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Abstract—In this paper, we propose a novel compressive
sensing (CS) based approach for sparse target counting and
positioning in wireless sensor networks. While this is not the
first work on applying CS to count and localize targets, it
is the first to rigorously justify the validity of the problem
formulation. Moreover, we propose a novel greedy matching
pursuit algorithm (GMP) that complements the well-known
signal recovery algorithms in CS theory and prove that GMP can
accurately recover a sparse signal with a high probability. We
also propose a framework for counting and positioning targets
from multiple categories, a novel problem that has never been
addressed before. Finally, we perform a comprehensive set of
simulations whose results demonstrate the superiority of our
approach over the existing CS and non-CS based techniques.

Keywords: sensor networks, target counting, target lo-
calization, compressive sensing

I. INTRODUCTION

Counting and positioning targets in a monitored area is
of broad interests to many sensor network applications such
as environmental monitoring, intrusion detection, and target
tracking [1]–[4]. Nevertheless, the existing approaches yield
poor performance on areas with overlapping target influences.

In this paper, we consider target locations as sparse signal
and propose to reconstruct the signal using compressive sens-
ing (CS) techniques [5]. Here we assume that targets are sparse
compared with the number of grids utilized to represent the
locations of the targets. This assumption can be easily satisfied
in practice when point targets [6], [7] are randomly distributed
in a large sensing area. We choose to employ CS because of the
recent advances in sparse recovery for compressive sensing.
CS is a newly developed sampling paradigm in data acquisition
that can reconstruct a sparse signal from a small number of
measurements within polynomial time [5] (More details can
be found at the CS resource page http://dsp.rice.edu/cs).

CS has been applied to event/target counting and local-
ization [7]–[9] . But none of the existing work provides
a rigorous proof for the applicability of CS theory in this
particular problem context (e.g., whether the necessary Re-
stricted Isometry Property (RIP) [5] is properly satisfied or
not). Moreover, the existing work assumes that each grid
contains at most one event/target. In this paper, we provide
a comprehensive analysis to justify the validity of our CS-
based problem formulation. We also tackle the problem of
counting and positioning targets from multiple categories.

Since many existing sparse signal recovery algorithms assume
the availability of signal sparsity level (i.e., the number of
targets) which is unknown in the target counting scenario and
must be recovered from the measured signal, we propose our
own Greedy Matching Pursuit (GMP) algorithm which com-
plements the existing family of sparse recovery algorithms.
GMP is a greedy algorithm that iteratively identifies a grid
which contributes the most to the observed measurements.

The main contributions of this paper are outlined as follows:

• We provide a CS based problem formulation for target
counting and localization, and prove that the product
of the measurement matrix and the target decay matrix
obeys RIP with a high probability.

• We propose a novel GMP algorithm that can accurately
count and localize targets from a small number of mea-
surements.

• We conduct theoretical analysis to prove that GMP can
recover sparse signal with a high probability.

• We develop a generic approach to counting and localizing
targets from multiple categories.

• We perform an extensive simulation study to evaluate
the performance of GMP with various parameter settings.
The superiority of GMP compared with other popular tar-
get counting and sparse recovery algorithms is validated
by the simulation results.

GMP is a greedy sparse recovery algorithm that can be ap-
plied to many CS based problems. Compared with well-known
algorithms such as OMP [10] and Cosamp [11], GMP does not
require prior knowledge of signal sparsity level and is lighter-
weight from a computational perspective. Moreover, GMP
is applicable to our framework for counting and positioning
targets from different categories and achieves a significantly
better performance than the other CS based sparse signal
recovery algorithms. Finally, our simulation study indicates
that GMP is as robust as !1-minimization while other greedy
sparse recovery algorithms provide much weak robustness.

The rest of the paper is organized as follows: Section II
presents the related work. The fundamentals of compressive
sensing are introduced in Section III. The problem definition
for CS based target counting and localization is discussed
in Section IV. Section V is devoted to the development of
our GMP algorithm and its performance analysis. Section VI
reports our simulation results, followed by the conclusions in
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Section VII.

II. RELATED WORK

In this section, we summarize the most relevant existing
research on two problems: target counting/positioning and
sparse signal recovery, as this paper contributes to not only
target counting and positioning in sensor networks but also
the generic theory of compressive sensing (through the devel-
opment of GMP).

Non-CS approaches to target counting and positioning.
Prior efforts on target counting/positioning in sensor networks
were mainly focused on three directions: (1) Binary-sensing
based approaches [12], [13] position targets by assuming that
a sensor reports value ′1′ if one or more targets are detected in
its sensing range and ′0′ otherwise. (2) Topological integration
based approaches [14], [15] aim to obtain the expected target
count in sensor networks. (3) Clustering based approaches
[16], [17] are designed to identify multiple non-overlapping
clusters, each of which contains one or more targets. The
objective is to count the number of targets in each cluster.

