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Abstract

This paper addresses the following relay sensor placement problem: given the set
of duty sensors in the plane and the upper bound of the transmission range, com-
pute the minimum number of relay sensors such that the induced topology by all
sensors is globally connected. This problem is motivated by practically considering
the tradeoff among performance, lifetime, and cost when designing sensor networks.
In our study, this problem is modelled by a NP-hard network optimization problem
named Steiner Minimum Tree with Minimum number of Steiner Points and bounded
edge length (SMT-MSP). We propose two approximate algorithms, together with their
detailed performance analysis. The first one has performance ratio 3 and the second
one has performance ratio 2.5.
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1 Introduction

Wireless Sensor Networks (WSNs) are ad hoc multihop systems containing sensors connected
by wireless links. The flourishing research on WSNs is driven by the advances in MEMS
technology, CMOS logic, and wireless networking [5, 10]. WSNs have many possible applica-
tions, ranging from habitat monitoring to environment control [19]. WSN is used to produce
macro-scale effects from micro-devices through coordinated activities of many sensors, thus
connectivity is a very important issue in WSN architecture design.

Wireless links are mainly determined by transmit powers of sensors, and higher transmit
power produces richer connectivity. However, “in the context of untethered nodes, the finite
energy budget is a primary design constraint. Communications is a key energy consumer
as the radio signal power in sensor networks drops off with r4 [11] due to ground reflections
from short antenna heights.”(quoted from [4].) Here in this quote, r is the distance from the
transmitter. This means to reach a slightly longer distance, the sensor needs to dispatch much
higher transmit power. The second reason for the prohibitiveness of higher transmit power is
the higher interference to on-going traffic. The higher the power a sensor transmits, the more
the number of direct neighbors the sensor has, and the higher the negative influence the sensor
has on the network throughput. The third reason is the lifetime of the network [13], which
is determined by the lifetime of sensors as a whole. Wireless sensors are battery powered
[9]. Either battery renewal is prohibited by economic considerations or it is impossible to
recharge or replace a battery in a WSN. The forth reason, but not the last, is the heat
dissipated by higher-power transmission may meddle the sensing function (i.e. temperature
sensors).

However, these observations do not mean that the lower the transmit power, the better.
Very low transmit power may cause disconnected topology, and thus network malfunction.
It may cause rocketing hop count for message dissemination, thus ascending error rate and
falling throughput. Economically deploying a sensor network with very low transmit power
may be prohibitive, since the number of sensors needed may be doubled or tripled. Therefore
a sensor network designer has to seek a tradeoff among performance, lifetime, and cost. A
number of problems have been formulated to study this tradeoff. Many of them focus on
topology control by minimizing the maximum transmit power [8, 14] or minimizing total
transmit power [3, 18] to maintain global topology. Our research focus is different. We
consider the placement of relay sensors to connect all sensors on duty, called duty sensors,
with fixed transmit powers.

Our study is motivated by an important class of wireless sensor networks, in which
the locations (i.e. monitored sites) of the sensors are fixed and their placements are pre-
determined. Further, we assume all sensors are placed in a 2-dimensional plane. For example,
in desertification monitoring, a set of sites in the desert are preselected and different kinds
of environmental sensors are placed in each site. The sensor transmit power is pre-computed
by comprehensively considering factors on network lifetime, performance, cost, etc. Since
no sensor can reach the main office directly, individual observations at each site need to be
directed through multihop relaying for further processing. Based on this consideration, we

2



study the following problem: given a set of duty sensors (required sensors) in the plane, place
minimum number of relay sensors to maintain global connectivity such that the transmission
range of each sensor is at most R, where R is a constant. This statement is modelled by
the network optimization problem named Steiner Minimum Tree with Minimum number of
Steiner Points and bounded edge length (SMT-MSP) [7]:

• Given a set of terminals (denoted by V ) in the plane and a constant R, find a Steiner
tree τ spanning V with minimum number of Steiner points such that every edge in τ
has length at most R.

In this description, “terminals” refer to “duty sensors” while “Steiner points” refer to “relay
sensors”. SMT-MSP is a generalized Steiner Minimum Tree (SMT) problem. A Steiner tree
for terminal set V is a spanning tree over V ∪S, where S contains all points not in V , which
are called Steiner points. A SMT is a Steiner tree with minimum total edge length.

