
A Framework for Identifying Compromised Nodes in Sensor Networks

Qing Zhang Ting Yu Peng Ning
North Carolina State University
{qzhang4, tyu, pning}@ncsu.edu

Abstract

Sensor networks are often subject to physical attacks. Once a
node’s cryptographic key is compromised, an attacker may com-
pletely impersonate it, and introduce arbitrary false information
into the network. Basic cryptographic security mechanisms are
often not effective in this situation. Most techniques to address
this problem focus on detecting and tolerating false information
introduced by compromised nodes. They cannot pinpoint exactly
where the false information is introduced and who is responsi-
ble for it. We still lack effective techniques to accurately identify
compromised nodes so that they can be excluded from a sensor
network once and for all.

In this paper, we propose an application-independent frame-
work for identifying compromised sensor nodes. The framework
provides an appropriate abstraction of application-specific detec-
tion mechanisms, and models the unique properties of sensor net-
works. Based on the framework, we develop alert reasoning al-
gorithms to identify compromised nodes. The algorithm assumes
that compromised nodes may collude at will. We show that our
algorithm is optimal in the sense that it identifies the largest num-
ber of compromised nodes without introducing false positives. We
evaluate the effectiveness of the designed algorithm through com-
prehensive experiments.

1. Introduction

Compared with traditional wired and wireless networks,
low-power wireless sensor networks can be rapidly de-
ployed in a large geographical area in a self-configured
manner. This makes them particularly suitable for real-
time, large-scale information collection and event moni-
toring for mission-critical applications in hostile environ-
ments, such as target tracking and battlefield surveillance.

Such applications, meanwhile, impose unique security
challenges. In particular, since sensors are often deployed
in open environments, they are vulnerable to physical at-
tacks. Once recovering the keying materials of some nodes,
an adversary is able to impersonate them completely, and
inject arbitrary false information. Basic cryptographic se-
curity mechanisms, such as authentication and integrity
protection, are often not effective against such imperson-
ation attacks [1].

Recently, several approaches have been proposed to
cope with compromised nodes in sensor networks, which
mainly fall into two categories. Approaches in the first
category are to detect and tolerate false information intro-
duced by attackers [2, 3], in particular during data aggre-
gation. Once the base station receives aggregated data, it
checks their validity through mechanisms such as sampling
and redundant sensors. These techniques, however, cannot
identify exactly where the false information is introduced
and who is responsible for it.

Approaches in the second category rely on application
specific detection mechanisms which enable sensor nodes
to monitor the activities of others nearby. Once an abnor-
mal activity is observed, a node may raise an alert either
to the base station or to other nodes, who further deter-
mine which nodes are compromised. We call approaches
in this category alert-based. Representative alert-based ap-
proaches include those in sensor network routing [4] and
localization [5].

Alerts from sensor nodes make it possible to pinpoint
compromised nodes. But how to effectively utilize such in-
formation is challenging. It is hard to decide whether an
alert can be trusted since compromised nodes may as well
raise false alerts to mislead the base station. Compromised
nodes may further form a local majority and collude to in-
crease their influences in the network. Moreover, existing
alert-based approaches are application specific. They can-
not be easily extended to other domains. A general solution
to the accurate identification of compromised nodes still
remains elusive.

The problem of identifying compromised nodes shares
certain similarity with fault diagnosis in diagnosable sys-
tems [6, 7]. However, in those systems, faults are assumed
to be permanent, which means a faulty node will always fail
a test, and thus can always be identified fault-free nodes.
Some later works relax permanent faults to intermittent
faults [8], which however still assume that a faulty node
cannot pass a test following certain probabilities. These
assumptions do not hold in sensor networks, where a com-
promised node may behave arbitrarily. For example, it may
always report correct sensing data, and meanwhile issue
false alerts. Such malicious behavior cannot be observed



by an uncompromised node. Thus, we cannot directly ap-
ply works in self-diagnosable systems to identify compro-
mised nodes in sensor networks.

The problem of false alerts (or feedback) and collusion
also arises in decentralized systems such as online auc-
tion communities and P2P systems [9, 10]. Reputation-
based trust management has been adopted as an effective
means to form cooperative groups in the above systems.
One seemingly attractive approach is to apply existing trust
management techniques in sensor networks. For example,
we may identify sensor nodes with the lowest trust val-
ues as compromised. However, as a decentralized system,
sensor networks bear some quite unique properties. Many
assumptions in reputation-based trust management are not
valid in sensor networks. Simply applying those techniques
is unlikely to be effective (see section 4 for a detailed ex-
perimental comparison).

For example, in P2P systems, interactions may happen
between any two entities. If an entity provides misleading
information or poor services, it is likely that some other
entities will be able to detect it and issue negative feedback
accordingly. The interactions among sensor nodes, how-
ever, are restricted by the deployment of a sensor network.
For a given node, only a fixed set of nodes are able to ob-
serve it. Thus, it is easy for compromised nodes to form
local majorities.

Also, most decentralized systems are composed of au-
tonomous entities, which pursue to maximize their own
interests. Incentive mechanisms are needed to encourage
entities to issue (or at least not discourage them from issu-
ing) feedback about others. A sensor network, on the other
hand, is essentially a distributed system. Sensor nodes are
designed to cooperate and finish a common task. There-
fore, it is possible to design identification mechanisms that
achieve global optimality for a given goal. For instance, to
cope with false alerts, we may choose to identify as com-
promised both the target and the issuer of an alert, as long
as it will improve the security of the whole system. Such
an approach is usually not acceptable in P2P systems and
online auction.