Note that the binary sensing model and the topological
integration model report bounds and expected values, respec-
tively. On the other hand, the performance of clustering based
algorithms relies heavily on the integration and partitioning
of total target energy in the overlapping influence area, which
results in coarse counting. None of the existing approaches
has the ability to precisely count and localize targets from
different categories.

Greedy sparse recovery. It is well-known that !1 minimiza-
tion for sparse signal recovery produces highly accurate results
if the measurement matrix satisfies the so-called Restricted
Isometry Property (RIP) [5] (see Section III). However, the
process of !1 minimization is computationally intensive, which
limits its applications. On the other hand, greedy approaches
such as Orthogonal Matching Pursuit (OMP) [10] provide fast
solutions by iteratively selecting the optimal candidates, but
fail to converge with a high probability. A popular recovery
algorithm, Cosamp [11], performs component identification
during each iteration to speed up the algorithm for various
types of signals. More recent CS recovery algorithms also
select multiple indices, including StOMP [18], ROMP [19],
and I-ROMP [20]. Note that all the existing greedy algorithms
for sparse recovery require the availability of the sparsity
level, which is not directly applicable to our target counting
and positioning problem since the sparsity level is one of
the unknowns that should be estimated. Our proposed GMP
algorithm estimates the sparsity level as well as the locations
and values of the non-zeros in the sparse signal.

Target counting based on compressive sensing. Compres-
sive sensing has been applied to targeting counting/positioning
in [7]–[9]. In [8], the unknown target positions are considered
to form a sparse vector; and !1 minimization is applied directly
to estimate the target locations. Meng et al. [7] considers a
binary event model in wireless sensor networks and proposes
a complex Bayesian counting and localization algorithm for

estimating the locations of sparse events. These two techniques
tacitly assume that their measurement matrices obey the RIP
without providing a rigorous proof. In order to obtain an
RIP-compliant matrix, [9] takes a computationally intensive
preprocessing step: the measurement matrix is multiplied
with its left inverse matrix and its orthogonal basis. In this
paper, we provide a rigorous proof that our product of the
measurement matrix and the target decay matrix satisfies RIP,
and our GMP algorithm provides a high accuracy in target
counting/positioning.

III. FUNDAMENTALS OF COMPRESSIVE SENSING

Conventional sampling theory mandates a sampling rate
at least twice as large as the signal’s maximum frequency
(Nyquist rate) in order to guarantee accurate reconstruction.
Nonetheless, for sparse signals, sampling at Nyquist rate could
result in a significant waste of resources. Recent research
shows that compressive sensing can reconstruct a sparse signal
with a much lower sampling rate.

Let x be a N × 1 column vector in RN . Given an N ×N
orthogonal basis Ψ = [Ψ(1),Ψ(2), . . . ,Ψ(N)] with each Ψ(i)
being a column vector, x can be expressed by Eq. (1),

x = Ψs =
N∑

i=1

siΨ(i), (1)

where s is the coefficient sequence of x in the transform
domain Ψ. The signal x is k-sparse if it is a linear combination
of k basis vectors. That is, only k of the si coefficients are
nonzero and the other (N − k) ones are zero. If k # N ,
instead of acquiring N samples from x, compressive sensing
(CS) aims to reconstruct x by taking only a small set of
measurements:

y = Φx = ΦΨs = As, (2)

where y is a M × 1 vector, k < M # N , Φ is a M × N
measurement matrix, and A is a M ×N matrix. For a N × 1
vector s, it has been proved that if A holds the Restricted
Isometry Property (RIP) [5], the solution obtained from the
following !1-minimization

min|s|!1 subject to y = As,

can be used to either (i) recover s exactly if s is k-sparse; or
(ii) compute an approximate signal ŝ that is at least as good
as if it is computed when the values and locations of the k
most significant coefficients of x are known.

The definition of RIP is given below: a matrix A obeys RIP
with parameters (k, δ) for δ ∈ (0, 1) if

1− δ ≤ ‖Av‖22
‖v‖22

≤ 1 + δ, (3)

holds for all k-sparse vector v.
If the measurement vector y is corrupted with noise, the

measurement becomes

y = As+N , (4)
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where N is an unknown error term (e.g. an additive white
Gaussian noise (AWGN)). Then the !1-minimization with
relaxed constraints for reconstruction is

min|s|!1 subject to ‖As− y‖!2 < ε (5)

where ε bounds the amount of noise in the data. It has been
proved [21] that the reconstruction error of s based on the
value computed from Eq. (5) is bounded by c0ε0+ c1ε, where
c0 and c1 are small constants and ε0 is the reconstruction error
when y is noiseless.

