-hop neighbor information, a node needs at least
two beacon periods to obtain the latest topology
information before it can react to any topology change
caused by nodal mobility.

. Addition-based CDS construction—The addition-
based CDS protocol starts from a subset of nodes
(commonly disconnected), then includes additional
nodes to form the CDS. The most famous protocols
in this category are Wan [16], [17], [18] and Li’s [19]
protocols. In general, these two protocols obtain the
CDS by expending the Maximal Independent Set
(MIS). Their protocols also have two stages. In the
first stage, the maximal independent set of the given
network topology is constructed distributively by
recursively selecting the nodes with the most
neighbors locally. The nodes in the MIS become
the skeleton of the CDS. Although nodes in the MIS
are not connected, the distance between any pair of
its complementary subsets is known to be exactly
two hops away. Hence, in the second stage, a
localized search is used to include additional nodes
to connect the nodes in the MIS and form the CDS.
The difference between the protocols among [16],
[17], [18], [19] lies in how nodes in MIS are connected
in the second stage (e.g., top-down or bottom-up
fashion). In addition to MIS-based CDS protocols,
the cluster-based CDS protocol [20], [21] can be
considered as a different flavor of the addition-based
CDS construction protocols. In this protocol, nodes
with the minimum id among neighbors are selected
as cluster heads. Between clusters, additional nodes
are included to connect cluster heads. The cluster
heads and the nodes that connect the cluster heads
form a CDS. While the cluster-based CDS protocol is
fully distributed, it does not provide a mechanism to
deal with nodal mobility.

While most of these aforementioned protocols create
CDS with localized information, they incur expensive
communication overhead due to the need of two-hop
localized information at each node. In addition, the CDS
protocols capable of maintaining CDS under the change of
network topology are Dai’s [13] and Stojmenovic’s [14], [15]
protocols. All the other protocols [12], [16], [17], [18], [19],

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1389

[20] have to construct the CDS from scratch when the CDS
becomes corrupted due to nodal mobility. In [27], it has
been pointed out that the addition-based protocols gen-
erally produce smaller CDS than the substraction-based
ones. Therefore, we are in a position to propose new
addition-based CDS protocols that are lightweight, robust,
and capable of maintaining CDS in a mobile environment.

3 TIMER-BASED CDS PROTOCOL

3.1 The Basic Design

The idea of our proposed protocols is based on a simple
greedy strategy: To obtain a smaller dominating set, a node
withmore neighbors should be included in the set. To reduce
the communication overhead, we propose the uses of defer
timers in our distributed CDS protocols. By appropriately
setting the defer timer at each node, nodes with more
neighbors will have higher probability to be included in the
CDS. Generally speaking, our proposed Timer-Based CDS
protocols consist of three phases: 1) initiator election; 2) tree
construction; and 3) tree connection, as illustrated in
Algorithm 1. In the initiator election phase, a number of
initiators are elected distributively. This is achieved by
letting the local minimum among !-hop neighbors to be
initiators. In the tree construction phase, starting from each
initiator, nodes utilize the defer timer to generate disjoint
dominator trees. The defer timer is set inversely proportion
to the number of uncovered neighbors in order to give higher
priority to nodes with more uncovered nodes. In the tree
connection phase, additional nodes are identified to connect
the disjoint dominator trees. Each initiator collects the
information of its neighboring trees from leaf nodes in its
tree, and then send a control message to a border node to
connect trees. The initiators, the dominator trees, as well as
the nodes that connect the trees altogether form the CDS.
Depending on howmany initiators are elected, two different
flavors of the timer-based CDS protocols, namely SI and MI,
are presented in this paper.

Algorithm 1. Timer-Based CDS Protocol Skeleton
1: Initiator Election
2: /* Initiators are localized elected */
3: Tree Construction
4: /* Each initiator grows a dominator tree

independently */
5: Tree Connection
6: /* Additional nodes are included to connect disjoint

trees */

We assume each node to have a unique id value, such as
its MAC address. In the protocols, a node is always in one
of the four possible states, i.e., uncovered, covered, dominator,
and dominatee. Similar to what is defined in IEEE 802.11
wireless LAN specification [28], each node periodically
broadcasts a beacon to its neighbors every beacon period.
We assume a node’s beacon contains a number of fixed-
length fields, including a type, the node’s id, a color value,
the node’s current state, the node’s initiator id, and the
node’s dominator id. The announce in the subsequent
sections is beacons with distinct type values. Before the
protocol starts, each node sets its initiator id to INIT0, its
state to uncovered, and the color value to 0. The additional

notations used in the subsequent discussion are summar-
ized in Table 1.

3.2 The SI Timer-Based CDS Protocol

If the network size (i.e., network diameter) is known in
advance, a unique initiator can be elected distributively in
the initiator election phase within a predefined amount of
time. Since only one initiator tree will be generated from the
unique initiator at the end of the tree construction phase,
the tree connection phase is not required. The subsequent
sections elaborate the initiator election and tree construction
phases of the SI CDS protocol.

3.2.1 SI Initiator Election Phase

In the initiator election phase, the id of each node is used as
the metric to determine the initiator. When the ITimer
expires, if a node finds that its initiator id is INIT0, it first
sets its initiator to its own id. The reasonwhy an initiator id is
initialized by INIT0 is to deal with asynchronous environ-
ment where nodes act autonomously (see Lemma 1). When a
node receives a beacon, it compares its initiator id with the
initiator id in the beacon. If a node finds that its initiator id is
larger than the beacon’s, it sets its initiator id to the initiator
id in the beacon. A node can witch its status, if it does not
receive beacon from nodes with smaller id than it during the
period of twice of InitMax. This duration is long enough, so
that, at the end of the election phase, the smallest id among
all nodes will be propagated to all nodes in the network.

1390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

TABLE 1
Definition of Notations

Note that if a new node with the smaller id than any nodes in
the network joins during the initiator election phase, it takes
trice of InitMax (detail is shown in Lemma 1).

Algorithm 2 describes the SI initiator election phase.
Note that in the pseudocode, the initiator will send out
announce beacon in every beacon period. The primary job
of announce beacon includes detecting initiator failure and
a disruption of a tree. For detecting initiator failure,
announce beacons refresh the ITimer of other nodes which
expires after twice of the InitMax beacon periods. Because
announce beacons are originated from the initiator, if the
initiator leaves the network or there is a partition in the
network, the ITimer of some node will expire. In this case,
the node will wait twice of the InitMax beacon periods to
make sure the ITimer of every node in the network expires
and restart the initiator election process. For detecting a
disruption of a tree, each initiator keeps increasing color
value by one at every beacon period and each node in its
tree updates color value accordingly. The disconnection
caused by nodal movement interrupts the propagation of
announce message, which will eventually lead to large color
differences. When a node receives a beacon signal from its
neighbors indicating a large color difference, it concludes
that there is a disconnection with its dominators.