Indeed, the unique properties of sensor networks bring
both challenges and opportunities. How to accommodate
and take advantages of these properties is the key to the
accurate identification of compromised nodes.

In this paper, we propose novel techniques to provide
general solutions to the above problem. Our techniques are
based on an application-independent framework that ab-
stracts some of the unique and intrinsic properties of sensor
networks. It can be used to model a large range of exist-
ing sensor network applications. In summary, our contri-
butions include the following:

1. We generalize the model of alert-based approaches,

and propose an application-independent framework
for identifying compromised nodes. The central com-
ponent of the framework is an abstraction of the mon-
itoring relationship between sensor nodes. Such re-
lationship can be derived from application specific
detection mechanisms. The framework further mod-
els sensor nodes’ sensing and monitoring capabilities,
and their impacts on detection accuracy. This frame-
work is built on detection mechanisms provided by ap-
plications. It does not require sensor nodes to support
additional functionalities. Therefore, no additional
communication and computation costs are introduced
to the network.

2. Based on the proposed framework, we design alert
reasoning algorithms to accurately identify compro-
mised sensor nodes. The algorithm does not rely on
any assumptions on how compromised nodes behave
and collude. We show that the algorithm is optimal,
in the sense that given any set of alerts, our algorithm
identifies the largest number of compromised nodes
that can generate these alerts, without introducing any
false positives. We also study how to tradeoff cer-
tain false positives to further eliminate compromised
nodes.

3. We conduct comprehensive experiments to evaluate
the proposed algorithm. The results show that it yields
high detection rates with bounded false positive rates,
and thus is effective in identifying compromised nodes
in sensor networks..

The rest of the paper is organized as follows. Section 2
presents a general framework for identifying compromised
nodes, and shows how sensor network application can be
modelled by the framework. In section 3, we propose an
optimal algorithm to identify compromised sensor nodes.
In section 4, we show the effectiveness of our algorithms
through experimental evaluation. Section 5 reports closely
related work. Concluding remarks are given in section 6.

2. A General Framework for Identifying
Compromised Nodes

In this section, we first use an example to identify the
aspects of sensor networks that are relevant to the identifi-
cation of compromised nodes. We then present the general
framework.

2.1. An Example Sensor Network Application

Many sensor network applications require sensors’ loca-
tion information (e.g., in target tracking). Since it is often

2



B1

B2

B3

B4

B5

B6

S2

S3

S4

S6

S5

S7

S1

(a) The deployment of beacon nodes in sensor network lo-
calization

B6

B5

B4

B3

B2

B1

(b) The observability graph of sensor network
localization

Figure 1. An example deployment of sensor nodes in sen-
sor network localization and its corresponding observability
graphs

too expensive to equip localization devices such as GPS re-
ceivers on every node, many location discovery algorithms
depend on beacon nodes, i.e., sensor nodes aware of their
locations. A non-beacon node queries beacon nodes nearby
for references, and estimates its own location. An example
deployment of the sensor network is shown in figure 1(a),
where beacon nodes and non-beacon nodes are represented
by rectangle and round nodes respectively. An edge from a
beacon node b to a non-beacon node s indicates that b can
provide location references to s.

A compromised beacon node may claim its own loca-
tion arbitrarily, making non-beacon nodes around derive
their locations incorrectly. Liu et al. [5] proposed a mech-
anism to detect malicious beacon nodes. The basic idea is
to let beacon nodes probe each other and check the sanity
of the claimed locations. If a beacon b1 considers b2 as
compromised, it will report to the base station. Clearly, a
compromised beacon node may also send false alerts to the
base station.

After receiving a set of alerts from beacon nodes, what
information is needed for the base station to make a ratio-
nal decision on compromised nodes? First, the base sta-
tion need the monitoring relationship to know whether an
alert is valid, i.e., whether beacon nodes b1 and b2 are close
enough to probe each other. Second, due to the imprecision
of distance measuring, it is possible that an alert is raised
by an uncompromised beacon node against another uncom-
promised one. The base station has to take this possibility
into consideration. Third, it is necessary to regularly probe

a beacon node so that it can be detected promptly if that
beacon node is compromised and provides misleading lo-
cation references.

The above information is quite relevant for the base
station to reason about compromised nodes, and is com-
monly available in sensor network applications. It should
be included in a general framework for identifying compro-
mised nodes.

2.2. Assumptions

We make the assumptions about sensor network applica-
tions before presenting a general framework for identifying
compromised nodes.

First, we assume there exist application-specific detec-
tion mechanisms deployed in a sensor network, which en-
able sensor nodes to observe each other’s behavior. Such
detection mechanisms are commonly employed in sensor
networks. Examples include beacon node probing in sen-
sor network localization as mentioned above, witnesses in
data aggregation [2] and the watchdog mechanism [4]. A
sensor node s1 is called an observer of another node s2 if s1
can observe the behavior of s2. A node may have multiple
observers or observe multiple other nodes.

Second, we focus on static sensor networks, where sen-
sor nodes do not change their locations dramatically once
deployed. A large range of sensor networks fall into this
category. One consequence of this assumption is that the
observability relationship between sensor nodes does not
change unless a sensor network is reconfigured.