While in theory solvable in polynomial time [5], !1-
minimization is computationally expensive when N is large.
RIP implies that any k columns of A are approximately
orthogonal [10]. This property has been exploited to design
greedy algorithms for recovering the signal by computing the
largest/strongest coefficients of s iteratively. These algorithms
include Matching Pursuit (MP) [22], Orthogonal Matching
Pursuit (OMP) [10], and Cosamp [11], etc. In some applica-
tions prior information (e.g., sparsity) on s may be available,
which can be utilized to design Bayesian algorithms [7].

IV. PROBLEM FORMULATION

In this paper, we employ the CS theory to jointly consider
target counting and positioning.

A. The Target Counting and Positioning Problem

Following the mainstream research in target counting [4],
[14]–[17], [23], we consider point targets. Then the following
target energy decay model [6], [24] can be adopted, which
states that the signal energy at location j for a target at location
i is roughly approximated by:

Sij =
P0Gij

dαij
, (6)

where P0 is the signal intensity at i, dij is the Euclidean
distance between the target at i and the location j, Gij captures
the Raleigh fading of the target signal, and α ∈ [2.0, 5.0]
is a decay factor determined by the environment [25]. The
real and imaginary components of a Raleigh signal follow
an independent and identical Gaussian distribution with zero
mean and variance of σ20 [?].

Consider a partition of the monitored area into N grids.
Let si be the number of targets at grid i, where si ∈
{0, 1, 2, . . . ,m} and m is a small integer representing the
largest possible number of targets a grid can hold. Let
s = [s1, s2, · · · , sN ]T be a N × 1 column vector. In our
consideration, s is k-sparse, which means that s contains k
non-zero values and k # N .

To count and localize the targets, a traditional approach is
to place a large number of sensors at the monitored area and
apply methods such as [16], [17]. For example, we could place
one sensor at each grid and denote by a N × 1 vector x the
measurements at the N grids. Thus we have

x = Ψs, (7)

with Ψ being a N ×N target energy decay matrix defined by
Eq. (8).

Ψ = P0





G11
dα
11

G21
dα
21

. . . GN1
dα
N1

G12
dα
12

G22
dα
22

. . . GN2
dα
N2

...
...

...
...

G1N
dα
1N

G2N
dα
2N

. . . GNN
dα
NN




. (8)

Since s is k-sparse, compressive sensing theory can be
applied to recover s with k < M # N measurements. This
means that we can randomly deploy M sensors, at most one
per grid, and compute s from their measurements. Let y be a
M × 1 column vector recording the measurements of the M
sensors. We have

y = Φx, (9)

where
Φ = [Φ(1),Φ(2), . . . ,Φ(M)]T . (10)

Note that Φ(i) is an 1×N vector with all elements equal to
zero except Φ(i, j) = 1, where j is the index of the grid point
at which the ith sensor is located.

Combining Eq. (7) with Eq. (9) we obtain

y = ΦΨs = As. (11)

When measurement noise is considered, Eq. (11) should be
expressed by Eq. (12).

y = As+N , (12)

where N is the additive Gaussian white noise.
Note that when deriving A, we utilize the actual position

information of each sensor and assume that a target is located
at a grid center. The location of a sensor can be computed
from techniques such as those proposed in [?], [?].

B. Does A Obey RIP?
We shall show in this subsection that the target counting

and localization model described above is solvable by CS. As
stated in CS theory, a sufficient condition for the successful
recovery of a signal by CS is that A obeys RIP. In our model,
A = ΦΨ can be written as:

A = P0





G11′
dα
11′

G21′
dα
21′

. . . GN1′
dα
N1′

G12′
dα
12′

G22′
dα
22′

. . . GN2′
dα
N2′

...
...

...
...

G1M′
dα
1M′

G2M′
dα
2M′

. . . GNM′
dα
NM′




, (13)

where dij′ is the distance from target i to the jth sensor.
Without loss of generality, we assume P0 = 1. Since Gij′

follows the Rayleigh fading as a complex Gaussian variable,
y = As can be expressed as:

y = (Ars+ i ∗Ais), (14)

where Ar and Ai are the corresponding real parts and imagi-
nary parts of elements in A. If both Ar and Ai obey RIP, A
must obey RIP. Moreover, since the real part and imaginary
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part of Gij′ are independently and identically distributed
Gaussian variables, it is enough to prove A holds RIP when
Ar holds. Thus we have the following theorem:

Theorem 4.1: When the number of sensors M = O(k ·
log(N/k)), the probability for Ar (after normalization) to
satisfy