Algorithm 2. The SI initiator election
1: /* node i in the network executes the following: */
2: INITIALIZATION:
3: initiatorðiÞ INIT0

4: stateðiÞ uncovered
5: colorðiÞ 0
6: DTimerðiÞ !1
7: send out announce
8: ITimerðiÞ InitMax, start ITimerðiÞ
9:

10: WHEN NODE i’s ITimerðiÞ EXPIRES:
11: if initiatorðiÞ ¼ INIT0 then
12: /* initial announcement */
13: initiatorðiÞ i
14: send out announce
15: ITimerðiÞ 2% InitMax, start ITimerðiÞ
16: else if initiatorðiÞ ¼ i then
17: /* node i is an initiator */
18: colorðiÞ colorðiÞ þ 1
19: send out announce
20: ITimerðiÞ InitMax, start ITimerðiÞ
21: else if initiatorðiÞ 6¼ i then
22: /* reelect initiator */
23: stateðiÞ uncovered
24: initiatorðiÞ INIT0

25: colorðiÞ 0
26: ITimerðiÞ 2% InitMax, start ITimerðiÞ
27: end if
28:
29: ON RECEIVING announce FROM DOMINATOR j:
30: if initiatorðiÞ > initiatorðjÞ then
31: initiatorðiÞ initiatorðjÞ
32: else if initiatorðiÞ ¼ initiatorðjÞ & & colorðiÞ 6¼ colorðjÞ

then
33: colorðiÞ colorðjÞ

34: send out announce
35: ITimerðiÞ 2% InitMax, start ITimerðiÞ
36: end if

3.2.2 SI Tree Construction Phase
When ITimer expires, a node moves to the tree construc-
tion phase. When a node finds that it is the initiator, it
immediately switches its state to dominator and its initiator
to itself. When an uncovered node receives a beacon from a
dominator neighbor for the first time, it sets its dominator to
that neighbor, its initiator to that neighbor’s initiator,
switches its state to covered, and sets a defer timer Td in
inversely proportion to the number of its uncovered
neighbors using (1).

Td ¼
Tmax

ðnucÞ"
; if nuc ' 1;

Tmax; if nuc < 1:

(
ð1Þ

As long as " > 0, (1) allows nodes with more uncovered
neighbors be given a smaller timer value, hence their defer
timer will expire earlier. When a node’s defer timer expires,
if the node still has uncovered neighbors, it switches its
state to dominator to cover them. Otherwise, it switches its
state to dominatee. The number of uncovered nodes,
denoted as nuc, can be learned from the beacon of one-
hop neighbors. Note that the scale of Td is much larger than
the beacon periods. Therefore, even if each node sends out
its beacon asynchronously, our differ timer scheme guar-
antees that a node with more uncovered neighbors has
shorter timer in most of cases.

At the end of the tree construction phase, all nodes will be
in either dominator or dominatee state. The set of dominators
forms a tree, which is referred to as the dominator tree. If
there is only one initiator and the network is connected, the
dominator tree will be the CDS for the entire network. We
formalize the SI tree construction phase in Algorithm 3.

Algorithm 3. The SI tree construction
1: /* initiator i executes the following */
2: NODE i IS ELECTED AS THE INITIATOR:
3: stateðiÞ dominator
4: colorðiÞ colorðiÞ þ 1 each time before node i sends

out beacon
5:
6: /* node i executes the following when it receives

a beacon */
7: ON RECEIVING A BEACON FROM NODE j:
8: if (stateðjÞ ¼ dominator then
9: if ðcolorðiÞ < colorðjÞÞ then

10: colorðiÞ colorðjÞ
11: end if
12: if stateðiÞ ¼ uncovered then
13: stateðiÞ covered
14: dominatorðiÞ ¼ j
15: CTimerðiÞ td, start CTimerðiÞ
16: end if
17: if ððstateðiÞ ¼ coveredÞkðstateðiÞ ¼ dominateeÞÞ then
18: if ðdominatorðiÞ ¼ jÞ then
19: CTimerðiÞ td, start CTimerðiÞ
20: end if

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1391

21: if 9 i’s neighbor k, jcolorðjÞ ! colorðkÞj > # then
22: /* node i has a neighbor with large color

difference */
23: stateðiÞ dominator
24: dominatorðiÞ j
25: end if
26: end if
27: end if
28:
29: /* node i executes before it sends out a beacon */
30: WHEN NODE i IS IN covered OR dominatee STATE:
31: if node i has no uncovered neighbor then
32: stateðiÞ dominatee
33: else if node i has at least one uncovered neighbor then
34: compute Td

35: if DTimerðiÞ > Td then
36: DTimerðiÞ Td, start DTimerðiÞ
37: end if
38: end if
39:
40: WHEN NODE i IS IN dominator STATE:
41: if (node i has no covered neighbor) & & (node i has at

least one dominator neighbor) then
42: stateðiÞ dominatee
43: dominatorðiÞ one of node i’s dominator
44: DTimerðiÞ !1, stop DtimerðiÞ
45: end if
46:
47: /* node i executes when a countdown timer expires */
48: WHEN DTimer EXPIRES
49: if node i has uncovered neighbors then
50: stateðiÞ dominator
51: end if
52:
53: WHEN CTimer EXPIRES
54: stateðiÞ uncovered

In Algorithm 3, if a covered node i does not receive a
beacon from i’s dominator for td beacon periods, it implies
that i’s dominator has left and node i can then switch its
state to uncovered. The assignment of td depends on the
message error rate. For the 802.11 network, a small value
such as 4 is sufficient [29]. CTimer is used to track
the dominator. A node updates CTimer, if it receives a
beacon from its dominator and the dominator is still in
dominator state. If CTimer expires, it implies that its
dominator leaves from the network.

3.2.3 Correctness of the SI Protocol
In this section, we prove that the SI CDS protocol generates
a CDS for a given network topology as long as the topology
remains connected and stable for a period of time (the time
required to construct a CDS) and the value of InitMax is
larger than the network diameter.

Lemma 1. A unique initiator is elected within 3InitMax in the
asynchronous environment where nodes act autonomously, as
long as InitMax is larger than the network diameterDiam and
the topology is stable for a period of time.

Proof. Assume thenetwork consists of several nodes.Among
them, node i has the smallest id. At time t1, some nodes in

the network start the initiator election phase. Let node j
joins the network at time t2 where t1 < t2. In the case of
idðiÞ (idðjÞ, each of i’s neighbors will set its initiator to i
after receiving a beacon from i. Their initiator value will
stay as i because idðiÞ is the smallest among all nodes in the
network. In the next round of beacon exchanges, i’s
neighbors will propagate their initiator information
further to reach nodes two hops away from i, which again
will allowmorenodes to set i as their initiator. This process
is repeated until all nodes in the network set their initiator
as i. At the end, node i is elected as the initiator as long as
idðiÞ < idðjÞ for any additional new node j in InitMax þ
max8kHði; kÞ (InitMax þDiam (2InitMax. Thus, the
above claim is true. In the case of idðiÞ > idðjÞ, depending
on thevalueof t2,we further break it into the following two
subcases.

If t2 ' t1 þHði; jÞ, when node j receives announce
from node i at the time t1 þ InitMax þHði; jÞ, initiatorðjÞ
is still INIT0 because ITimerðjÞ has not yet expired.
According to the protocol, idðiÞ < INIT0 so node j set its
initiator id to be i’s. In other words, all nodes will set
their initiator id to i’s within InitMax þmax8kHði; kÞ <
2InitMax. Thus, the above claim is true.

If t2 < t1 þHði; jÞ, the ITimer of node j will expire
before it receives announce from node i. In this case,
node j will send out its own announce message to its
neighbors. The nodes that received node i’s announce in
the past override their initiator id to be j’s as
idðiÞ > idðjÞ. Node j will be elected as the initiator in
t2 ! t1 þ Initmax þmax8kHði; kÞ < 3InitMax. Therefore,
the above claim is true. tu

Lemma 2. A new initiator will be selected by the SI initiator
election phase within bounded beacon periods if the original
initiator leaves the network assuming the network remains
connected and stable.