Third, we assume that message confidentiality and in-
tegrity are protected through key management and authen-
tication mechanisms [11], and a sensor node can send in-
formation securely and reliably to the base station. Several
techniques have been proposed in the literature to ensure
the availability of such channels [12, 13].

Finally, we assume the base station of a sensor network
is trusted, and has sufficient computation and communica-
tion capabilities. Hence, we adopt a centralized approach,
where the base station is responsible for reasoning about
the alerts and identifying compromised nodes. The respon-
sibility of each node is only to observe abnormal behavior
and raise alerts to the base station as required by applica-
tion specific detection mechanisms.

2.3. The Framework

With the above assumptions, our framework for iden-
tifying compromised nodes is composed of the following
components:

Observability graph An observability graph is a di-
rected graph G(V,E), where V is a set of vertices that rep-
resent sensor nodes, and E is a set of edges. An edge

3



(s1,s2)∈E if and only if s1 is an observer of s2. An observ-
ability graph is derived from the detection mechanism of an
application. Note that V only contains those nodes whose
security is concerned by a detection mechanism. For exam-
ple, in sensor network localization, the observability graph
only includes beacon nodes. Figure 1(b) shows the observ-
ability graph corresponding to the sensor network localiza-
tion deployment in figure 1(a).

Alerts An alert takes the form (t,s1,s2), indicating that
node s1 observes an abnormal activity of s2 at time t. The
information in an alert may be further enriched, for exam-
ple, by including s1’s confidence on the alert. For simplic-
ity, we omit such parameters. Note that alerts may not need
to be explicitly sent by sensor nodes. Instead, in some ap-
plications they may be implicitly inferred by the base sta-
tion from application data sent by sensor nodes.

Sensor behavior model Sensors are not perfect. Even
if a node is uncompromised, it may still occasionally report
inaccurate information or behave abnormally. A sensor be-
havior model includes a parameter rm (called the reliabil-
ity of sensors) which represents the percentage of normal
activities conducted by an uncompromised node. For ex-
ample, in sensor network localization, if rm = 0.99, then
99% of the time, an uncompromised beacon node provides
correct location references.

Observer model Similarly, an observer model repre-
sents the effectiveness of the detection mechanism of a sen-
sor network, which is captured by its observability rate rb,
positive accuracy rp and negative accuracy rn. rb is the
probability that an observer s1 observes an activity when it
is conducted by an observee s2. This reflects the fact that
in some applications, due to cost and energy concerns, s1
may not observe every activity of s2. The positive accuracy
rp is the probability that s1 raises an alert when s2 conducts
an abnormal activity observed by s1. Similarly, rn is the
probability that s1 does not raise an alert when s2 conducts
a normal activity observed by s1. rp and rn reflect the in-
trinsic capability of a detection mechanism.

The sensor behavior model and the observer model can
usually be obtained from the specification of sensors and
application detection mechanisms.

Security estimation If it is possible that all the nodes
in the network are compromised, then in general the base
station cannot identify definitely which nodes are compro-
mised based on alerts. Therefore, this framework focuses
on the situation where the number of compromised nodes
does not exceed a certain threshold K. We call K the secu-
rity estimation of a network. How to determine K, which is
essentially the upper bound of the number of compromised
nodes, is application specific, depending on, e.g., the as-
sumption of attackers’ capability, the strength of sensors’
keys, and how long the network has been deployed.

Identification function An identification function F de-

termines which nodes are compromised. Formally, it takes
as inputs the observability graph G, the sensor reliability
rm, the observer model (rb,rp,rn), the security estimation
K, and a set of alerts raised during a period T , and returns
a set of node IDs, which indicate those nodes that are con-
sidered compromised.

The above framework is application independent. It can
be used to model a large range of sensor networks. We in-
tentionally omit the discussion of identification functions
when modelling the above applications, since no neither
previous work provides solution to reason which nodes
are compromised when there are false alerts from compro-
mised nodes and it will be the focus of our design in the
next section.

We emphasize that our framework is built on the alert-
based detection mechanisms provided by applications. The
framework itself does not require sensor nodes to support
additional functionalities, and thus does not introduce ad-
ditional communication and computation costs to the net-
work.

3. Identification of Compromised Nodes

In this section, we present our approach to identifying
compromised sensor nodes based on the above framework.

Let s1 be an observer of s2. As sensors do not have
perfect sensing and monitoring capabilities, even if an alert
from s1 against s2 is observed, the base station cannot draw
any definite conclusion from this single alert. Instead, it
needs to observe the alert pattern during a certain period of
time to discover suspicious activities with high confidence.