The main reason for minimizing the number of Steiner points is to decrease system
cost, as these relay sensors may have higher capability, thus higher cost. For example,
in a desertification monitoring WSN, the relay sensors can be simple base stations with
higher processing and relaying ability, compared with those environmental sensors. SMT-
MSP is NP-hard [7]. Lin and Xue [7] have proved that steinerized minimum spanning tree
(adding minimum number of Steiner points on the edges of a minimum spanning tree to
upper-bound the edge length to R) has performance ratio 5. The performance ratio of an
approximate algorithm A to a minimization problem P is defined to be supI

AI

OPTI
, where I is

an instance of problem P , AI is the output from A for instance I, and OPTI is the optimal
solution for instance I. In [2], Chen et al. show that steinerized Spanning tree actually has
performance ratio exactly 4. They also present a new O(n4)-time approximate algorithm
with performance ratio at most 3, where n is the number of given terminals. The time
complexity of this algorithm, with a slight modification, is reduced to O(n3) in this paper.
We also provide a randomized algorithm with performance ratio at most 5

2
.

In the following two sections we are going to propose two approximate algorithms1 for
SMT-MSP, together with their theoretical performance analysis. We will briefly summarize
the related work in Section 4 and conclude our paper in Section 5.

2 A ratio 3 algorithm for STP-MSP

Given a set P of n terminals in the Euclidean plane, and a positive constant R, we want
to find a Steiner tree with minimum number of Steiner points such that each edge in the
tree has length at most R. In [2], Chen et al. present an O(n4)-time approximation with
performance ratio at most 3. With a slight modification, we may reduce the running time
to O(n3).

Our algorithm is given in Figure 1. Since we construct 3-stars in Step 2, the algorithm
runs in O(n3) time. Now we analyze this algorithm theoretically.

1We use terminals and Steiner points to refer to the duty sensors and relay sensors respectively.
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Algorithm A: A 3-approximate Algorithm for STP-MSP

Input: A set P of n terminals, a positive constant R.
Output: A Steiner tree TA in which each edge has length at most R.

0. Sort all n(n−1)
2

possible edges between the n terminals of P in
length increasing order e1, e2, . . . , en(n1)

2

, and set TA = (P, ∅);
1. for every ei such that |ei| ≤ R do

if ei connects two different connected components of TA

then put ei into TA;
2. for each subset of three terminals a, b, c respectively in three con-

nected components of TA do
if there exists a point s within distance R from a, b and c
then put the 3-star, consisting of three edges sa, sb, sc, into TA;

3. for every ei with |ei| > R in the increasing order do
if ei connects two different connected components of TA

then put the steinerized ei into TA.

Figure 1: The ratio-3 algorithm.

For a given set P of terminals, a minimum spanning tree is a tree interconnecting the
terminals in P with edge between terminals. For a given constant R, a steinerized minimum
spanning tree is a tree obtained from a minimum spanning tree by inserting d |ab|

R
e−1 Steiner

points to break each edge ab into small pieces of length at most R. Edge ab is a steinerized
edge. A full component of a Steiner tree is a subtree in which each terminal is a leaf and
each internal node is a Steiner point.

Let T be a Steiner tree and e be a line segment. C(T ) and C(e) denote the numbers of
Steiner points in T and e, respectively. |e| denotes the length of e.

Lemma 2.1 [2] Every steinerized minimum spanning tree has the minimum number of
Steiner points among steinerized spanning trees.

Lemma 2.2 [7] There exists a shortest optimal Steiner tree T ∗ for STP-MSP such that
every vertex in T ∗ has degree at most five.

Lemma 2.3 [2] Let T ∗ be a shortest optimal tree for STP-MSP such that every Steiner
point has degree at most five. Let Tj be a full component of T ∗. Then the following hold:

(1) The steinerized minimum spanning tree on terminals in Tj has at most 3 ·C(Tj) + 1
Steiner points.

(2) If Tj contains a Steiner point of degree at most four, then the steinerized minimum
spanning tree on terminals in Tj has at most 3 · C(Tj) Steiner points.
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(3) If the steinerized minimum spanning tree on terminals in Tj has an edge (of length
at most R) between two terminals, then it contains at most 3 · C(Tj) Steiner points.