Proof. From the pseudocode of the SI initiator election
phase, we can see that the initiator will send out
announce messages every InitMax beacon periods. Other
nodes only forward announce messages if its initiator id
is bigger than the initiator’s in the message or the color
value is different. If the initiator is active, its color value
will change every InitMax beacon periods, the refresh
announce will keep the ITimer of other nodes from
expiring.

When the original initiator leaves the network, the
ITimer of all nodes in the network will expire since no
more refresh announce message is coming. After ITimer
expires, each node sets all the information back to the
initial value and the initiator election phase will start
over again. According to Lemma 1, a unique initiator will
once again be selected. tu

In the following theorem, we prove that our SI protocol
successfully obtains the connected dominating set for the
given network topology:

Theorem 3. If the network topology remains connected and stable
for a period of time, the collection of all dominator nodes
resulted from the SI protocol forms a connected dominating set
for the entire network.

1392 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Proof. We claim that if the network topology is connected
and unchanged, eventually all the dominator nodes will
form a dominating set and the induced graph is
connected.

We prove by induction on number of nodes n.
Induction base. When n ¼ 1, the only node is the

initiator. The initiator enters dominator after the initiator
election phase, which is a connected dominating set. The
above claim is true.

Induction hypothesis. Assume when n ¼ k! 1, the
CDS generated by SI protocol covers all k! 1 nodes. Let
us denote the graph with k! 1 nodes as Gðk! 1Þ.

Induction step. Now one additional node (node k)
joins the network. Let us denote the resulting network as
GðkÞ. If one of node k’s neighbors is a dominator, the
CDS covering Gðk! 1Þ will cover GðkÞ and is still a CDS.

If none of k’s neighbors is a dominator, all neighbors
of node k must be covered by some dominators in the
CDS of Gðk! 1Þ. According to the SI protocol, all node
k’s neighbors will go through the covered state and set up
the defer timer appropriately. When the first one of them
has its defer timer expires, that neighbor will enters the
dominator state to cover node k. After that, there will be
no more uncovered node and therefore we have a
dominating set. Since the new dominator node enters the
dominator state from the covered state, it must have a
dominator neighbor. (A node enters covered state only
after it receives a beacon from a dominator neighbor.) In
other words, the nodes in the dominating set, after
including the additional dominator node, are still
connected. The CDS covering Gðk! 1Þ plus the new
dominator node will be the CDS covering GðkÞ. tu

If a node cannot correctly obtain nuc due to the collisions,
the size of CDS increases as nodes with fewer uncovered
nodes set shorter timer. However, this never affects the
correctness of SI protocol. Thus, SI protocol successfully
obtains a CDS, as long as each node has bidirectional links
between its neighbors.

3.2.4 SI Mobility Handling

There are many ways the network topology can change due
to nodal mobility. However, regardless how the topology
changes, there are only two different basic types: A node
leaves the network and a new node joins the network.
Considering the role of the leaving node when CDS is
present in the network, we can further categorize them into
the following four primitive cases:

1. A dominatee node leaves the network.
2. A dominator node leaves the network.
3. The initiator leaves the network.
4. A new node joins the network after the construction

of the CDS.

In this section, we demonstrate that the SI protocol can
adapt to nodal mobility by showing that the SI protocol
successfully maintains the CDS under changes of network
topology, which are composed of these primitive cases.

For Case 1, the departure of a dominatee will have no
impact to other nodes and the original CDS should remain
functional.

Case 2 is handled by the color scheme. From the SI tree
construction pseudocode, we can see that a node changes its
color only after receiving a larger color value from a
dominator neighbor. Since the initiator keeps increasing its
color value, if the CDS is intact, the color difference of
neighbor nodes should be very small. If the CDS is broken
into disconnected segments, the segment that contains the
initiator will keep increasing its color value while other
segments will have the color value unchanged. When a
node sees two neighbors with large color difference, it
concludes that it is a border node between the disconnected
segments and enters the dominator state. This process will
continue until a CDS is reconstructed. The threshold value
of color difference (i.e., #) is decided by the moving speed of
nodes and the diameter of the network. It should be large
enough to distinguish node movement from network
disconnection.

To handle Case 3, all nodes in the network first have to
detect that the initiator leaves the network, and then all
nodes agree with a new initiator. We have already showed
that SI can successfully elect a new initiator if the original
initiator leaves the networks in Lemma 2.

Case 4 is exactly the situation in Theorem 4. When a new
node, say node i, joins the network, it is in uncovered state.
If node i has a dominator node, it is already covered.
Otherwise, the neighbors of node i will switch their state to
covered, and start DTimer. Hence, the node with the
shortest timer enters dominator state and covers the new
node i. Only the one-hop neighbors of a new node are
involved in this process. No matter how many nodes
simultaneously join the network, SI can handle Case 2 in a
similar manner. Assume K number of nodes, say node i1,
i2; . . . , and ikðk (KÞ, join the network at the same time. If
node ik has a dominator neighbor, it is covered. The
neighbors of node ikð1 (k (KÞ switch their state to
covered and start their DTimer. According to Algorithm 3,
when DTimer expires, a node becomes dominator if it has
at least one uncovered node. Therefore, all new nodes
ikð1 (k (KÞ will be covered and finally become
dominatee.

Note that any change of network topology caused by
nodal mobility after the CDS is constructed can be
considered as the combination of a sequence of these four
primitive cases. In addition to these cases, our SI can also
optimize the CDS in case the following situation occurs:

. A redundant dominator node switches to the
dominatee state while still keeping the dominating
set connected.

This situation can be handled by the following way.
From the SI tree construction pseudocode, we can see that if
a dominator does not cover any neighbor and has at least
one dominator neighbor, it will switch its state to dominatee
and set its dominator field as the id of the dominator
neighbor. Note that each node indicates its dominator id in
the beacon frame, and thus a dominator node knows which
dominatee neighbors it is covering. By doing so, the total
number of dominator nodes is reduced and we have
properly maintained the CDS. This situation could happen
after a series of node movements.

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1393

3.2.5 Example of SI Protocol

Fig. 1a shows the snapshot of a network topology. In Fig. 1a,
a dotted circle represents a node in uncovered state and a
dotted line represents a link between two nodes. Fig. 1b
shows the result of the initiator election phase. According to
SI protocol, node 1 is elected as the initiator, which is
denoted by a shaded square. The neighbors of node 1 that
are switched to the covered state are denoted by a double
dotted circle. In the next beacon period, node 3 finds that it
has no uncovered neighbor and then switches to the
dominatee state, which is denoted by a circle in Fig. 1c. At
the same time, nodes 2 and 4 set their DTimer and start
counting down the timer. Since node 2 has more uncovered
neighbors, it has a shorter timer and its timer will expire
before node 4’s. As shown in Fig. 1d, node 2 will switch to
the dominator state, which is denoted by a gray circle. After
that, nodes 5 and 6 do not have uncovered neighbors and
will then switch to the dominatee state. On the other hand,
node 7 will start its own DTimer, as shown in Fig. 1e. While
nodes 4 and 7 have the same number of uncovered
neighbors, the timer of node 4 expires sooner as it started
itsDTimer earlier. When the timer of node 4 expires, node 4
will switch to the dominator state to cover node 8, as shown
in Fig. 1f. Afterwards, nodes 7 and 8 find that they do not
have uncovered neighbors and switch to the dominatee state,
which is shown in Fig. 1g. At the end, the collection of the
initiator and dominators form a CDS for the whole network.