Given a network’s sensor behavior model, its observer
model and the frequency of the monitored events, we are
able to derive the expected number of alerts raised by s1
against s2 during a period of time, when they are uncom-
promised. During the operation of the sensor network,
the base station compares the number of alerts actually
raised by s1 against s2 with the expected number. Only
when the former is higher than the latter with statistical
significance, should the base station consider it as abnor-
mal. Specifically, for every event sensed by a node s j,
the probability that si raises an alert against s j is given by
C = rb · ((rm · (1− rn)+(1− rm) · rp). Let f j(x) be the dis-
tribution of the number of events that can be sensed by s j.
Then the distribution of the number of alerts along the edge
(si,s j) (i.e., those raised by si against s j) is fi j(x) = f j( x

C ).
For a period t, the expected number of alerts along (si,s j)
will be Ri j(t) = C

∫ t fi j(x).
During a time period T , if the number of alerts along

the edge (si,s j) is over Ri j(T )+ δ , where δ ≥ 0 is an ap-
plication specific parameter, then we say the edge (si,s j)
is an abnormal edge in the observability graph. Otherwise,
(si,s j) is normal. An abnormal edge can be interpreted as a

4



1 2

65

7 8 9

4

3 1 3

4 5

7 8

2

Figure 2. An observability graph and its corresponding in-
ferred graph

definite claim from si that s j is compromised. Similarly, a
normal edge represents si’s endorsement that s j is not com-
promised. Note that it is possible that s j is not compro-
mised but malfunctioned. But in this case, we treat s j as
compromised anyway since information or services from
s j cannot be trusted anymore.

Given an abnormal edge (si,s j), either si is compro-
mised and raises many bogus alerts against s j, or s j is com-
promised and its malicious activities are observed by si, or
both. If we further suppose there is an additional normal
edge (sl ,s j), then one of si and sl must be compromised.
Otherwise, the two edges should be consistent with each
other since sl and si observe the activities of the same node
s j during the same period of time.

Definition 3.1 Given an observability graph G(V,E), let
Ea and En be the set of abnormal edges and normal edges
in G respectively. We say that two sensor nodes si and s j
form a suspicious pair if one of the following holds:

1. (si,s j) ∈ Ea or (s j,si) ∈ Ea;

2. There exists a sensor node s′, such that either (si,s′)∈
Ea and (s j,s′) ∈ En, or (si,s′) ∈ En and (s j,s′) ∈ Ea.

Let {s1,s′1}, ...,{sk,s′k} be the suspicious pairs derived from
an observability graph G. The inferred graph of G is an
undirected graph I(V ′,E ′) such that V ′ =

⋃
1≤i≤k{si,s′i}

and E ′ = {{si,s′i} | 1≤ i≤ k}.

Intuitively, if (si,s j) are a suspicious pair, then at least one
of them is compromised. Note that if a pair of node is not
suspicious, it does not mean that they are both uncompro-
mised. It only means we cannot infer anything about them.

The left part of figure 2 shows an observability graph,
where abnormal and normal edges are represented by solid
and dashed edges respectively. The corresponding inferred
graph is shown in the right part of the figure. Note that an
inferred graph may not be connected in general.

It is worth pointing out that transitivity does not hold
when constructing suspicious pairs, due to the fact that a
compromised node can behave arbitrarily, that is, a com-
promised node can selectively issues bogus alerts, or sense
data normally but issue bogus alerts or vise versa. So for

example in figure 2 (2,1) is normal and (2,5) is abnormal
but {1,5} is not a suspicious pair, and {1,3} is not a sus-
picious pair even though (3,2) is abnormal and (2,1) is
normal.

Clearly, if a sensor node does not appear in the inferred
graph, then its behavior is consistent with the sensor be-
havior model and observer model, and thus should be con-
sidered uncompromised. Hence, we concentrate on identi-
fying compromised sensor nodes among those involved in
the inferred graph.

Definition 3.2 Given an inferred graph I(V,E) and a secu-
rity estimation K, a valid assignment with regard to I and
K is a pair (Sg,Sb), where Sg and Sb are two sets of sensor
nodes that satisfies all of the following conditions:

1. Sg and Sb is a partition of V , i.e., Sg ∪ Sb = V and
Sg∩Sb = /0;

2. For any two sensor nodes si and s j, if si ∈ Sg and s j ∈
Sg, then {si,s j} 6∈ E; and

3. |Sb| ≤ K.

Intuitively, a valid assignment corresponds to one possi-
ble way that sensor nodes are compromised, that is, when
they raise false alerts and conduct abnormal activities, the
resulting inferred graph is I. Sg and Sb contains the uncom-
promised and compromised nodes respectively. For a given
inferred graph and a security estimation K, there may exist
many valid assignments. Obviously the common nodes in
all possible assignments are always compromised, and oth-
ers may or may not be compromised, depending on which
assignment is true for the actual system. This inspires us
that an optimal algorithm is to identify the common nodes
in all possible assignments, thus it will identify the largest
number of truly compromised nodes, and does not intro-
duce any false positives.

Definition 3.3 Given an inferred graph I(V,E) and a
security estimation K, let {(Sg1,Sb1), . . . ,(Sgn,Sbn)} be
the set of all the valid assignments with regard to I
and K. We call

⋂
1≤i≤n Sbi the compromised core of

the inferred graph I with security estimation K, denoted
CompromisedCore(I,K). Similarly,

⋂
1≤i≤n Sgi is called

the uncompromised core of I with security estimation K,
denoted UncompromisedCore(I,K).

Definition 3.4 Let I be the inferred graph, given an ob-
servability graph G, a sensor behavior model, an ob-
server model, a security estimation K, and a set of
alerts during a time period T . We say an identifica-
tion function is F optimal if and only if F always returns
CompromisedCore(I,K).

