
Toward Resilient Security in Wireless Sensor Networks∗

Hao Yang∗, Fan Ye†, Yuan Yuan‡, Songwu Lu∗, William Arbaugh‡

∗UCLA Computer Science †IBM T.J. Watson ‡Dept. of Computer Science
Los Angeles, CA 90095 Hawthorne, NY 10532 University of Maryland, MD 20742
{hyang,slu}@cs.ucla.edu fanye@us.ibm.com {yuanyuan,waa}@cs.umd.edu

ABSTRACT
Node compromise poses severe security threats in wireless
sensor networks. Unfortunately, existing security designs
can address only a small, fixed threshold number of com-
promised nodes; the security protection completely breaks
down when the threshold is exceeded. In this paper, we
seek to overcome the threshold limitation and achieve re-
siliency against an increasing number of compromised nodes.
To this end, we propose a novel location-based approach in
which the secret keys are bound to geographic locations, and
each node stores a few keys based on its own location. The
location-binding property constrains the scope for which in-
dividual keys can be (mis)used, thus limiting the damages
caused by a collection of compromised nodes. We illustrate
this approach through the problem of report fabrication at-
tacks, in which the compromised nodes forge non-existent
events. We evaluate our design through extensive analysis,
implementation and simulations, and demonstrate its grace-
ful performance degradation in the presence of an increasing
number of compromised nodes.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: Security
and protection; C.2.1 [Network Architecture and De-
sign]: Wireless communication

General Terms
Algorithms, Design, Security

Keywords
Wireless sensor networks, location-based security, resiliency,
node compromise, en-route filtering, key distribution

∗This research has been supported in part by DARPA Sen-
sIT program under contract number DABT63-99-1-0010 and
in part by NSF CAREER ANI-0093484.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’05, May 25–27, 2005, Urbana-Champaign, Illinois, USA.
Copyright 2005 ACM 1-59593-004-3/05/0005 ...$5.00.

1. INTRODUCTION
Wireless sensor networks are ideal candidates to monitor

the environment in a variety of applications such as military
surveillance, forest fire monitoring, etc. In such a network,
a large number of sensor nodes are deployed over a vast ter-
rain to detect events of interest (e.g., enemy vehicles, forest
fires), and deliver data reports over multihop wireless paths
to the user. Security is essential for these mission-critical
applications to work in an adverse or hostile environment.
One severe security threat in sensor networks is node com-

promise. Sensor nodes are typically unattended and subject
to security compromise, upon which the adversary can ob-
tain the secret keys stored in the compromised nodes and
use them to launch insider attacks. This threat is aggra-
vated as the adversary compromises more nodes and secret
keys. Unfortunately, most existing security designs [2, 5, 12,
23, 28] exhibit a threshold behavior : The design is secure
against t or less compromised nodes, but completely breaks
down when more than t nodes are compromised, where t
is a fixed threshold. In reality, however, there is little con-
straint that prevents the attacker from compromising more
than the threshold number of nodes.
In this paper, our goal is to overcome the threshold lim-

itation and achieve graceful performance degradation to an
increasing number of compromised nodes. To this end, we
exploit the static and location-aware nature of sensor nodes,
and propose a novel location-based security approach through
two techniques: location-binding keys and location-based key
assignment. In this approach, we bind symmetric secret
keys to geographic locations, as opposed to sensor nodes,
and assign such location-binding keys to sensor nodes based
on their deployed locations. We illustrate these concepts
in the context of report fabrication attacks, where the com-
promised nodes forge non-existent events that cause both
false alarms and network resource waste (see more details in
Section 2). Our design, a Location-Based Resilient Security
(LBRS) solution, demonstrates that such a location-based
approach can effectively limit the damage caused by even a
large collection of compromised nodes.
In LBRS, the terrain is divided into a regular geographic

grid, and each cell on the grid is associated with multiple
keys. Based on its location, a node stores one key for each
of its local neighboring cells and a few randomly chosen re-
mote cells. To detect fabricated reports, we require that
a real event be endorsed through multiple keys bound to
the specific location of the event. An attacker that has com-
promised multiple nodes may obtain keys bound to different
cells, but he cannot combine such keys to fabricate any event