3.3 The MI Timer-Based CDS Protocol

As discussed in Section 3.2, the SI protocol is able to
maintain CDS in the presence of changes of network
topology. However, SI requires the knowledge of the
diameter of the network to properly set up the InitMax.
Although the network diameter may be estimated by the
size of the region the network is deployed and the
transmission range of a node, the estimation is not accurate.
In addition, while SI is able to recover the CDS locally for

most CDS breakdowns, the whole CDS will still have to be
reconstructed from scratch should the unique initiator fail.
A natural approach to resolve these issues is to elect
multiple initiators. Each initiator generates a tree in exactly
the same manner SI protocol does. The tree construction
phase completes when all nodes are covered by dominators.
This will produce several small disjoint trees and the union
of these trees will form a dominating set. To obtain a CDS,
we can simply include a few more nodes to connect these
dominator trees. This is the basic idea of our Multi-Initiator
CDS protocol. If the CDS is constructed this way, the failure
of an initiator will only affects the corresponding dominator
tree. The other part of the CDS will remain intact. In the
following sections, we explain how the initiator election
phase and tree connection phase of MI are accomplished
effectively and distributively in detail. Note that the tree
construction phase of MI is omitted because it is basically
the same as that of SI described in Section 3.2.2.

3.3.1 MI Initiator Election Phase

The most intuitive idea to elect multiple initiators effec-
tively and distributively is to let the local minima be the
initiators. By listening to beacons, a node obtains the ids of
its one-hop neighbors without introducing additional
messages. If a node finds that its id is the smallest among
its one-hop neighbors, it sets itself as an initiator.

The problem with this approach is that it may produce
too many initiators. Given the average number of neighbors
to be !, each node has the opportunity to be an initiator
with the probability 1

!þ1 . Let n be the number of nodes
uniformly distributed in a region of size S, and r be the
transmission radius of each node, the average number of
initiators ninit can be obtained by (2).

ninit ¼ n) 1

!þ 1

! "
* S

$r2
: ð2Þ

1394 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 1. An example of SI protocol.

For instance, a network of 150 nodes with 150 m
transmission radius deployed in 1;000% 1;000 m2 area will
have an average of 14 initiators. Too many initiators will
consequently lead to a large CDS due to two reasons. First,
all initiators will eventually be included as part of the CDS.
Second, after each initiator generates a dominator tree,
additional nodes will be added to connect these trees. More
initiators means more trees, and thus requires more nodes
to connect them.

To reduce the number of initiators, the local minimum
among !-hop neighbors can be elected as the initiators. As
an example, to elect the local minimum among two-hop
neighbors, each node can further encode the minimal id
among its one-hop neighbors in its beacon. A node becomes
an initiator only when its id equals to the minimal id of all
its one-hop neighbors. With few rounds of beacon ex-
changes, the local minimum among two-hop neighbors will
become the initiator. In this approach, no extra message is
needed and the time to elect initiators is much shorter than
the time required by SI protocol in the initiator election
phase. Using the same notations, the average distance
between two neighbors, d, is obtained by (3).

d ¼
Z r

0

2$x) x
$r2

dx ¼ 2

3
r: ð3Þ

The average number of two-hop neighbors is n$ðrþdÞ2
S .

Therefore, the average number of initiators ninit can be
obtained by (4).

ninit ¼ n) 1
n$ðrþdÞ2

S þ 1

0

@

1

A * 9

25
) S

$r2
: ð4Þ

For instance, the network of 150 nodes with 150 m
transmission radius deployed in 1;000% 1;000 m2 area now
has an average number of five initiators. This significantly
reduces the possibility of a large CDS.

The multihop local minimum idea can be extended to !-

hop. Since the average number of !-hop neighbors is
n$ðrþð!!1Þ)dÞ2

S , the expected number of local minimum can be

estimated by (5). Note that when ! is equal or larger than

the network diameter, only one initiator will be elected in

the network and the protocol is reduced to SI.

ninit ¼ max n) 1
n$ðrþð!!1Þ)dÞ2

S þ 1

0

@

1

A; 1

8
<

:

9
=

;: ð5Þ

Fig. 2 shows the number of initiators and CDS size with
respect to the value of ! in the network of 150 nodes with
150 m transmission radius deployed in 1;000% 1;000 m2

area. As illustrated in Fig. 2, the number of initiators as well
as the size of CDS decrease as the value of ! increases. In the
case ! ¼ 2, the size of CDS is competitive and each
dominator tree is small and easy to maintain. Therefore, in
the rest of the paper, the ! value of theMI protocol is set to 2.

3.3.2 MI Tree Connection Phase
In this phase, additional nodes are included to connect
neighboring dominator trees. If a node has a neighbor
belonging to a different initiator, it is referred to as a border
node. To connect the dominator trees distributively, the
most intuitive idea is to have all the border nodes turn into
dominators. Although this approach does not introduce
extra messages, it will create a very large CDS as there are
possibly many border nodes between each pair of neighbor-
ing dominator trees. To limit the size of CDS, it is better that
the root of a tree (i.e., initiator) determines what border
nodes are utilized to connect the neighboring trees.

Since an initiator does not know what neighboring trees
it has with only the localized information, extra messages
have to be introduced so that the initiator can collect such
information from its border nodes. After the defer timer
expires, if a node finds that it is a border node, it sends a
message to its initiator which includes the initiator’s id of
the neighboring tree. Fig. 3a depicts a snapshot of the
network after the tree construction phase completes. For
example, border node 3 belonging to the tree rooted at the
initiator 1 finds that its neighbor 8 belongs to the tree rooted
at the initiator 2 from node 8’s beacon. Node 3 then sends a
message to node 5 containing the id of the initiator 2.

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1395

Fig. 2. The number of initiators and CDS size.

Fig. 3. An example of MI protocol.

Similarly, nodes 4, 7, 10, and 8 send a message to their
initiator containing the initiator id of their neighboring tree.

At the first glance, this process seems to introduce many
messages. However, when a dominator receives messages
from the neighbors it covers about the neighboring trees, it
only forwards one copy of the messages if the initiator id
contained in the messages are the same. For instance, in
Fig. 3b, when node 5 receives messages from nodes 3 and 4
about the same neighboring dominator tree, it only
forwards one copy of the message to its dominator node 1.
By doing so, the number of messages can be controlled to
Oðn)mÞwhere n is the number of nodes in the network and
m is the number of neighboring dominator trees.

When an initiator learns about its neighboring trees, it
can then instruct only border nodes on a particular path to
each of its neighboring trees to switch the state to dominator
and connect to its neighboring trees. The border nodes that
are used to connect the trees are referred to as the bridge
nodes. Any metric can be used to elect bridge nodes among
border nodes. In this paper, the node with the smallest id is
elected as bridge nodes. For example, in Fig. 3c, initiator 2
elects node 8 as a bridge because it has the smallest id
among border nodes which connects the neighboring tree 1.
Our CDS consists of the dominator nodes in the dominator
trees and the bridge nodes that connect the trees.

If each initiator tries to connect to each of its neighboring
dominator trees, it is likely that there will be two paths
between each pair of neighboring dominating trees. In the
worst case, at most four border nodes (two for each path)
will become dominators. While having two paths between
neighboring dominator trees may improve the degree of
fault tolerance and system throughput, it will create a larger
CDS. To limit the size of CDS, an initiator makes a
connection to a neighboring dominator tree only when the
id of the initiator of the neighboring tree is smaller than its
own. This roughly reduces the number of the bridge nodes
by half.