From (3) of Lemma 2.3, we know that if the number of Steiner points contained in
a steinerized spanning tree on terminals in a full component Tj reaches the upper bound
3 · C(Tj) + 1, then any two terminals are not connected directly by a single edge of length
at most R, i.e., there must be a Steiner point between them.

Theorem 2.4 Let T ∗ be an optimal tree for STP-MSP and TA an approximation produced
by Algorithm A. Then C(TA) ≤ 3C(T ∗).

Proof. Let T S be a steinerized minimum spanning tree on all terminals, and let k be the
number of 3-stars produced by Step 2 of Algorithm A. Then

C(TA) ≤ C(T S)− k.

By Lemma 2.2, we assume that each Steiner point of T ∗ has degree at most five. Assume
that T ∗ has h full components T1, T2, . . . , Th. For i = 1, 2, let T (i) be the components
produced by Step i of Algorithm A. We construct a steinerized spanning tree T as follows:
Initially, set T := T (1), then for each full component Tj (1 ≤ j ≤ h), add to T the steinerized
minimum spanning tree Hj on terminals of Tj. If the resulted tree has a cycle, then destroy
the cycle by deleting some edges of Hj. Without loss of generality, suppose that T1, T2, . . . , Tg

(g ≤ h) are the full components in T ∗ such that every Steiner point has degree five and
T (1)∪Tj has no cycle. Combining Lemma 2.1 and Lemma 2.3 with the fact that for destroying
a cycle from T ∪Hj, a Steiner point must be removed unless Hj contains an edge between
two terminals, we have

C(T S) ≤ C(T ) ≤ 3C(T ∗) + g,

i.e.,
C(TA) ≤ 3C(T ∗) + g − k.

Suppose that T (1) has p components. Then, T (2) has p−2k components C1, C2, . . . , Cp−2k.
Now we construct another graph H on all terminals as follows: Initially put all edges of T (1)

into H, then consider every Tj (1 ≤ j ≤ g). If Tj has a unique Steiner point (this Steiner
point connects five terminals which must lie in at most two C ′

is), then among the five ter-
minals there are three pairs (edges) of terminals, each pair (edge) lies in the same Ci. We
add the three edges into H. If Tj has at least two Steiner points, then there are two Steiner
points each connecting four terminals, and we can also find three pairs (edges) of terminals
such that each pair (edge) lies in the same Ci. Thus, we can add the three edges into H. It
is clear that H has at most p− 3g components. Since each component of H is contained by
a Ci, we have p− 2k ≤ p− 3g, then g − k ≤ 3g

2
− k ≤ 0. This ends the proof. ¥
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Figure 2: The tour F that visits all the terminals

3 A 2.5-approximate algorithm of STP-MSP

In this section, we give a randomized algorithm of ratio-5
2

for the STP-MSP problem. The
following are some useful terminologies and Lemmas.

A Steiner tree for n terminals is a k-restricted Steiner tree if each full component spans
at most k terminals. A path q1q2 . . . , qm in a tree T is called a convex path if for every
i = 1, 2, . . . , m− 3, qiqi+2 intersects qi+1qi+3. An angle of degree more than 120◦ is called a
big angle. An angle of degree less than or equal to 120◦ is called a small angle.

Lemma 3.1 [2] Let q1q2 . . . , qm be a convex path. Suppose there are b big angles among
m− 2 angles ∠q1q2q3,∠q2q3q4, . . . , ∠qm−2qm−1qm. Then, |q1qm| ≤ (b + 2)R.

Note that if there is no small angle, |q1qm| ≤ (b + 1)R. Thus this lemma is useful only
when there are many small angles in the convex path.

Lemma 3.2 [2] In a shortest optimal tree T for STP-MSP, there are at most two big angles
at a point of degree three, there is at most one big angle at a point of degree four, and there
is no big angle at a point of degree five.

Let T ∗ be a full Steiner tree that is a shortest optimal tree for STP-MSP on n terminals.
Let si denote the number of Steiner points of degree i in T ∗.

Lemma 3.3 [2] 3s5 + 2s4 + s3 = n− 2.