1− δ ≤ ‖Arv‖22
‖v‖22

≤ 1 + δ (15)

for all k-sparse vector v tends to 1.
Proof: Consider a row vector of Ar:

〈Ar〉i′ = η ·
〈
G1i′

dα1i′
, . . . ,

GNi′

dαNi′

〉
(16)

where Gij′ satisfies the Gaussian distribution with the mean
of 0 and the variance of σ20 and η is the normalization constant

η =

√√√√
N

M
· 1
∑N

j=1
σ2
0

d2α
ij

. (17)

Since all sensors are randomly distributed in the field, the
product of 〈Ar〉i′ and a k-sparse vector v, i.e., 〈Arv〉i′ , follows
Gaussian distribution with mean of 0 and variance of

σ2 = η2 · 1

N
·




N∑

j=1

σ20
d2αij



 ·
k∑

h=1

v2h. (18)

where vh (1 ≤ h ≤ k) is the hth non-zero element of v.
As such, ‖Arv‖22 satisfies χ2-distribution (degree of freedom
is M ) with the mean Mσ2 and the variance 2Mσ4. Since
M * 1, ‖Arv‖22/‖v‖22 can be approximated by the Gaussian
distribution with the mean

Mσ2
∑k

h=1 v
2
h

= M · η2 · 1

N
·

N∑

j=1

σ20
d2αij

= 1. (19)

and the variance 2/M . According to the Chernoff bound, the
probability for |‖Arv‖22/‖v‖22 − 1| > δ is at most

Pr

{∣∣∣∣
‖Arv‖22
‖v‖22

− 1

∣∣∣∣ > δ
}

≤ 2e−
δ2·M

8 (20)

Since the total number of possible k-dimensional subspaces
of A is

(
N

k

)
≤ (eN/k)k, (21)

the probability that there exists a k-sparse vector v which
satisfies |‖Arv‖22/‖v‖22 − 1| > δ is at most

(
eN

k

)k

· 2e− δ2M
8 = 2e−

δ2M
8 +k log(N

k )+1. (22)

Note that when M = O(k · log(N/k)), (22) tends to 0. Thus,
the probability for (15) to be satisfied tends to 1.

V. GREEDY MATCHING PURSUIT FOR TARGET COUNTING
AND POSITIONING

In this section, we propose our greedy matching pursuit
algorithm (GMP) for target counting and positioning. We also
explain how GMP can be used to count and localize the targets
from multiple categories.

A. GMP – A Greedy Matching Pursuit Algorithm
Intuitively, the grid which has the most targets should

exhibit the highest target energy. Since si ∈ {0, 1, . . . ,m}
(a finite set), one can enumerate all possible values of si for
all grids and find the one that contributes the most to the
observation vector y. The is the design motivation for our
Greedy Matching Pursuit Algorithm (GMP). At each step, we
identify the grid (denoted by i in the pseudocode) and the
number of targets at the grid (denoted by zi in the pseudocode)
that can maximize Az, where z is a N×1 vector containing 0
at zj for all j += i. Az is subtracted from y′, the residual that
captures the remaining observed target energy when the grids
with more number of targets are removed from the previous
steps. Initially y′ is set to y. The algorithm terminates when no
grid that contains at least one target are found. The pseudocode
is given by Algorithm 1.

Algorithm 1 GMP (A, y)
Input:

• An M ×N measurement matrix A.
• An M -dimensional signal measurement vector y.

Output:
• An N -dimensional reconstructed signal ŝ.

1: function GMP(A, y)
2: ℵ ← {1, 2, · · · , N};
3: y′ ← y;
4: zi ← 0 ∀i ∈ {1, 2, · · · , N}; ! z = [z1, z2, · · · , zN ]T is a

N -dimensional column vector initialized to 0;
5: while true do
6: (i, zi) ← argmini∈ℵ,zi∈{0,1,2,··· ,m}

‖y′ −A[0, · · · , 0, zi, 0, · · · , 0]T ‖2; ! Find
out i and zi (the grid i that contains zi number of
targets) such that ‖y′‖2 can be decreased to the
maximum degree.

7: if zi = 0 then
8: Break;
9: end if

10: ℵ ← ℵ \ {i};
11: ŝi ← zi;
12: y′ ← y′ −Az;
13: zi ← 0; ! Reset vector z to 0.
14: end while
15: return (ŝ);
16: end function

B. Counting and Positioning of Targets from Multiple Cate-
gories

We observe that by carefully designing the target energy
decay matrix Ψ and the measurement matrix Φ, GMP can be
used to count and localize targets from multiple categories

2258



5

without referring to traditional classification methods. Here
different categories of targets could have different energy
decay models, based on which different target energy decay
matrix Ψ can be formulated. For example, the category of
targets following the energy decay model defined by Eq. (6)
results in the matrix Ψ defined by Eq. (8). Even when the
targets follow the same energy decay model as Eq. (6), P0

and the path loss exponent α could be different, producing
different categories of targets.