34

without being detected. To limit the damage of network re-
source waste, each node uses its keys of remote cells to verify
and drop forged reports passing through it.
Our location-based security design is highly resilient to

compromised nodes for three reasons. First, it prevents the
attacker from arbitrarily abusing a compromised key, be-
cause a key bound to a geographic location can only be
used for purposes related to that particular location (e.g.,
to endorse events detected there). Second, it constrains the
damage when the attacker compromises multiple nodes and
accumulates their keys, because a collection of keys bound to
different locations cannot be used together for any meaning-
ful purpose. Finally, it limits the keys stored by individual
nodes, because each node is assigned only a few keys based
on its location. As a result, the security protection offered
by our design degrades gracefully, without any threshold
break-down, when more and more nodes are compromised.
We have evaluated our design through extensive analy-

sis, implementation, and simulations. The results show that
LBRS is resilient, efficient, and scalable. For example, in a
network of 4000 nodes with each node storing less than 8
keys, LBRS can drop fabricated reports after 4.2 hops on
average. When the adversary has compromised 100 nodes,
LBRS can still prevent false alarms in 99% of the field.
The rest of this paper is organized as follows. We overview

the event fabrication attack problem and the general en-
route filtering framework in Section 2, and examine the
(in)resiliency of existing solutions in Section 3. We describe
our location-based security solution in Section 4, and ana-
lyze its resiliency and overheads in Section 5. We further
evaluate our design through simulation results in Section 6
and testbed implementation in Section 7. We discuss several
design issues in Section 8 and compare to the literature in
Section 9. Finally, we conclude the paper in Section 10.

2. BACKGROUND
In this section, we first describe the problem of report fab-

rication attacks in sensor networks, then review the general
en-route filtering framework as a countermeasure.

2.1 Report Fabrication Attacks
We consider a large-scale sensor network that monitors a

vast geographic terrain using a large number of static sensor
nodes. An approximate estimation on the size and shape of
the terrain being monitored is known a priori. Each sensor
node is battery-powered and has limited sensing, computa-
tion and wireless communication capabilities. The sensor
deployment is dense enough to support fine-grained collabo-
rative sensing and provide robustness against node failures.
For simplicity, we assume that the node distribution is uni-
form. Once deployed, each node can obtain its geographic
location via a localization scheme [18, 26].
In a sensor network that serves mission-critical applica-

tions such as battlefield surveillance and forest fire monitor-
ing, prompt detection and reporting of each relevant event
in the field is critical. When an event occurs, the detecting
nodes generate a report message and deliver it over multihop
wireless channels to the sink, the data collection unit that
is typically a resource-abundant computer. In our model,
the sink is static and its location is known when sensors are
deployed. Once the sink receives an event report, response
actions such as sending personnel and facilities to the event’s
location, can be taken subsequently.

Unfortunately, the above event detection operations can
be severely disrupted by report fabrication attacks. In such
attacks, the adversary compromises a single or multiple nodes,
then uses them to inject forged sensing reports that describe
non-existent events. The compromised node(s) can pretend
to have “detected” a nearby event or “forwarded” a report
originated from a remote location. Therefore, the forged
events could “appear” not only where nodes are compro-
mised, but also at arbitrary locations. Such bogus reports
can deceive the user into wrong decisions and result in the
failure of mission-critical applications. They can also induce
congestion and wireless contention, and waste a significant
amount of network resources (e.g., energy and bandwidth),
along data delivery paths. In the worst case, a large num-
ber of forged reports can disrupt the delivery of legitimate
reports and deplete the energy of forwarding nodes.
In this paper, we consider the following threat model. The