Theorem 3.4 [12] There exists a randomized algorithm for the minimum spanning tree
problem in 3-hypergraphs running in poly(n,wmax) time with probability at least 0.5, where
n is the number of nodes in the hypergraph and wmax is the largest weight of edges in the
hypergraph.

Lemma 3.5 Consider a clockwise tour F of T ∗ that visits the n terminals in the order of
t1, t2, . . . , tn, t1 (see Figure 2). Then,
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(i) the tour F has exactly n convex paths P1, P2, . . . , Pn such that Pi connects two terminals
ti and ti+1 (tn+1 = t1);

(ii) each angle at a Steiner point appears in these n convex paths exactly once.

(iii) connect the two ends of Pi by an edge ei and then steinerize ei, i = 1, 2, . . . , n. The
total number of Steiner points in any n − 1 ei’s C̄ =

∑n−1
i=1 C(ei) is upper bounded as

follows:
C̄ ≤ s4 + 2s3 + 2s2 + n− C(en)

= 3(s5 + s4 + s3) + 2s2 + 2− C(en)
(1)

We denote by TF the tree consisting of n terminals and (n− 1) edges e1, e2, . . . , en−1.

Proof. (i) and (ii) are very easy to see from the structure of T ∗. Now, we prove (iii).
Consider the tour F . By Lemma 3.1, if there are ai big angles in Pi, then there are at most
ai + 1 Steiner points on ei, and so the total number of Steiner points in F is at most n plus
the number of big angles in T ∗. By Lemma 3.2, there are at most 2s2 + 2s3 + s4 big angles
in T ∗. From Lemma 3.3, we know that (iii) is valid. ¥

As defined previously, T ∗ is a full Steiner tree that is a shortest optimal tree for STP-MSP
on n terminals. Without loss of generality, we assume that T ∗ has Steiner points of degree
at least three. Selecting an arbitrary Steiner point of degree at least three as the root of
T ∗, we get a rooted tree. A good point t in T ∗ is a Steiner point that is adjacent to some
terminals and satisfies one of the following:

(i) (type (1)) t has three or more terminals as children;

(ii) (type (2)) t has two terminals as children and the degree of t is 4;

(iii) (type (3)) t is a point of degree 3.

Note that a good point is of degree at least 3. A bad point is a Steiner point of degree at
least 3 in T ∗ that is not a good point.

Theorem 3.6 There is a 3-restricted Steiner tree such that each edge has length at most R
and the number of Steiner points is at most 5

2
times the optimum.

Proof. Let F and TF be defined as in Lemma 3.5. From Lemma 3.5, we know that in TF ,
(1) each degree 2 Steiner point is used at most twice, and (2) each Steiner point of degree
at least 3 is used at most three times.

We modify TF to get a 3-restricted tree T such that each of the good points of type (1)
or type (3) in T ∗ is used at most twice, at least half of the type (2) good points are used at
most twice, and each of the rest of the Steiner points of degree at least 3 in T ∗ is used at
most three times.

Our modification is sketched below:
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Figure 4: Two cases of type (2) good point. (a) Case 1. (b) Case 2.

(i) Let t be a type (1) good point of degree d. We have to consider the four cases as
shown in Figure 3.

There are d convex paths in F that go through t. We can use a 3-star connecting the
three terminals to replace two of the d convex paths in the tour F . It is easy to verify that
the number of times that t is used in the new 3-restricted T is reduced by 1, i.e., t is used
at most twice (instead of three times).

(ii) Let t be a type (2) good point. Thus, t is of degree four. If there is no big angle at t,
by Lemmas 3.1 and 3.2, the total number of big angles in T ∗ is reduced by 1, and t is used
at most twice. So, we can assume that there is a big angle at t.

Let P1 be the convex path in the tour F having the big angle at t. Let t1 and t2 be the
two terminals adjacent to t. Two cases arise.