3.3.3 Correctness of MI Protocol

Since MI is built on top of SI, most of the theorems in
Section 3.2.3 directly apply to MI. The only additional issue
is whether or not the tree connection phase can successfully
connect the dominator trees.

Theorem 4. If the network topology remains connected and stable
for a period of time, the collection of all dominator nodes
resulted from the MI protocol forms a connected dominating
set for the entire network.

Proof. After the initiator election and tree construction
phases, a set of the disjoint dominator trees will be
created. The nodes in these dominator trees together
form a dominating set. The neighboring dominator trees
will be at most three hops away. It is because if two
neighboring dominator trees are more than three hops
away, one of the nodes will not be covered by any
dominator. For example, in Fig. 4, the neighboring trees
are distanced by four hops. This will leave node 5 to be
uncovered. However, this situation should not happen
because according to the tree construction protocol,
when the DTimer of nodes 4 and 6 expire, they will
find node 5 as an uncovered neighbor and therefore one

of them will switch to dominator to cover node 5. In
other words, there will be at most two adjacent covered
nodes and each of them has a different initiator. These
two border nodes will report to their initiators and,
according to MI, the initiator with larger id will then
initiate the connection to the neighboring tree, providing
that the network topology remains connected and stable
for a period of time. tu

3.3.4 MI Mobility Handling
In MI, each dominator tree is maintained in the same
manner as SI. This allows the MI protocol to take advantage
of the mobility handling capability of SI inside each of the
dominator trees. The root of a dominator tree periodically
broadcasts the announce message so that any topology
changes due to mobility can be captured and handled in a
timely fashion. Therefore, MI can naturally handle the four
different mobility cases mentioned in Section 3.2.4. How-
ever, since MI will create multiple dominator trees, there
are additional mobility cases that involve more than one
tree. Notice that most of these new cases can be considered
as the combinations of the aforementioned four cases. For
instance, if a dominator moves from one tree to another, it
can be seen as Case 2 for the first tree plus Case 4 for the
second tree. Consequently, most of these new cases can be
handled and resolved properly and locally with no change
to the protocol. The only new case that needs to be
addressed is when a bridge node leaves its dominator tree.

Given a bridge node x, assume that it belongs to a
dominator tree with root a, and x is used by a to connect to
a neighboring dominator tree with the root b. Clearly, both a
and b are initiators. If x leaves the tree, the dominator that
covers x, say node p, will find out after a couple of beacon
periods. In this case, pwill first try to fix the problem locally
by querying its neighbors if any of them has a neighbor
belonging to the initiator b. If p receives a positive response
from some of its border neighbors, it instructs one of them
to switch to dominator state, i.e., act as the new bridge
between two trees. If p does not hear back from its
neighbors for a period of time, it sends a message to the
initiator a, which will send a treewide query down to all its
border nodes looking for a possible connection to the
neighboring dominator tree rooted at b. The responses sent
back from the border nodes are handled similarly to the
messages in the tree connection phase. Afterwards, if a
receives some responses from the border nodes with
neighbors belonging to initiator b, it instructs the border
nodes on one of the paths to turn to dominators (i.e.,
become bridge nodes) to connect two trees. If a does not
receive any response, that implies that the dominator tree
rooted at b is no longer a neighboring dominator tree for a.
In this case, nothing needs to be done by node a.

1396 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 4. An impossible case at the end of MI tree construction phase.

It may seem odd that the dominating set will remain
connected if nothing is done after the departure of a bridge
node makes two neighboring dominator trees no longer
neighbors to each other. If we regard each dominator tree as a
big cluster, what the tree connection phase is doing is to
create an edge between each neighboring clusters. If two
clusters (trees) are no longer neighbors to each other, as long
as the whole network remains connected, they should be
connected via the other clusters (trees). If the departure of a
bridge node partitions the network into components, it will
be impossible to create a CDS for the network. However, the
MI CDS protocol can still maintain a CDS inside each of the
connected components and recover back to a single CDS
when the components reconnect to each other. This feature is
especially important for mobile ad hoc networks.

3.3.5 Differences between MI and Cluster-Based CDS
Protocol

When ! ¼ 1, it may seem that MI behaves similar to the
cluster-based CDS protocol in [20], [21]. Indeed, when
! ¼ 1, according to MI the nodes with minimum id among
neighbors will be elected as initiators, so we could consider
initiators as cluster heads and trees as clusters. However,
there are still several major differences between these two
protocols. First, MI is timer-based. The use of timers allows
MI to easily accommodate nodal mobility. Second, in MI,
each node belongs to only one initiator. Last, unlike the
protocol in [20], there exist two bridge nodes to connect a
pair of neighboring trees/clusters.

4 SIMULATION RESULTS

To evaluate the performance of SI and MI, we implement
our protocol in C++ and ns-2 [30] along with the other CDS
protocols, including Dai’s with two-hop neighboring
information [13], Stojmenovic’s with two-hop neighboring
information [14], and Wan’s [18]. In this section, the
simulation results of different CDS protocols are reported
and analyzed.

4.1 Simulation Configurations

The network topology is randomly generated by placing
nodes in a 1;000 m by 1;000 m square field according to
uniform distribution. If the generated network is parti-
tioned, it is discarded and a new network topology is

generated to ensure the connectivity of the whole network.
The transmission range of a node is set to be 150 m. Two
different network scenarios, static networks and mobile
networks, are considered and simulated to evaluate the
performance of CDS. For a given simulation configuration,
1,000 different network topologies are generated. The
parameters used for simulations and ns-2 configuration
are summarized in Tables 2 and 3, respectively.

Static networks. In this scenario, the average node
density changes as we change the total number of nodes.
The total number of nodes placed in the field ranges from
100 to 450, which corresponds to the node density ranging
from approximately 5 to 30 neighbors per nodes. For SI and
MI, the Tmax and " in the tree construction phase are set to
be 100 beacon periods and 1. According to [29], the value of
InitMax for SI is set to be 20 to accommodate beacon
collisions. On the other hand, ! for MI is set to be 2, i.e.,
two-hop local minimum will be elected as initiators.

Mobile networks. In this scenario, the average node
density is set to be 10 neighbors per node, and some nodes
are assumed to be mobile. The percentage of the mobile
nodes ranges from 20 to 80 percent with speed up to 5 m=s.
The Weighed Way Point (WWP) [31] is adopted as our
mobility model. In WWP, the weight of selecting next
destination and pause time for a node depends on both
current location and time. The value of weights is based on
empirical data carried out on the University of Southern
California’s campus [32]. For Dai’s, Stojmenovic’s, SI and
MI, the corrupted CDS is recovered according to their
mobility handling procedures when the topology changes.
Each simulation lasts 1,000 rounds of beacon periods. In the
simulation, if the network topology is partitioned into
disjoint connected components, CDS protocols maintains
separate CDS within each component. In the limited
mobility environment, 50 percent nodes are mobile with
5 m=s, and in the high-mobility environment, all nodes are
mobile. In AODV with MI, only nodes in a CDS forward a
route request (RREQ) packet. The propagation model used
in ns-2 routing simulations is the two-ray ground model.
IEEE 802.11 is used as the MAC layer protocol, and the data
rate is 2 Mbps. For each network realization, five pairs of
source and destination are randomly selected. A new pair of
source and destination will be selected if they are not
connected. Each source node generates constant bit rate
(CBR) traffic flows to its destination simultaneously. Each
CBR flow sends five consecutive packets of 128 bytes. The
interarrival time of packets is set to be 0.25 seconds.