attacker may compromise multiple sensor nodes in the net-
work, and we do not impose any upper bound on the number
of compromised nodes. However, the attacker cannot com-
promise the sink, which is typically resourceful and well-
protected [15]. Once a sensor node is compromised, all se-
cret keys, data, and code stored on it are exposed to the
attacker. The attacker can load a compromised node with
secret keys obtained from other nodes. We term this as col-
lusion among compromised nodes. The compromised nodes
can launch many other attacks, such as dropping legitimate
reports, to disrupt the network operations. However, these
threats are addressed in other related work [20, 21] and are
not the focus of this paper. We will study the impact of
a few of them upon our design in Section 5. We also as-
sume that the attacker cannot successfully compromise a
node during the short deployment phase, i.e., the interval of
tens of seconds when each sensor bootstraps itself (including
obtaining its location and deriving a few keys). Some exist-
ing work [1, 27] has made similar assumptions and argued
that such attacks can indeed be prevented in real-life sce-
narios when appropriate network planning and deployment
keep away attackers during the bootstrapping process. We
will revisit this aspect in Section 8.

2.2 General En-route Filtering Framework
We follow the general en-route filtering solution frame-

work [23, 28] in defending against report fabrication attacks.
The framework has three components that work in con-
cert: report generation using Message Authentication Codes
(MACs), en-route filtering, and sink verification.
To be forwarded and accepted downstream, a legitimate

report must carry m (m > 1) distinct MACs from the sens-
ing nodes. Each node stores a few symmetric keys and en-
dorses any event it has observed by using its keys to generate
a MAC on the report. Each key has a unique index, and the
sink knows all the keys. When a real event occurs, multiple
detecting nodes jointly generate a complete report with the
required m MACs and the associated key indices.
The intermediate nodes detect and discard bogus reports

injected by compromised nodes. When a node receives a re-
port, it verifies the report as follows: It first checks whether
the report carries m distinct MACs. It then searches its own
stored keys for matched key indices. When a match is found,
it checks whether the carried MAC is the same as the MAC
it computes via its locally stored key. It drops the report
when any of these checks fails. Otherwise (i.e., it does not

35

have any of the keys or the MACs are correct), it forwards
the report as usual. Even though the filtering power (i.e,
the detection percentage for forged reports) at each node
may be limited, the collective filtering power along the for-
warding path can be significant. The more hops a forged
report traverses, the higher chance it is dropped en-route.
Consequently, one can effectively exploit the sheer scale of
the sensor network in filtering the forged reports.
The en-route filtering performed by sensor nodes may be

probabilistic in nature, thus cannot guarantee to detect and
drop all forged reports. The sink serves as the final guard in
rejecting any escaping ones. Because the sink knows all the
keys, it can verify each MAC carried in a report. Note that
there might be multiple reports for the same event. The
sink decides whether to accept the event based on the total
number of correct MACs it has received. If this number
reaches m, the event is accepted; otherwise it is rejected.
Three designs, including Statistical En-route Filtering (SEF)

[23], Interleaved Hop-by-hop Authentication (IHA) [28] and
our design in this paper, are all specific instances within the
above framework.

3. ON RESILIENCY OF EXISTING
SOLUTIONS

In the above framework, there exists a fundamental de-
sign tradeoff between the en-route filtering power and the
resiliency to compromised nodes. Intuitively, to increase
the filtering power, each node should store more keys so
that it has a larger chance to detect and drop forged re-
ports. However, to enhance the resiliency, each node should
store fewer keys to minimize the damage of compromised
nodes, because the attacker can abuse the subverted keys
to endorse bogus reports. How to resolve this conflict and
achieve both resiliency and effective en-route filtering in a
scalable fashion is a fundamental security challenge for large
sensor networks.
Unfortunately, none of the existing security solutions for

sensor networks meets the resiliency requirement. In fact,
most of them [2, 4, 5, 6, 12, 27] are not designed to address
compromised nodes. In the reminder of this section, we will
illustrate the resiliency problems of two solutions that are
explicitly designed for report fabrication attacks: IHA [28]
and SEF [23].
IHA [28] verifies the reports in a deterministic and hop-