Assume there are t categories of targets, with each having
its own matrix Ψ characterizing the category-specific target
energy dissipation features. Denote these matrices by Ψi for
i = 1, 2, · · · , t. Then the matrix Ψmulti for counting and
positioning targets from multiple categories can be defined
by

Ψmulti =





Ψ1 0 · · · 0
0 Ψ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Ψt



 . (23)

Similarly we can obtain Φmulti

Φmulti = {Φ1,Φ2, · · · ,Φt}, (24)

where Φi = Φ for i ∈ 1, 2, · · · , t, and Φ is the measurement
matrix defined in Section IV-A, which contains exactly one
1 at each row and each column, with all other entries filled
by 0’s. The unknown vector containing the counting and
positioning information is denoted by sct . We have

sct = {sct1, s
c
t2, · · · , s

c
t t}

T (25)

where sct i is a N × 1 vector that denotes the location and
number of targets of category i in the N grids. Let A =
ΦmultiΨmulti. Then GMP can be applied to count and localize
targets from multiple categories for a given measurement
vector y.

C. Performance Analysis
In the following, we prove that if all targets belong to

the same category, GMP is capable of precisely positioning
all targets when there is no measurement error. Since the
positioning process for targets from multiple categories is es-
sentially a concatenation of the positioning for each category,
the correctness of GMP for multi-category target positioning
follows in analogy.

Theorem 5.1: If A satisfies the RIP with a constant δ <
1/k for all (k + 1)-sparse vectors, GMP always reconstructs
s correctly - i.e., outputs ŝ = s.

Proof: We prove by induction. Thus, we first prove
that GMP always generates the correct prediction at the first
iteration. Note that if there are targets on Location i, there
must exist zi > 0 such that ‖s − zi‖22 ≤ ‖s‖22 − 1. Since A
satisfies RIP with δ < 1/k, we have

‖y −Azi‖22 = ‖A(s− zi)‖22 (26)
≤ (1 + δ) · ‖s− zi‖22 (27)
≤ (1 + δ) · (‖s‖22 − 1). (28)

Also note that if there is no target on Location j but GMP
chooses zj > 0, ‖s− zj‖22 ≥ ‖s‖22 + 1. As such,

‖y −Azj‖2 = ‖A(s− zj)‖22 (29)
≥ (1− δ) · ‖s− zj‖22 (30)
≥ (1− δ) · (‖s‖22 + 1). (31)

Since ‖s‖22 ≥ k and δ < 1/k, we have

‖y −Azi‖22
‖y −Azj‖22

≤ 1 + δ

1− δ ·
‖s‖22 − 1

‖s‖22 + 1
< 1. (32)

Thus, there exists i with si ≥ 1 such that ‖y − Azi‖2 <
‖y − Azj‖2 for all j with sj = 0. This indicates that GMP
always generates the correct prediction at the first iteration.

Now suppose that GMP generates the correct predictions for
the first h iterations. To prove the correctness of the (h+1)th
iteration, a key observation is that given δ < 1/k, there is
always δ < 1/(k − h) for all h ≥ 0. At the beginning of the
(h+1)-th iteration, define a 1×N vector s′ such that s′i = si
if there are targets on grid i and zi has not yet been identified
in the first h iterations, and s′i = 0 otherwise. We have

‖s′ − zi‖22 ≤ ‖s′‖22 − 1 (33)

iff s′i > 0. If no targets is present on grid j, then ‖s′−zj‖22 ≥
‖s′‖22 + 1. In analogy to the derivation in (28) and (31), we
have

‖y′ −Azi‖22
‖y′ −Azj‖22

≤ 1 + δ

1− δ ·
‖s′‖22 − 1

‖s′‖22 + 1
< 1. (34)

Thus, GMP always generates the correct prediction at the (h+
1)-th iteration. In summary, GMP predicts the positions of all
targets without error.

VI. SIMULATION

A. Performance Parameters

We start by defining the parameters used for performance
evaluation. For each grid i, let ni and n′

i be the actual and
estimated numbers of targets, respectively. The number of
grids that contain at least one target is the sparsity level, which
is denoted by k.