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1397

TABLE 2
Simulation Parameters

TABLE 3
Parameters for ns-2

To assess the performance of different CDS protocols,
five metrics are used, including the size of CDS, the number
of extra messages, the average traffic, the convergence time,
and the percentage of time CDS is alive. To assess the
performance of routing with CDS protocols, three metrics
are used, including delivery rate, end-to-end delay, and the
number of RREQ packets. For MI, the messages in the tree
connection phase and query/response messages in the
mobility handling are counted as extra messages. For SI, all
the information exchanged between nodes are done by
beacons. For Dai’s and Stojmenovic’s protocols, beacons are
considered as extra messages since the size of the beacon
increases in proportion to the node density and is too large
when compared with the standard beacon frame. Each
protocol changes the beacon frame format to include
additional information. For SI, node id, state, color, and
dominator id are included in the beacon. MI enlarges the
beacon of SI to include the initiator id and the minimal id of
one-hop neighbors. The beacon of Dai’s and Stojmenovic’s
protocols include node id, state, marker, and the list of ids
for one-hop neighbors. For Wan’s protocol, dominator id
and color are added to the beacon. The extra bit in the
beacon and the size of extra messages for each protocol are
counted toward the traffic (in bps) for CDS construction.
The period of time for CDS protocols to complete is defined
as the convergence time in the number of beacon intervals.
For SI, the initiator election is assumed to be completed in
20 rounds of beacon intervals. For MI, the initiator election
is done in two rounds of beacon intervals. For the mobile
network scenario, the total amount of time CDS is valid
divided by the total simulation period is defined as the
percentage of time CDS is alive.

4.2 Simulation Results for Static Network Scenario

In this section, the simulation results of different CDS
protocols in static network scenario are presented.

Fig. 5 shows CDS size of different protocols with respect
to the node density. It is clear that SI consistently generates
the smallest CDS and Dai’s consistently generates the
largest CDS among all the protocols. Stojmenovic’s protocol
creates a smaller CDS than that of Dai’s, but compared with
SI and MI it generates a larger CDS. While it is proven that
the size of Wan’s CDS is suboptimal [16], the size of the
CDS of MI is smaller than Wan’s and is very close (within
few nodes) to SI. In addition, the CDS size in SI and MI
remains constant when the node density increases. This
suggests that SI and MI are scalable.

Fig. 6 demonstrates the number of extra messages with
respect to the node density. As illustrated in Fig. 6, MI

introduces only 30 percent of the number of extra messages
introduced by Dai’s. Compared with Wan’s, MI reduces the
number of extra messages up to 60 percent when the node
density ranges from 5 to 15 neighbors per node. While
Stojmenovic’s reduces the number of messages from Dai’s
implementation, it still introduces more messages than MI
does. As discussed in Section 3.2, SI does not introduce any
extra message.

Fig. 7 shows the average traffic required for CDS
construction with respect to the node density. Obviously,
Dai’s protocol produces the largest traffic, and the traffic
required by Dai’s and Stojmenovic’s protocols increase in
proportion to the node density. This is because of the
inclusion of the neighboring list in the beacon frame. For
the other three protocols, the average traffic is almost the
same. It is interesting that for Wan’s and MI protocols, even
the number of messages increases in proportion to the
number of neighbors as shown in Fig. 6, the traffic remains
relatively constant to the node density. This implies that the
traffic is mostly dominated by the extra bits in the beacon.

Fig. 8 presents the convergence time with respect to the
node density. As shown in Fig. 8, the convergence time of SI
and MI decreases quickly as the node density increases.
This indicates that the convergence time of SI and MI is
dominated by the time of tree construction, in which a node
in dense networks is likely to have more uncovered
neighbors and will have a smaller defer timer. MI takes
longer time to form CDS than SI. This is due to the
additional time for the tree connection phase.

4.3 Simulation Results for Mobile Network Scenario

In this section, the simulation results of different CDS
protocols in the mobile network scenario are presented.

1398 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 5. CDS size.

Fig. 6. Number of messages.

Fig. 7. Average traffic (kbps).

Fig. 9 illustrates the percentage of time that CDS is alive
with respect to the percentage of mobile nodes. As can
be seen in Fig. 9, MI has the highest percentage of CDS alive
time than other CDS protocols except when the percentage
of mobile nodes is more than 60 percent. Although smaller
CDS is generally more vulnerable to topology changes, MI
shows excellent mobility adaptation compared with the
other protocols. Only when the percentage of mobile nodes
is greater than 65 percent does MI’s percertage of time CDS is
alive become slightly lower than that of Dai’s and
Stojmenovic’s due to MIs smaller CDS size. As pointed
out in [16], the time complexity of mobility recovery at each
node of Dai’s is as high as Oð!2Þ. While Stojmenovic’s
protocol requires Oð!Þ to maintain a CDS, it is vulnerable to
nodal mobility as it further reduces the size of CDS than
Dai’s protocol. In addition, Dai’s and Stojmenovic’s proto-
cols require two-hop information, in which if one of
neighbors changes its state, a node has to wait two beacon
periods to initiate their protocol. Thus, mobility handling
procedures used in Dai’s and Stojmenovic’s protocols are
not as efficient as that of MI. SI has smaller percentage of
CDS alive time than MI, Dai’s, and Stojmenovic’s. This is
because of the possible failure of the unique initiator, which
results in the reconstruction of the whole CDS from scratch.

Fig. 10 shows the average CDS size with respect to the
percentage of the mobile nodes. As illustrated in Fig. 10, SI
consistently produces the smallest CDS and Dai’s protocol
consistently produces the largest CDS. The size of CDS by
Stojmenovic’s protocol is larger than MI. The average CDS
size of MI is 5 to 35 percent higher than Wan’s. However, as
can be seen in Fig. 9, Wan’s protocol is vulnerable to the
nodal mobility.

Fig. 11 presents the number of extra messages to
maintain CDS with respect to the percentage of the mobile
nodes. As illustrated in Fig. 11, MI requires a low number of
extra messages to maintain CDS. The number of messages is
only 60 percent of that of Stojmenovic’s, 20 percent of that of
Wan’s, and 8 percent of Dai’s. This demonstrates that MI
can handle topology changes efficiently with only a small
number of messages.

Fig. 12 shows the average traffic required at each node
to maintain CDS with respect to the percentage of the
mobile nodes. As can be seen in Fig. 12, the average traffic
of MI and SI are at least 50 percent lower than that of Dai’s.
Compared with Wan’s and SI, MI has slightly higher
traffic, but the difference is not significant. This is because
the beacon in MI is slightly larger than that of Wan’s and
SI. As we have pointed out in Section 4.2, the traffic is
mostly dominated by the extra bits in the beacon frame
rather than the extra messages. This again is validated by
Figs. 11 and 12.

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1399

Fig. 8. Convergence time.

Fig. 9. Percentage of time CDS is alive.

Fig. 10. Average CDS size.

Fig. 11. Number of Messages to Maintain CDS.

Fig. 12. Average traffic to maintain CDS.

Fig. 13 depicts the packet delivery rate with respect to the
node density. In the case of sparse networks, AODV with
MI results in lower delivery rate than the original AODV,
AODV with Dai’s, and AODV with Stojmenovic’s. This is
because in such low node density the network is often not
connected, which leads to the failure of route discovery.
However, when the average number of neighbors is more
than 15, AODV with MI results in higher delivery rate than
AODV, and has the similar delivery rate with AODV with
Dai’s and AODV with Stojmenovic’s.