Case 1. t1 or t2, say, t1, is in the convex path P1 connecting t1 and another terminal t3
(see Figure 4 (a)). If t3 = t2, then the convex path in TF connecting t1 and t2 has no small
angle. Thus, the length |t1t2| ≤ (b + 1)R, i.e., the upper bound (b + 2)R in Lemma 3.1 is
not tight. Therefore, the number of times that t is used in TF is at most 2 (not 3). In this
case, we do not have to modify the tree. If t3 6= t2, we connect t2 to the convex path P1 at
point t. This forms a 3-star with t as the center connecting three terminals t1, t2 and t3. We
then use the three line segments tt1, tt2 and tt3 (not the 3 convex paths) to form the three
edges of the 3-star. Let ti and tj be two points. We use titj to represent the line segment
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Figure 5: (a) The original T ∗. The dashed line stands for P1. (b) After deleting P1, we have
two components in the dashed boxes. We use an edge connecting t1 and t2 to form a tree
again.

connecting ti and tj. From Lemma 3.1, the big angle at t ensures that

C(tt1) + C(tt3) = C(tt3).

Moreover, C(tt2) = b (t is not counted and there is no small angle in tt2), where b is the
number of big angles in edge tt2 in TF . Note that C(t1t2) is estimated as at least b + 1 in
Lemma 3.5. Thus, the number of times that t is used in T is reduced from at most 3 to at
most 2.

Case 2. Neither t1 nor t2 is in the convex path that has the big angle. Let t3 be the
child of t other than t1 and t2. See Figure 4 (b). In this case, t3 is either the leftmost child or
the rightmost child of t. Without loss of generality, we assume that t3 is the leftmost child,
and let P1 be the convex path in F which connects two terminals t4 and t5 and contains the
big angle at t (see Figure 4 (b)). Note that all the descendent terminals of t (in the dashed
circle in Figure 4 (b)) are connected with paths P1, P2, P3 and P4. Thus, we can shorten
P1 to obtain P ′

1 by cutting off the part from t to t5. By doing this, we get a 3-star with t as
the center connecting t1, t2 and t4. Since P1 has a big angle at t, from Lemma 3.1, we know
that the number of times that t is used in T is at most 2 (not 3).

In above discussion, we just consider the case where there is only one type (2) good point
in the convex path P1. Now, consider the case where there is more than one type (2) good
point in P1. See Figure 5 (a). Note that TF is a tree having n − 1 edges (corresponding to
convex paths) connecting the n terminals. Let e be the edge in TF which corresponds to
P1. Deleting the edge e forms two components (inside a dashed box), with each containing
an end of e (t3 or t4). See Figure 5 (b). The terminals in each of the two components

9



@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡
¢

¢ A
A¢

¢ JJ
¡

¡
¡@

@
@

@
@

@
@ @

@
@

@@
tP1

P2

P3

t2
t1

Figure 6: The type (3) Steiner point.

are connected by the rest of the (n − 2) edges (possibly replaced by some 3-stars in the
modification process).

Let t1 and t2 be the two type (2) good points in P1 that are the leftmost and rightmost
in the two components, respectively. See Figure 5 (b).

We replace e by a segment (see the line in Figure 5 (b) connecting the two boxes)
connecting t1 and t2 directly. Thus, we get a tree again. This makes all type (2) good points
in P1 other than t1 and t2 appear in T at most twice (not three times). Moreover, we can
form a 3-star with t1 as the center connecting t5, t6 and t7, or with t2 as the center connecting
t5, t7 and t8. By doing this, one of t1 and t2 appears in T at most twice instead of three
times.

Thus we can conclude that at least half of the type (2) good points are used in T at most
twice instead of three times.

(iii) t has at least one child, say, t1, and the degree of t is 3 (see Figure 6). If there is at
most one big angle at t, then in Lemma 3.5, t is overestimated, i.e., T is used in the tour F
at most twice (not three times). So, we assume that there are two big angles at t. Thus, at
least one of the two convex paths P2 and P3, say, P3, (See Figure 6,) has a big angle at t.
We then can shorten the edge e corresponding to P3 in TF by cutting off the part from t to
t1 and form a 3-star with t as center connecting t1, t2 and t3 (the other end of P3). By doing
this, we save at least one Steiner point, and thus the number of times that t is used in T is
at most 2 (not 3).

Note that in the above modification, we merge P2 and P3 into a 3-star and save one
Steiner point by taking the advantage of a big angle at t. Each convex path can only be
used to form a 3-star once. Otherwise, we get an i-star for i > 3. Thus, we have to make
sure that each type (3) good point t can match a unique convex path that has a big angle
at t. This can be done since each type (3) good point has degree 3 and there would be two
big angles at t. (If there is only one or zero big angle at t, then t is used only once or twice
in TF . Thus we do not have to do any modification.)