Definition 6.1: The counting error, denoted by COE, is
defined to be the ratio of the difference between the estimated
number and actual number vs. the actual number of targets:

COE =

∑N
i=1 |ni − n′

i|∑N
i=1 ni

. (35)

Assume there are in total t categories of targets. Let ti and
t′i be the actual and estimated numbers of targets at category
i, respectively. Then the categorical counting error is defined
as follows:

Definition 6.2: The categorical counting error (CCOE) is
defined as:

CCOE =

∑t
i=1 |ti − t′i|∑t

i=1 ti
. (36)
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Let n be the total number of targets with locations (x1, y1),
(x2, y2), · · · , (xn, yn), respectively. Assume the corresponding
estimated target locations are (x′

1, y
′
1), (x′

2, y
′
2), · · · , (x′

ñ, y
′
ñ),

where ñ is the number of estimated targets. In order to assign
an estimated location to a target, we compute all pairs of
distances between (xi, yi) and (x′

j , y
′
j), and sort them in a non-

decreasing order. Based on the sorted list, we assign a target
to the first unused estimated location. Let nmin = min{n, ñ}.

Definition 6.3: The localization error (LOCE), also
known as positioning error, is defined by:

LOCE =

∑nmin

i=1

√
(xi − x′

i)
2 + (yi − y′i)

2

nmin · r , (37)

where r is the grid size.
Note that in the definition of LOCE, we use the grid size

r to normalize the localization error. If LOCE < 100%, it
indicates that the estimated location is close to the real location
as their distance is shorter than the grid diameter. Also note
that we do not consider the localization error of targets mis-
identified by the algorithm as their localization error should
be infinity based on our LOCE definition. Therefore it might
occur that LOCE = 0 when COE > 0 in the simulation.

B. Simulation Set-up
MATLAB is used to perform all simulations. We randomly

deploy M sensors at an area of N grids, where M # N . To
place targets, we select k < M grids randomly, and put ni

targets at each selected grid, where ni is chosen uniformly at
random from {1, 2, 3}. The target energy decay model follows
Eq. (6) with P0 = 1 and α = 2. Both real and imaginary
parts of Rayleigh fading follow an independent and identical
Gaussian distribution with the mean of 0 and the variance of
0.5 as in [26], [27]. If our algorithm reports a target at a grid,
the center of the grid is used as the estimated location of the
reported target.

In order to test the robustness of our algorithm, we inten-
tionally add Gaussian white noise N (0, σ2) to the observation
vector y. We use SNR to quantify the signal to noise ratio. In
our simulation, we vary M , N , k and SNR to test different
sparsity level, sensor density, target density, and noise. Each
presented result is the average of 50 runs.

We also implement several state-of-the-art algorithms for
performance comparison. To verify the strength of our CS
algorithm in target counting and positioning, we compare
it with the algorithm for binary proximity sensors [4], the
median-based fault-tolerant target detection algorithm [6], and
the clustering based algorithm [16]. They are denoted by
Binary, FTTD, and Cluster, respectively. We also test the
ability of our algorithm in sparse recovery by comparing
with well-known CS recovery algorithms including Orthog-
onal Matching Pursuit (OMP) [10], Compressive Sampling
Matching Pursuit (Cosamp) [11], and the !1-magic [28]. Note
that both OMP and Cosamp require the availability of the
sparsity level k, which is a parameter to be estimated in
our algorithm. Therefore we tailor OMP by changing its
exit condition from “iterating k times” to “iterating until the

(a) (b)

Fig. 1. Performance of GMP for single category of targets without noise
(w-o) and under different levels of noise: SNR = 25dB, 22dB, 20dB when
N = 900,M = 160. (a) Counting error vs. sparsity level; (b) Localization
error vs. sparsity level.

(a) (b)

Fig. 2. Performance of GMP for single category of targets when M varies
and N = 900, SNR = 25dB. (a) Counting error vs. sparsity level; (b)
Localization error vs. sparsity level.

residual is smaller than a threshold (< 10−6)”. For Cosamp,
since k is used to establish a matrix, we decide to provide
the actual value of k and compare LOCE only. All these
algorithms have been discussed in Section II.

C. Single Category of Targets

Fig. 1(a) reports the COE of GMP when the sparsity level
k varies from 5 to 40 at a step size of 5 under different
measurement noise levels. We plot 4 curves for the cases of
no error, SNR = 25dB, 22dB and 20dB, respectively, when
N = 900 and M = 160. We notice that if k ≤ 30, we can
precisely count all targets when there is no measurement noise.
The counting error increases as k increases and decreases with
an increasing SNR. This phenomena is consistent with the CS
theory as the recovery error is proportional to the input noise.
The same observation is obtained in Fig. 1(b), which reports
the LOCE of GMP. Note that when k is a little more than 20
and SNR = 20dB, the localization error is 0 while counting
error exists. This is because we did not consider the positioning
error of miss-counted or wrongly-inserted targets.