5



Given the general framework, one key problem is
thus to develop algorithms that efficiently compute
CompromisedCore(I,K). On the other hand, though in-
troducing no false positives, only identifying the compro-
mised core may not achieve high detection rates since there
may still exist many suspicious pairs whose nodes are not
included in the compromised core. Thus another key prob-
lem is to seek techniques that further eliminate compro-
mised nodes without causing many false positives.

In summary, our approach is composed of two phases.
In the first phase, we compute or approximate the com-
promised core, identifying those nodes that are definitely
compromised. In the second phase, we tradeoff accuracy
for eliminating more compromised nodes.

3.1. The Algorithm to Identify Compromised Sen-
sor Nodes

Though collusion between compromised nodes is good
for an attacker, an identification function should not rely
on any assumptions of collusion models. Otherwise, an
attacker may easily defeat the identification algorithm by
slightly changing the behavior of compromised nodes and
making the collusion assumption invalid. For example,
even if s1 issues a lot of alerts against s2, we cannot con-
clude that one of them is compromised and the other is not.
It is possible that both of them are compromised and the
attacker just wants to confuse the identification function.

On the other hand, no matter how compromised nodes
collude, it always holds that a suspicious pair contains at
least one compromised node. This property helps us derive
the lower bound of the number of compromised nodes.

Lemma 3.1 Given an inferred graph I(V,E), let VI be a
minimum vertex cover of I. Then the number of compro-
mised nodes is no less than |VI |.

We denote the size of the minimum vertex covers of an
undirected graph G as CG. Given a sensor node s, the neigh-
bors of s in an inferred graph I is denoted Ns. Further, let
I′s denote the graph after removing s and its neighbors from
I. We have the following theorem for identifying compro-
mised sensor nodes.

Theorem 3.1 Given an inferred graph I and a se-
curity estimation K, for any node s in I, s ∈
CompromisedCore(I,K) if and only if |Ns|+CI′s > K.

Intuitively, if we assume a sensor node s is uncom-
promised, then all its neighbors in I must be compro-
mised. According to lemma 3.1, there are at least |Ns|+CI′s
compromised nodes, which should be no more than the
security estimation K. Otherwise, s must be compro-
mised. Meanwhile, if |Ns|+CI′s ≤ K, we can always con-
struct a valid assignment for I with regard to K, where s

AppCompromisedCore(I, K)
//Input: I is an inferred graph
// K is a security estimation
//Output: the compromised core of I with K
Sb = /0
For each sensor node s in I

Let ns be the number of neighbors of s
Let m = MI′s
If ns +m > K

Sb = Sb ∪{s}
Return Sb

Figure 3. An Efficient algorithm to approximate the com-
promised core

is assigned as uncompromised, which means s is not in
CompromsedCore(I,K).

By theorem 3.1, the algorithm to identify
CompromisedCore(I,K) is straightforward. For each
node s, we check whether |Ns|+CI′s is larger than K. Un-
fortunately, this algorithm is in general not efficient since
the minimum vertex covering problem is NP-complete. In
theory we also have to compute the minimum vertex cover
of a different graph when checking each node.

Thus, we seek efficient algorithms to approximate the
size of minimum vertex covers. To prevent false positives,
we are interested in deriving a good lower bound of the
size of minimum vertex covers, a goal different from that
of many existing approximation algorithms. In this paper,
we choose the size of maximum matchings of I as such an
approximate. We denote the size of the maximum match-
ings of an undirected graph G as MG.

Lemma 3.2 Given an undirected graph G, MG ≤ CG ≤
2MG. And the bounds are tight.

Corollary 3.1 Given an inferred graph I and a security es-
timation K, for any node s in I, if |Ns|+ MI′s > K, then
s ∈CompromisedCore(I,K).

A maximum matching of an undirected graph can be
computed in polynomial time [14]. Figure 3 shows an
efficient algorithm to approximate the compromised core.
Since this algorithm does not assume any specific collusion
model among compromised nodes, we call it the general
identification algorithm.

Theorem 3.2 The complexity of the algorithm AppCom-
promisedCore is O(mn

√
n), where m is the number of

edges and n is the number of vertices in an inferred graph
[14].

3.2. Further Elimination of Compromised Sensor
Nodes

The above algorithm does not introduce any false pos-
itives. Compromised nodes identified by the above algo-

6



rithms may be safely excluded from the networks through,
e.g., key revocation [11, 15]. However, there may still be
suspicious pairs left that do no include any nodes in the
compromised core. We call the graph composed of such
pairs the residual graph.

We may tradeoff accuracy for eliminating more com-
promised nodes. Since a suspicious pair contains at least
one compromised node, identifying both nodes as compro-
mised will introduce at most one false positive. By comput-
ing the maximum matching of a residual graph and treating
them as compromised, the false positive rate is bounded by
0.5. Note that this is the best we can do only based on a
given set of alerts. In order to reduce this worst-case false
positive rate, application specific information or assump-
tions are needed.

In summary, given an inferred graph and a security esti-
mation, our approach is first to approximate its compro-
mised core. We then compute the maximum matching
of the residual graph, and further eliminate compromised
nodes.

4. Experiments

We simulate a sensor network deployed to monitor the
temperature of an area of 100m×100m. For simplicity, we
assume sensor nodes are randomly distributed in the area.
We adopt a simple detection mechanism. If the distance be-
tween two sensor nodes is within 10 meters, and the tem-
peratures reported by them differ by more than 1◦C, the
base station infers that each of them raises an alert against
the other. In other words, two nodes are observers of each
other if they are with in 10 meters. We assume that, once a
network is deployed, sensors’ location information can be
collected through localization techniques. Therefore, the
base station is able to construct an observability graph ac-
cordingly.