Consider the case that in the convex path P1 there are many type (2) good points and
type (3) good points. Using the same argument as in (ii) demonstrated in Figure 5, we can
replace the edge corresponding to P1 in TF by the segment connecting t1 and t2 as in Figure
5. Thus, every type (2) and type (3) good point other than t1 and t2 is used at most twice
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(not three times). In this case, t1 and t2 compete the edge t1t2 to form a 3-star. We assign
t1t2 to either t1 or t2 using the following strategy: If a type (2) good point competes t1t2
with a type (3) good point, say, t, we always let the type (2) good point have t1t2 since the
type (3) good point has another big angle at it, but the type (2) good point does not. If
next time t competes with another type (2) good point or type (3) good point, we let t win.
Thus, every type (3) good point appears at most twice in T and at least half of the type (2)
good points appear in T at most twice.

Now, we can make sure that in T each good point of type (1) and (3) appears at most
twice, and at least half of the type (2) good points appear twice. From Lemma 3.5, we have

C(T ) ≤ 2g1 + 2.5g2 + 3b + 2s2 + 2− C(en),

where g1 is the number of good points of type (1) and (3), g2 is the number of type (2) good
points, and b is the number of bad points.

We can delete a convex path Pn from tour F to form TF . We always delete the convex
path such that the corresponding edge en is the longest.

In the following, we show that b < g1. Let T ′ be the tree obtained from T ∗ by deleting all
terminals. Obviously, each leave in T ′ is a good point. Therefore, the number of bad points
is the number of points of degree at least 3 in T ′. Thus, b < g1.

If C(en) ≥ 2, we have

C(T ) ≤ 2g1 + 2.5g2 + 3b + 2s2. (2)

Therefore,

C(T ) ≤ 2g1 + 2.5g2 + 2.5b + 0.5b + 2s2 ≤ 2.5g1 + 2.5g2 + 2.5b + 2s2 ≤ 2.5C(T ∗).

If C(en) = 1, there is no big angle in T ∗. Thus, there is no degree-3 point in T ∗. Suppose
that there are degree-4 points in T ∗. Since there is no big angle in T ∗, the number of times
of degree-4 Steiner points is overestimated. Thus (2) still holds.

Now, we only have to consider the case where each Steiner point in T ∗ has degree 5. In
this case, each point in T ′ is either of degree 1 or degree at least 3. Thus, the root of T ′ is
either of degree 1 or degree at least 3. In this case, it is easy to see that the number of leaves
of T ′ is at least two more than the number of points of degree at least 3, i.e., g1 ≥ b + 2.
Therefore,

C(T ) ≤ 2g1 + 2.5g2 + 2.5b + 0.5b + 2s2 + 1 ≤ 2.5g1 + 2.5g2 + 2.5b + 2s2 ≤ 2.5C(T ∗).

¥

Now, we focus on the computation of an optimal 3-restricted tree.
Let H3(V, F,W ) be a weighted 3-hypergraph, where V = P , F = {(a, b)|a ∈ V and b ∈

V }∪{(a, b, c)|a ∈ V, b ∈ V and c ∈ V }, and for each edge e ∈ F , w(e) is the smallest number
of Steiner points to form an optimal solution of the STP-MSP problem on the terminals in
e.
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Given three points a, b and c on the Euclidean plane, let s be the Steiner point that
minimizes (|sa| + |sb| + |sc|), and let k be the number of Steiner points in an optimum
solution T of STP-MSP on {a, b, c} with constant R.

Lemma 3.7

d|sa|
R
e+ d|sb|

R
e+ d|sc|

R
e − 2 ≥ k ≥ b|sa|

R
c+ b|sb|

R
c+ b|sc|

R
c − 2. (3)

Proof. By Steinerizing the optimum Steiner tree, we get a solution of STP-MSP on {a, b, c}
with exactly d |sa|

R
e+ d |sb|

R
e+ d |sc|

R
e − 2 Steiner points.