In Fig. 2(a) and Fig. 2(b), we plot the performance of GMP
when M = 100, 160, and 200. As in the previous scenario,
the sparsity level varies from 5 to 40 at a step size of 5.
We consider cases where there is no measurement error and
SNR = 25dB. It is observed that COE and LOCE increase
as k increases or M decreases. This is reasonable as higher
sampling rate leads to a higher accuracy in sparse recovery.
When M = 200, GMP can estimate all targets with 100%
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(a) (b)

Fig. 3. Comparison of GMP and three classical target counting algorithms
when N = 900,M = 160, and SNR = 25dB. (a) Counting error vs.
sparsity level k; (b) Localization error vs. sparsity level k.

accuracy even at k = 35 and produce no positioning error. We
conclude that GMP is an effective sparsity recovery algorithm
that yields high accuracy.

1) GMP vs. popular target counting and localization meth-
ods: Fig. 3(a) and 3(b) compare GMP with Cluster [17], FTTD
[6], and Binary [23]. Fig. 3(a) depicts the COE vs. the sparsity
level k when N = 900,M = 160, and SNR = 25dB. It can
be observed that GMP brings much lower error than all other
algorithms. When k = 30, both COE and LOCE of GMP are
0 if there is no measurement noise; while other algorithms
produce a counting error of 30% or more and a positioning
error of more than 200% under the same scenario. Even when
k is as small as 10, the positioning error of Cluster, FTTD,
and Binary is still above 100%, though their counting errors
are relatively small (0.05 or higher). When k = 40, GMP has
a counting accuracy of about 80% and a positioning error of
less than 100% (inside a grid) while other algorithms have a
much lower accuracy.

In Fig. 4(a) and Fig. 4(b), we study the dependence of
COE and LOCE on the number of measurements M when
N = 900, k = 10 and SNR = 25dB. It is noticed that as
an overall trend, the larger the M is, the smaller the error
for all algorithms except Binary will be. The exception, i.e.,
Binary, produces a higher COE when M is around 100 and
SNR = 25dB. We attribute this exception to the algorithmic
design of Binary as it relies on the overlapping areas of neigh-
boring sensors to estimate the number of targets. Note that both
COE and LOCE of GMP are zero when M ≥ 40, while other
algorithms yield much higher errors when M < 100. This
clearly indicates that GMP as a compressive sensing based
algorithm does not need a large number of measurements to
precisely estimate the number and location of the targets.

2) GMP vs. popular compressive sensing algorithms: We
now report our comparative study of GMP vs. OMP [10],
Cosamp [11], and !1-magic [28], the three popular CS based
sparse recovery algorithms. As noted earlier, Cosamp relies on
k to build a matrix as a core part of its algorithm. Therefore
we will provide the actual k value to Cosamp and compare
against it the localization error only.

From Fig. 5(a) and 5(b), we observe the superiority of GMP
in terms of COE and LOCE over the other three CS-based
algorithms. None of OMP, Cosamp, and !1-magic achieves a

(a) (b)

Fig. 4. Comparison of GMP and three classical target counting algorithms
when N = 900, k = 10, and SNR = 25dB. (a) Counting error vs. M ; (b)
Localization error vs. M .

(a) (b)

Fig. 5. Comparison of GMP and three CS sparse recovery algorithms when
N = 900, M = 160, and SNR = 25dB. (a) Counting error vs. the sparsity
level k; (b) Localization error vs. the sparsity level k.

(a) (b)

Fig. 6. Comparison of GMP and three CS sparse recovery algorithms when
N = 900, k = 10, and SNR = 25dB. (a) Counting error vs. M ; (b)
Localization error vs. M .

(a) (b)

Fig. 7. Performance of GMP to count targets from multiple categories when
the number of target categories varies from 1 to 4 at N = 900,M = 160
and SNR = 25dB. (a) Categorical Counting error vs. sparsity level; (b)
Localization error vs. sparsity level.
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counting accuracy of 100% when k is ≥ 10 while GMP can
accurately count all targets when k is less than 30. On the
other hand, the estimated target locations via GMP are close
to their actual values when 30 ≤ k ≤ 40 as LOCE is close
to 100% while the other three yields much higher localization
errors.

Fig. 6(a) and 6(b) again prove the superiority of GMP over
OMP, Cosamp, and !1-magic. We observe that for k = 10,
GMP requires 40 measurements to precisely recover all targets
while the other three algorithms produce high COE and LOCE
even when M is as high as more than 100. This indicates that
GMP can reconstruct the signal with 100% accuracy when
only 5% (MN = 5% when M = 40 and N = 900) of the
signals are collected.

D. Multiple Categories of Targets

We now report our simulation results when there are mul-
tiple categories of targets. Here we assume that all targets
follow the same energy decay model defined by Eq. (6) but
with different P0 and α values. Let t be the total number
of target categories. In our simulation, t varies from 1 to 4.
The parameter settings for the four categories of targets are
specified as follows.