Sensor nodes report temperatures to the base station
once per minute, and the sensed data follows a normal dis-
tribution N(µ ,σ2), where µ is the true temperature at a lo-
cation, and σ = 0.2, which is consistent with the accuracy
of typical thermistors in sensor network [16].

Unless otherwise stated, we assume 10% ∼ 15% of the
nodes in the network are compromised. The security esti-
mation is K = 0.15N, where N is the total number of nodes
in the network. The goal of the attacker is to raise the tem-
perature reading in the area. The attacker may choose to
either randomly compromise nodes in the field, in which
case no local majority is formed, or compromise nodes cen-
tered around a position (x,y), following a normal distribu-
tion with a standard deviation σd . The latter corresponds to
the case of local majority, and the parameter σd controls its
strength. The smaller σd is, the closer compromised nodes
are to each other, and thus the stronger the local majority

is. We call σd the concentration of compromised nodes.
The evaluation metrics of the experiments are the detec-

tion rates and false positive rates of the proposed identifica-
tion approach. In this section we show the detection rates
and false positive rates separately in different figures.

We act conservatively, and assume that compromised
nodes are in fact colluding, but the base station does not
know this and cannot utilize any knowledge of the collu-
sion. Compromised nodes all report the same false temper-
ature so that there are no alerts between them. We evaluate
the effectiveness of the general AppCompromisedCore al-
gorithm followed by the maximum matching approach. We
call it general+mm in the experiment.

We further compare our approach with the simple voting
mechanism. If the number of a node s’s neighbors who
raise alerts against s is more than that who do not, then s is
considered as compromised.

We also compare our approach with EigenTrust [9]
and PeerTrust [10], two well-known reputation-based trust
functions for P2P systems. Through there are many trust
functions proposed for P2P networks and semantic webs,
many of them are decentralized and subjective, in the sense
that an entity’s trust value varies, depending on who is the
trust evaluator [17]. They are not suitable for centralized
identification of compromised nodes in sensor networks.
EigenTrust and PeerTrust both derive a unique global trust
value for each entity from that entity’s transaction records.
Applied in sensor networks, the global trust values can be
used to rank sensor nodes, where those with low trust val-
ues are identified as compromised. Therefore, they can be
compared with general+mm.

We conduct three sets of experiments to evaluate the im-
pacts of the following factors on the effectiveness of the
above approaches.

4.1. Local Majority

Figure 4 shows the effectiveness of different approaches
when compromised nodes form local majorities. The num-
ber of nodes in the network is set to be 200. The concentra-
tion of compromised nodes is varied from 5 to 100. When
compromised nodes are extremely close to each other, they
essentially form a cluster. Suspicious pairs only involve
those compromised nodes near the edge of the cluster.
Those near the center of the cluster do not appear in the
inferred graph, and thus cannot be identified. We note that
even in this situation the general+mm approach can still
achieve detection rate over 0.6, mainly due to the maximum
matching approach in the second phase. When the compro-
mised nodes are less concentrated, the general identifica-
tion algorithm enables the base station to quickly identify
almost all the compromised nodes. That is why we see a
quick rise in general+mm’s detection rate and a sharp drop

7



in its false positive rate.
When compared with other schemes, we have the fol-

lowing observations. First, EigenTrust seems to be inferior
to general+mm and PeerTrust. The reason is that Eigen-
Trust relies on the existence of pre-trusted peers to identify
malicious collectives, which correspond to colluding com-
promised nodes in our setting. Without pre-trusted peers,
it cannot significantly distinguish malicious entities from
good ones. That is why we see an upper bound of the de-
tection rate of EigenTrust even when compromised nodes
do not form a strong local majority.

Second, we notice that when the concentration is over
20, PeerTrust and voting mechanism actually yield com-
parable detection rate to that of general+mm with a little
bit lower false positive rates. A closer examination of the
network reveals that, with 200 nodes in the network, the av-
erage number of observers for each node is around 3. When
the concentration is 20, among the neighbors of a compro-
mised node, on the average no more than 1 neighbor is
compromised. In other words, when the concentration is
over 20, compromised nodes seldom form local majorities.
In this case PeerTrust and simple voting, both relying on
majority voting mechanisms, are more likely to assign low
trust values to compromised nodes or label them as com-
promised nodes directly. For general+mm, each identified
compromised nodes in the second phase will result in the
sacrifice of an uncompromised nodes, resulting in higher
false positive rates.

Third, when the compromised nodes form strong local
majorities (i.e., the concentration is smaller than 20), gen-
eral+mm yields much higher detection rates and lower false
positive rates than PeerTrust. And the simple voting has
the poorest detection rate as low as 10%, as it does not do
any reasoning on the credibility of the feedback. This is an
important advantage of our approach. In sensor networks,
it is always cost-effective for attackers to compromised a
small portion of the network, and make them collude. Oth-
erwise either they have to compromise a large portion of
the network, which is very costly and often not feasible,
or they do not collude, in which case any voting-based al-
gorithm can identify most of the compromised nodes, as
shown above. So it is important that an identification algo-
rithm performs well even when local majorities are formed
by compromised nodes. From the experiment we see when
collusion is the strongest, although the false positive rate of
our algorithm is close to 50%, it is still the lowest among
all solutions, and also achieves the highest detection rate.