Let |T | be the total length of T , which is the sum of the length of edges of T . Then

(k − 1) ·R + 3R ≥ |T | ≥ |sa|+ |sb|+ |sc|,

i.e.,

k + 2 ≥ |sa|+ |sb|+ |sc|
R

≥ b|sa|+ |sb|+ |sc|
R

c ≥ b|sa|
R
c+ b|sb|

R
c+ b|sc|

R
c.

Therefore, (3) holds. ¥

Lemma 3.7 gives an upper bound on the cost of (a, b, c).

Lemma 3.8 [17] Testing whether three circles has a point in common can be done in con-
stant time.

For given points a, b and c on the Euclidean plane, one can find the minimum Steiner
tree on {a, b, c} in constant time. Let qa,b,c be the number of Steiner points used to steinerize
the optimum Steiner tree on {a, b, c}, and qP = max{qa,b,c|{a, b, c} ⊂ P}. Then, by Lemma
3.7 and Lemma 3.8, the weight W of H3(V, F, W ) can be calculated in O(n3q2

P ) time. By
Theorem 3.4 and Theorem 3.6, we have

Theorem 3.9 Given a set P of n terminals and a positive constant R, there exists a ran-
domized algorithm that computes a solution of STP-MSP on P such that the number of
Steiner points is at most 5

2
times of the optimum running in poly(n, qP ) time with probability

at least 0.5.

The complete algorithm is given in Figure 7.

4 Related Work

Note that our starting point on topology control is very different than those in the liter-
ature. We maintain global connectivity by introducing relay sensors to keep transmission
range moderate while most related research works focus on algorithm design to control the

12



5
2
-approximate Algorithm for STP-MSP

Input: A set P of n terminals in the Euclidean plane, a positive constant R
Output: A 3-restricted Steiner tree T in which each edge has length at most R.

1. Construct a weighted hypergraph H3(V, F, w).
2. Call the randomized algorithm in [12] to compute a minimum spanning

tree T for H3(V, F, w);
3. Replace every edge f of the minimum spanning tree T on H3(V, F, w) with

a Steiner tree of w(f) Steiner points such that the maximum length of each
edge in the tree is at most R and output the obtained tree.

Figure 7: The complete 2.5-approximate algorithm.

transmit power dissipated by each sensor [6][8][14][15][18]. For example, Ramanathan and
Rosales-Hain [14] show that one can efficiently minimize the maximum per node transmit
power and maintain global connectivity and biconnectivity. Rodoplu and Meng [15], and
Wattenhofer et al. [18], propose heuristics independently with different assumption to min-
imize the total power from every sensor to a master site. Hu [6] first determines a topology
according to Delaunay triangulation. Then the degree of each node is adjusted through
neighbor negotiation such that each node has similar number of neighbors. Computing a
minimum energy topology for a WSN is NP-hard [3]. Even though our starting point is
different than works mentioned above, we claim that these techniques and our work can be
combined coherently. For example, when designing a WSN, one can first apply any of the
two algorithms proposed in this paper to compute all relay sensors based on restrictions on
power dissipation or transmission range, then apply any of these techniques in literature
based on given resources and optimization objectives to compute the global topology for
further transmit power reduction.

An interesting work that also considers relay sensor placement is reported in [16]. This
work computes the minimum set of relay nodes such that each sensor can connect to 1 or
2 relay nodes and all relay nodes are either connected or 2-connected. In other words, the
algorithms in [16] consider a hierarchical topology while our work sticks to the flat topology.
Sensor placement that induces regular topologies such as circular, star, and hexagonal are
presented and analyzed in [1].

5 Conclusion and Future Work

This paper tackles the problem of computing relay sensors to maintain global connectivity in
WSNs when transmission range of all sensors are restricted. Our objective is to minimize the

13



number of relay sensors needed, as they contribute to the overall cost of a WSN. We model
this problem by a network optimization problem named SMT-MSP – Steiner Minimum
Tree with Minimum number of Steiner Points and bounded edge length. SMT-MSP is
NP-Complete. We propose two approximate algorithms for SMT-MSP and give detailed
theoretical performance analysis.

Note that our algorithms in this paper compute relay sensors to globally network all
duty sensors. As a future work we will consider the optimal relay sensor placement for
k-connectivity, where k > 1, to improve fault tolerance in sensor networks. We also will
consider the design tradeoff between transmit power per sensor and the number of sensors
in the network for topology control.
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