Fig. 14 presents the end-to-end delay with respect to the
node density. As can be seen in Fig. 14, the delay of AODV
increases in proportion to the number of neighbors, while
that of AODV with MI remains stable. Compared with
AODV with Dai’s and AODV with Stojmenovic’s, the delay
of AODV with MI is only 50 percent. It implies that in
networks with high-density AODV, and AODV with Dai’s
and AODV with Stojmenovic’s incur more collisions and
take longer time to discover a route.

Fig. 15 shows the number of RREQ packets with respect
to the node density. It is clearly shown that AODV with MI
introduces lower number of RREQ packets. This is because
that only nodes in the CDS forward RREQ packets. On the
other hand, AODV with Dai’s and AODV with Stojmeno-
vic’s incur more number of RREQ packets than AODV with
MI due to lower disconnections of a CDS. Considering the
results presented in Figs. 13, 14, and 15, we are confident
that CDS constructed by our proposed protocols improve
routing performance and reduce routing overhead in
mobile ad hoc networks.

5 ANALYTICAL MODEL

In this section, an analytical model to analyze the
convergence time and number of messages that SI and MI
require during CDS construction is presented and vali-
dated. Our analytical models estimate the average perfor-
mance when nodes are randomly placed in a network in the
uniform distribution.

5.1 Analytical Model

The initiator election phase of SI and MI completes in
2InitMax and ! beacon periods, respectively. We first
consider the convergence time of SI.

The convergence time of SI in the tree construction phase
is the product of the number of hops from the initiator to
the edge of the tree and the average defer time. To
formulate this, let us denote the width and height of the
simulation region as lx and ly, respectively. The number of
hops, denoted by h, will be the distance from the initiator to
the edge of the tree divided by the average distance
between two nodes. Assuming lx ¼ ly, and S ¼ lx) ly, then
the average value of h can be computed by (6).

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y

q

2d
¼ 3

ffiffiffiffiffiffi
2S
p

4r
: ð6Þ

The average defer time of a node is Tmax divided by the
average number of uncovered neighbors nuc. Let CA and CB

be the coverage area of two neighboring nodes A and B,
and d be the distance between them, the additional area that
B forwards a message from node A is jCB n CAj ¼ $r2 !
jINTCðr; dÞj, where INTCðr; dÞ is the intersection of two
circles of radius r with their centers separated by d.

INTCðr; dÞ ¼ 4

Z r

d=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 ! x2
p

dx: ð7Þ

Thus, the average additional coverage area is

Z r

0

2$xð$r2 ! INTCðr; xÞÞ
$r2

dx * 0:41$r2: ð8Þ

Therefore, the average number of uncovered nodes is
0:41!, where ! is the average number of neighbors. In
addition, a node at the edge of the tree will wait Tmax number
of beacon intervals before it changes its state to dominatee.
Finally, the convergence time of SI is approximately

1400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

Fig. 13. Delivery rate.

Fig. 14. End-to-end delay.

Fig. 15. Number of RREQ packets.

2InitMax þ ðh! 1Þ) Tmax

0:41!
þ Tmax: ð9Þ

The duration of the tree construction phase in MI can be
calculated in the similar fashion. In the case of multi-
initiator, the number of hops from an initiator to the edge of
its tree, hmi, is

hmi ¼
r=d

ninit$r2=S
¼ 3

2
) S

ninit$r2
: ð10Þ

For the tree connection phase in MI, a border node
without any uncovered neighbor will wait Tmax number of
beacon intervals before it sends a message to its initiator.
The time required for the tree connection phase is bounded
by 2hmi þ 1. Hence, the convergence time of MI is the total
time spent on the tree construction phase and the tree
connection phase, and can be computed as

!þ ðhmi ! 1Þ) Tmax

0:41!
þ Tmax þ 2hmi þ 1: ð11Þ

MI does not introduce extra messages except in the tree
connection phase. In the tree connection phase, all nodes
except initiators forward messages from their children as
many times as the number of neighboring trees to their
initiator. Thus, the number of message required for MI to
construct CDS is

0:41!) ninit ! 1

ninit
) n: ð12Þ

5.2 Theoretical and Simulation Result Comparisons

In this section, the analytical model are validated by
comparing with our simulation results.

Fig. 16 demonstrates the convergence time of SI and MI
with respect to the average number of neighbors. The
convergence time decreases in proportion to the number of
neighbors because the defer timer in the tree construction
phase decreases in proportion to the number of uncovered
nodes. As can be seen in Fig. 16, the theoretical model and
simulation results are very close to each other.

Fig. 17 shows the number of messages with respect to the
average number of neighbors. In the simulation, the control
messages in the tree connection phase are traced. Note that
since SI forms only one dominator tree, there will be no
controlmessages for tree connection.As canbe seen inFig. 17,
analytical model again provides a very accurate estimation.

6 CONCLUSION AND FUTURE WORK

While the existing CDS protocols are successful in con-
structing CDS of small size, they miss a number of key
features that are important in wireless ad hoc networks. In
this paper, we introduce two timer-based CDS protocols,
namely SI and MI, that not only create CDS of competitive
size with low overheads but also address the shortcomings
of the existing protocols. SI utilizes timers to distributively
construct and maintain CDS in the presence of changes of
network topology. Built on top of SI, MI requires minimum
localized information to construct and maintain CDS
efficiently. The performance of the SI and MI protocols
are verified by both ns-2 simulations under static/mobile
network settings and an analytical model. Both perfor-
mance assessments provide very close results, which
establishes the validity of our simulations.

Since both protocols use timers, which inevitably pro-
longs the convergence time required for CDS construction.
In the future, we would like to investigate means to reduce
the required convergence time.

REFERENCES

[1] J. Blum, M. Ding, A. Thaeler, and X. Cheng, “Connected
Dominating Set in Sensor Networks and MANETs,” Handbook of
Combinatorial Optimization, pp. 329-369, Kluwer Academic Pub-
lishers, 2005.

[2] J. Wu, “Extended Dominating-Set-Based Routing in Ad Hoc
Wireless Networks with Unidirectional Links,” IEEE Trans.
Parallel and Distributed Systems, vol. 13, no. 9, pp. 866-881, Sept.
2002.

[3] J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized Minimum-
Energy Broadcasting in Ad-Hoc Networks,” Proc. IEEE INFO-
COM, pp. 2210-2217, Mar. 2003.

[4] A. Helmy, S. Garg, P. Pamu, and N. Nahata, “CARD: A Contact-
Based Architecture for Resource Discovery in Ad Hoc Networks,”
Mobile Networks and Applications, vol. 10, no. 1, pp. 99-113, 2004.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[6] F. Dai and J. Wu, “On Constructing k-Connected k-Dominating
Set in Wireless Networks,” Proc. 19th IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2005.

[7] Y. Wu and Y. Li, “Construction Algorithms for k-Connected m-
Dominating Sets in Wireless Sensor Networks,” Proc. Ninth ACM
MobiHoc, May 2008.

[8] Y. Wu, F. Wang, M.T. Thai, and Y. Li, “Constructing Algorithms
for k-Connected m-Dominating Sets in Wireless Sensor Net-
works,” Proc. IEEE Military Comm. Conf. (MILCOM), pp. 29-31,
Oct. 2007.