4.2. Sensor Node Density

In the next experiment, we vary the number of sensor
nodes in the area from 50 to 200. As we have seen from
previous experiment, when there is no collusion among

compromised nodes, all algorithms have high detection rate
and false positive rate, and our algorithm outperforms other
3 algorithms when there exists a strong collusion. Thus
we report the experimental results which set the concentra-
tion of compromised nodes to be 15, a not too strong case.
We have also tried other concentration parameters and ob-
served similar trends. Figure 5(a) and 5(b) show respec-
tively the detection rate and the false positive rate of each
approach.

We see that when the number of sensor nodes increases,
all the approaches achieve better detection rates and less
false positive rates. Intuitively, the more densely sensor
nodes are deployed, the more observers each node has,
and thus the more likely an abnormal activity is detected.
The second observation is that general+mm do not achieve
high detection rates when sensor nodes are deployed very
loosely. This is because in this situation many nodes do
not have any observers. There are too few alerts for the
base station to identify compromised nodes definitely. The
third observation, we see that general+mm detects much
more compromised nodes with similar false positives than
all other approaches, due to the fact that it takes the unique
properties of sensor networks into consideration so that it
is more resilient to compromised nodes forming local ma-
jorities.

4.3. Accuracy of The Security Estimation

The security estimation gives an upper bound of the
number of compromised nodes. It is an important parame-
ter for identification functions to infer compromised nodes.
An accurate security estimation is not expected to always
be available. The next experiment evaluates how the ac-
curacy of a security estimation affects the effectiveness of
different approaches. The total number of sensor nodes are
set to be 200. The number of compromised nodes is 20, and
their concentration is set to be 15. The security estimation
is varied from 20 to 40. Voting mechanism is not evalu-
ated in this experiment as it does not involve this parameter
when identifying compromised nodes. The experiment re-
sults are shown in figure 6.

We see that general+mm still achieve very high detec-
tion rates even when the accuracy of the security estimation
decreases. When the security estimation is accurate, most
of the compromised nodes are identified by the algorithm
in the first phase, producing few false positives. When
the accuracy of the security estimation decreases, the ef-
fectiveness of the first phase also decreases. More compro-
mised nodes are instead identified in the second phase by
the maximum matching approach. That explains why the
false positives increase while detection rates remain high.
The detection rates of EigenTrust and PeerTrust in fact im-
prove a little bit when the security estimation accuracy de-

8



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Concentration of Compromised nodes

D
e

te
c

ti
o

n
 R

a
te

General+mm Eigenrep PeerTrust Voting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Concentration of Compromised Nodes

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

General+mm EigenRep PeerTrust Voting

Figure 4. The impact of the concentration of compromised sensor nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 70 90 110 130 150 170 190

Number of Sensors in Network

D
e

te
c

ti
o

n
 R

a
te

General+mm EigenRep PeerTrust Voting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 70 90 110 130 150 170 190

Number of Nodes in Network

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

General+mm EigenRep PeerTrust Voting

Figure 5. The impact of the deployment density of sensor nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 22 24 26 28 30 32 34 36 38 40

Security Estimation

D
e

te
c

ti
o

n
 R

a
te

General+mm EigenRep PeerTrust

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 22 24 26 28 30 32 34 36 38 40

Security Estimation

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

General+mm EigenRep PeerTrust

Figure 6. The impact of the accuracy of security estimation

creases. This is because they always identify the K nodes
with the lowest trust values as compromised, which will
include more compromised nodes as K increases. But this
also increases their false positive rates.

In the next experiment, we evaluate the impact on the
effectiveness of our algorithms when the security estima-
tion is in fact less than the actual number of compromised
nodes in a network. Same as the previous experiment, we
set the number of compromised nodes to be 20 and vary
the security estimation K from 1 to 19. We observe that our

algorithm always throws an exception, stating the size of
the minimum vertex cover of the inferred graph is greater
than K. This exception indicates that we underestimate the
number of compromised nodes when setting K because it
contradicts with lemma 3.1. We realize that such under-
estimation may not always be detected. It is possible that
with certain observability graphs, an attacker might be able
to compromise more than K sensor nodes, and submit false
data and alerts in a way such that the size of the minimum
vertex cover of the resulting inferred graph is no more than

9



K. We will study the properties of such graphs in future
work. Currently, we treat the exceptions as chances to use
multiple K for the detection. That is, if there is an excep-
tion, then we should go back and double check our estima-
tion about K, then recompute another bigger K and run our
algorithm again.

5. Related Work

Much work has been done to provide security primitives
for wireless sensor networks, including practical key man-
agement [11, 15], broadcast authentication [18], and data
authentication [3] as well as secure in-network process-
ing [19]. The work of this paper is complementary to the
above techniques, and can be combined to achieve high in-
formation assurance for sensor network applications. Sev-
eral approaches have been proposed to detect and tolerate
false information from compromised sensor nodes [2, 3]
through e.g., sampling and redundancy. But they do not
provide mechanisms to accurately identify compromised
sensor nodes, which is the focus of this paper.