Category 1: P0 = 1.0, α = 2.0; (38)
Category 2: P0 = 0.5, α = 2.0; (39)
Category 3: P0 = 1.5, α = 3.0; (40)
Category 4: P0 = 1.0, α = 3.0. (41)

The simulation setup is similar to that of single category
target counting except that we associate with each target a
category number randomly selected from 1 to t. For example,
if there are t = 3 categories of targets, we randomly pick up
an integer from {1, 2, 3} as the category for each target. We
first study the performance of GMP then compare it with other
popular CS algorithms.

Fig. 7(a) and Fig. 7(b) present the performance of GMP vs.
the sparsity level k at N = 900, M = 160, and SNR =
25dB when t varies from 1 to 4. It can be observed that the
categorical counting error CCOE and the localization error
LOCE both increase when k or t increases. This is attributed
to the fact that t actually increases the sparsity level from k
to roughly tk. As indicated in Section V-B, when the targets
in a grid belong to t different categories, they actually occupy
t entries in the vector sct and therefore effectively increases
the sparsity level. This is the reason why GMP can precisely
count and localize smaller number of targets when t increases.

We also compare the CCOE of GMP with those of OMP,
Cosamp, and !1-magic for multiple categories of data and
report the results in Fig. 8(a). Notice that GMP achieves
a much better performance in terms of counting errors. In
fact, none of OMP, Cosamp, and !1-magic can produce zero
counting error even when only 5 grids have targets present
while GMP can precisely count the number of targets when
k ≤ 20. This clearly indicates that GMP has a strong ability

(a) (b)

Fig. 8. (a) Categorical Counting errors of GMP, OMP, and !1-magic vs. the
sparsity level k when N = 900, M = 160, t = 3 and SNR = 25dB; (b)
Stability of GMP, OMP, Cosamp, and !1-magic.

of target classification that significantly outperforms the other
three CS sparse recovery algorithms.

E. Robustness of CS Algorithms
During our simulation, we found that most compressive

sensing algorithms are very “sensitive” to the sparse signals. A
change in the position of a non-zero value or a change in the
value itself can make the algorithm fail to converge. In other
words, when we increase or decrease the number of targets in
a grid with at least one target, or when we move targets from
one grid to another, the algorithm may fail. This phenomenon
indicates the lack of resiliency of certain CS algorithms.

We quantify the resiliency of an algorithm by the rate that
the algorithm can successfully converge. In this study, the
number of grids N is set to 100, 225, 400, 625, 900, or 1600.
We also fix M/N = 0.2 and k/N = 0.02. The probability for
an algorithm to successfully converge in 100 runs is reported
in Fig.8(b). We observe that GMP and !1-magic are robust
for all simulation settings while Cosamp is the weakest in
robustness. As N increases, the robustness of both OMP and
Cosamp increases with OMP performing much better.

F. An Example
Figs. 9(a) and 9(b) illustrate an example of target counting

and localization. An area of 60m × 60m is divided into 900
grids, and 15 targets are randomly deployed in this area. We
set SNR to 25dB when measurement noise is considered.
Set M = 90 to randomly collect 90 measurements. Fig.9(a)
presents the targets estimated by GMP. We notice that GMP
can precisely recover the number (count) and location of all
15 targets when there is no measurement noise. If noise is
considered, GMP correctly estimate the locations of all but
one target when SNR = 25dB. For comparison purpose,
Fig.9(b) reports the targets estimated by the Cluster algorithm
[17] and OMP [10]. This example clearly indicates that GMP
provides high accuracies in both target counting and target
localization. Similar results have been obtained when applying
FTTD, Binary !1-magic, and Cosamp to the example.

VII. CONCLUSION

This paper investigates the problem of sparse target counting
and positioning in wireless sensor networks based on compres-
sive sensing. We first prove that the product of measurement

2262



9

(a) (b)

Fig. 9. An example to illustrate target counting and localization. (a) Targets
estimated by GMP with and without noise; (b)Targets estimated by OMP and
Cluster.

and target energy decay matrices obeys RIP, which validates
our CS-based problem formulation. Since !1-minimization
incurs high computational overhead and the existing greedy
sparse recovery algorithms require the availability of sparsity
level, which needs to be estimated in our study, we propose
a novel greedy algorithm GMP and prove that GMP can
reconstruct the original signal at high accuracy with over-
whelming probability when the number of measurements is
sufficiently large. Additionally, we investigate the applicability
of GMP for counting and positioning targets from multiple
categories. Our simulation results validate the superiority of
GMP over existing algorithms. In particular, the results show
that GMP significantly reduces the number of measurements
while achieving a high detection accuracy.
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