[9] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Mainte-
nance in Ad Hoc Wireless Networks,” Proc. ACM MobiCom, July
2001.

SAKAI ET AL.: TIMER-BASED CDS CONSTRUCTION IN WIRELESS AD HOC NETWORKS 1401

Fig. 16. The convergence time. Fig. 17. The number of messages.

[10] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On Calculating Power-
Aware Connected Dominating Sets for Efficient Routing in Ad
Hoc Wireless Networks,” J. Comm. and Networks, vol. 4, no. 1,
pp. 59-70, 2002.

[11] S. Yang, J. Wu, and F. Dai, “Efficient Directional Network
Backbone Construction in Mobile Ad Hoc Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 19, no. 12, pp. 1601-1613, Dec.
2008.

[12] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” Proc. Third Int’l
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm. (DIALM), pp. 7-14, Aug. 1999.

[13] F. Dai and J. Wu, “An Extended Localized Algorithm for
Connected Dominating Set Formation in Ad Hoc Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 10, pp. 908-920, Oct. 2004.

[14] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and
Neighbor Elimination Based Broadcasting Algorithms in Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 13,
no. 1, pp. 14-25, Jan. 2002.

[15] D. Simplot-Ryl, I. Stojmenovic, and J. Wu, “Energy-Efficient
Backbone Construction, Broadcasting, and Area Coverage in
Sensor Networks,” Handbook of Sensor Networks: Algorithms and
Architectures, pp. 343-379, Wiley, 2005.

[16] P.J. Wang, K.M. Alzoubi, and O. Frieder, “Distributed Construc-
tion of Connected Dominating Set in Wireless Ad Hoc Networks,”
Proc. IEEE INFOCOM, pp. 141-149, Apr. 2002.

[17] K.M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-Optimal
Connected Dominating Sets in Mobile Ad Hoc Networks,” Proc.
ACM MobiHoc, pp. 157-164, June 2002.

[18] P.-J. Wan, L. Wang, and F. Yao, “Two-Phased Approximation
Algorithms for Minimum CDS in Wireless Ad Hoc Networks,”
Proc. Int’l Conf. Distributed Computing Systems (ICDCS), pp. 337-
344, June 2008.

[19] Y. Li, M.T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On
Greedy Construction of Connected Dominating Sets in Wireless
Networks,” Wireless Comm. and Mobile Computing, vol. 5, no. 8,
pp. 927-932, 2005.

[20] C.R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless
Networks,” IEEE J. Selected Areas in Comm., vol. 15, no. 7, pp. 1265-
1275, Sept. 1997.

[21] F.G. Nocetti, J.S. Gonzalez, and I. Stojmenovic, “Connectivity
Based k-Hop Clustering in Wireless Networks,” Telecomm.
Systems, vol. 22, pp. 1-4, 2003.

[22] Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum,
ed., PWS Publishing Co., 1997.

[23] S. Guha and S. Khuller, “Approximation Algorithms for Con-
nected Dominating Sets,” Algorithmica, vol. 20, no. 4, pp. 374-387,
1998.

[24] B.S. Baker, “Approximation Algorithms for NP-Complete Pro-
blems on Planar Graphs,” J. ACM, vol. 41, no. 1, pp. 153-180, 1994.

[25] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli,
“Localized Protocols for Ad Hoc Clustering and Backbone
Formation: A Performance Comparison,” IEEE Trans. Parallel and
Distributed Systems, vol. 17, no. 4, pp. 292-306, Apr. 2006.

[26] S. Basagni, M. Mastrogiovanni, and C. Petrioli, “A Performance
Comparison of Protocols for Clustering and Backbone Formation
in Large Scale Ad Hoc Networks,” Proc. IEEE Conf. Mobile Ad-Hoc
and Sensor Systems, pp. 70-79, Oct. 2004.

[27] K. Sakai, F. Shen, K.M. Kim, M.-T. Sun, and H. Okada, “Multi-
Initiator Connected Dominating Set Construction for Mobile Ad
Hoc Networks,” Proc. IEEE Int’l Conf. Comm. (ICC), May 2008.

[28] “IEEE 802.11b Standard,” http://standards.ieee.org/getieee802/
download/802.11b-1999.pdf, 2011.

[29] D. Zhou, M.-T. Sun, and T. Lai, “A Timer-Based Protocol for
Connected Dominating Set Construction in IEEE 802.11 Multihop
Mobile Ad Hoc Networks,” Proc. Int’l Symp. Applications and the
Internet (SAINT), pp. 2-8, Jan. 2005.

[30] “The Network Simulator (ns-2),” http://www.isi.edu/nsnam/
ns/, 2011.

[31] W.-J. Hsu, K. Merchant, H.-W.S., C.-H. Hsu, and A. Helmy,
“Weighted Waypoint Mobility Model and its Impact on Ad Hoc
Networks,” ACM SIGMOBILE Mobile Computing and Comm. Rev.,
vol. 9, no. 1, pp. 59-63, 2005.

[32] “Mobilab: Community-Wide Library of Mobility and Wireless
Networks Measurements,” http://nile.usc.edu/MobiLib/, 2009.

Kazuya Sakai received the BS and MS degrees
in electronics engineering from Kansai Univer-
sity, Osaka, Japan, in 2004 and 2007, respec-
tively, and the MS degree in computer science
from Auburn University, Alabama, in 2010. Since
2010, he has been a graduate student in
the Department of Computer Science and
Engineering at The Ohio State University. His
research interests are in the area of wireless
networks, mobile computing, and security. He is

a student member of the IEEE.

Scott C.-H. Huang received the BS degree in
mathematics from the National Taiwan Univer-
sity in 1998 and the PhD degree in computer
science from the University of Minnesota in
2004. He joined the faculty of City University of
Hong Kong as a research fellow and is currently
a lecturer there. His research area includes ad
hoc and sensor networks, network security, and
combinatorial optimization. He is a member of
the IEEE.

Wei-Shinn Ku received the PhD degree in
computer science from the University of South-
ern California (USC) in 2007 and the MS
degrees in computer science and electrical
engineering from the USC in 2003 and 2006,
respectively. He is a graduate of the National
Taiwan Normal University. Now, he is an
assistant professor with the Department of
Computer Science and Software Engineering
at Auburn University. His research interests

include spatial and temporal data management, mobile data manage-
ment, geographic information systems, and security and privacy. He is a
member of the IEEE.

Min-Te Sun received the BS degree in mathe-
matics from the National Taiwan University in
1991, the MS degree in computer science from
Indiana University in 1995, and the PhD degree
in computer and information science from The
Ohio State University in 2002. Since 2008, he
has been with the Department of Computer
Science and Information Engineering at the
National Central University, Taiwan. His re-
search interests include distributed algorithm

design and wireless network protocol engineering. He is a member of
the IEEE.

Xiuzhen Cheng received the MS and PhD
degrees in computer science from the University
of Minnesota-Twin Cities, in 2000 and 2002,
respectively. She is an associate professor at
the Department of Computer Science, The
George Washington University. Her current
research interests include cyberphysical sys-
tems, wireless and mobile computing, sensor
networking, wireless and mobile security, and
algorithm design and analysis. She has served

on the editorial boards of several technical journals and the technical
program committees of various professional conferences/workshops.
She also has chaired several international conferences. She worked as
a program director for the US National Science Foundation (NSF) from
April to October in 2006, and from April 2008 to May 2010. She received
the NSF CAREER Award in 2004. She is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1402 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 10, OCTOBER 2011