Reputation-based trust management has been studied
in different application contexts, including P2P systems,
wireless ad hoc networks, social networks and the Semantic
Web [9, 10]. Many trust inference schemes have been pro-
posed. They different greatly in inference methodologies,
complexity and accuracy. As discussed early, the interac-
tion model and assumptions in the above applications are
different from sensor networks. Directly applying existing
trust inference schemes may not yield satisfactory results
in sensor networks.

Ganeriwal et al. [4], propose to detect abnormal routers
in sensor networks through reputation mechanism. Their
decentralized trust inference approach shows the useful-
ness of reputation in sensor networks. But their approach
treats a sensor network the same as a typical P2P system,
and thus does not capture the unique properties of sensor
networks. Further, their work focuses on avoiding services
from potentially compromised sensors instead of identify-
ing and excluding them from sensor networks. Further,
their work is application specific, and cannot be easily ap-
plied to other sensor network applications.

6. Conclusion

In this paper, we present a general framework that ab-
stracts the essential properties of sensor networks for the
identification of compromised sensor nodes. The frame-
work is application-independent, and thus can model a
large range of sensor network applications. Based on the
framework, we develop efficient algorithms that achieve
maximum accuracy without introducing false positives. We

further propose techniques to trade off accuracy for increas-
ing the identification of compromised nodes. The effec-
tiveness of these techniques are shown through theoreti-
cal analysis and detailed experiments. To the best of our
knowledge, our work is the first in the field to provide an
application-independent approach to identify compromised
nodes in sensor networks.

In the future we plan to investigate light-weighted de-
centralized approaches, and systematically analyze its ben-
efits and inherent weakness when compared with central-
ized approaches.

References

[1] W. Du, L. Fang, and P. Ning, “Lad: Localization anomaly
detection for wireless sensor networks,” in 19th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’05), 2005.

[2] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “ A Witness-
Based Approach For Data Fusion Assurance In Wireless
Sensor Networks,” in IEEE 2003 Global Communications
Conference (GLOBECOM), 2003.

[3] B. Przydatek, D. Song, , and A. Perrig, “SIA: Secure in-
formation aggregation in sensor networks,” in First ACM
Conference on Embedded Networked Sensor Systems (Sen-
Sys’03), 2003.

[4] S. Ganeriwal and M. B. Srivastava, “ Reputation-based
Framework for High Integrity Sensor Networks ,” in ACM
Security for Ad-hoc and Sensor Networks (SASN 2004),
2004.

[5] D. Liu, P. Ning, and W. Du, “Detecting Malicious Beacon
Nodes for Secure Location Discovery in Wireless Sensor
Networks ,” in Proceedings of the The 25th International
Conference on Distributed Computing Systems (ICDCS
’05), 2005.

[6] F. P. Preparata, G. Metze, and R. T. Chien, “On the con-
nection assignment problem of diagosable systems,” IEEE
Trans. on Electonic Computers, vol. 16, no. 6, pp. 848–854,
1967.

[7] T. Araki and Y. Shibata, “(t,k)-diagnosable system: A gen-
eralization of the pmc models,” IEEE Trans. on Computers,
vol. 52, no. 7, 2003.

[8] A. Dahbura, K. Sabnani, and L. King, “The comparison ap-
proach to multiprocessor fault diagnosis,” IEEE Trans. on
Computers, vol. C-36, no. 3, pp. 373–378, 1987.

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “Eigen-
Rep: Reputation Management in P2P Networks,” in Twelfth
International World Wide Web Conference, 2003.

[10] L. Xiong and L. Liu, “Building Trust in Decentralized Peer-
to-Peer Electronic Communities,” in The 5th International
Conference on Electronic Commerce Research. (ICECR),
2002.

[11] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise
key pre-distribution scheme for wireless sensor networks,”
in 10th ACM Conference on Computer and Communications
Security (CCS’03), 2003.

10



[12] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
with guaranteed delivery in ad hoc wireless networks,” ACM
Wireless Networks, vol. 7, no. 6, pp. 609–616, 2001.

[13] J. Deng, R. Han, and S. Mishra, “A Robust and Light-
Weight Routing Mechanism for Wireless Sensor Networks,”
in Workshop on Dependability Issues in Wireless Ad Hoc
Networks and Sensor Networks (DIWANS), 2004.

[14] S. Micali and V. Vazirani, “An o
√
|V ||e| algorithm for find-

ing maximum matchings in general graphs,” in 21st. Symp.
Foundations of Computing, 1980.

[15] D. Liu and P. Ning, “Establishing pairwise keys in dis-
tributed sensor networks,” in 10th ACM conference on com-
puter and communications security (CCS ’03), 2003.

[16] MTS/MDA Sensor and Data Acquisition Boards User Man-
ual, May 2003.

[17] Q. Zhang, T. Yu, and K. Irwin, “A Classification Scheme for
Trust Functions in Reputation-Based Trust Management,” in
Workshop on Trust, Security, and Reputation on the Seman-
tic Web, 2004.

[18] D. Liu, P. Ning, and W. Du, “Efficient distribution of
key chain commitments for broadcast authentication in dis-
tributed sensor networks,” in 10th Annual Network and Dis-
tributed System Security Symposium (NDSS’03), 2003.

[19] J. Deng, R. Han, and S. Mishra, “Security support for in-
network processing in wireless sensor networks,” in 2003
ACM Workshop on Security in Ad Hoc and Sensor Networks
(SASN ’03), 2003.

11