by-hop fashion. In the deployment phase, each node is pre-
loaded with a unique ID and keying materials that can allow
it to establish a pairwise key with another node. The nodes
form multiple clusters and each cluster has at least t + 1
nodes, where t is a design parameter. Each cluster head dis-
covers a path to the sink. Along the path, two nodes that
are t + 1 hops away are associated by establishing a pair-
wise key. Upon an event, each detecting node computes two
MACs, one using its key shared with the sink and the other
using its pairwise key shared with its downstream associated
node. The cluster head sends out a final report that carries
the MACs from t + 1 detecting nodes. In the en-route fil-
tering phase, each forwarding node verifies the MAC from
its upstream associated node. Upon successful verification,
it replaces the old MAC with a new one using its pairwise
key shared with its downstream associated node. The sink
performs final verification on the report.
IHA suffers from two major drawbacks in resiliency. First,

the protection breaks down when more than t nodes along
a path are compromised. In such cases the attacker can
forge events “appearing” at arbitrary locations. Second, it
relies on deterministic key sharing in that each node must
know the upstream and downstream (t + 1)-hop neighbors
and establishes pairwise keys with them. As routing paths
may frequently change, e.g., to adapt to node failures, such
deterministic key sharing needs to be maintained through
repairing or rebuilt through routing [28], both of which can
be expensive in terms of communication overheads, energy
consumption and response time.
In contrast, SEF [23] filters the forged reports en-route in

a probabilistic manner. In SEF, a global key pool is divided
into multiple partitions, and each node is pre-loaded with a
few keys randomly chosen from a single partition. When an
event occurs, the detecting nodes jointly endorse the report
with T MACs, each using a key in a different partition. SEF
assigns keys to nodes in a way that any intermediate node is
able to verify the report with certain probability. The sink
can always verify every report because it knows the entire
key pool. As a result, most of the forged reports are quickly
dropped by the forwarding nodes, and the few escaping ones
are further rejected at the sink.
SEF suffers from the threshold drawback similar to IHA.

Its protection breaks down when the attacker has obtained
keys in T partitions. Because each node stores keys from one
partition, an attacker who compromises a threshold num-
ber1 (e.g., 2T) of nodes can subvert SEF and freely forge any
report with an almost-one probability. Nevertheless, SEF
is robust against node failures and routing path changes.
The verification can be performed by any forwarding node
and does not rely on any deterministic secret sharing among
nodes. Therefore, no maintenance is needed when nodes fail
along the forwarding path or the routing paths change.
In summary, the existing solutions are not resilient against

an unbounded number of compromised nodes. The funda-
mental problem is that, both the credential (i.e., MAC)
generation and its verification rely on the same secrets in
symmetric-key based designs, which are commonly used for
resource-constrained sensor networks. Strong verification
power requires more sharing of secrets among the nodes,
but high degree of resiliency demands the opposite, i.e.,
more separation of secrets. For the security solution to be
effective yet resilient in large-scale sensor networks, secret
sharing and secret separation must be well balanced.

4. DESIGN
In this section, we present the design of our Location-

Based Resilient Security solution (LBRS) for report fabri-
cation attacks. LBRS follows the general en-route filtering
framework described in Section 2.2, yet achieves resiliency
against both node compromise and node failure through
two novel techniques: location-binding key generation and
location-guided key selection.

4.1 Overall Operations
The overall operations of LBRS are as follows. As shown

in Figure 1, we divide the terrain into a geographic grid and
bind multiple keys to each cell on it. We term such keys
as location-binding keys. Within the keys bound to one cell,

1The threshold for SEF depends on another design param-
eter, the total number of partitions in the key pool.

36

Cell Size c

Sensing Range

Sink

�
�
�

�
�
�

�����
�����
�����
�����

����

Figure 1: Each square cell on the geographic grid is

associated with multiple keys. Each node stores a few

local and remote cell keys based on its own location.

each of them is associated with and identified by an index, an
integer between 1 and L. We assign these location-binding
keys to nodes based on their deployed locations. Specifically,
each node stores two types of keys. The first type is for
the local cells within its sensing range, called sensing cells2.
Each node stores one key for each of its sensing cells. Such
keys are used to endorse events detected in those cells. The
second type is for a few randomly chosen remote cells, called
verifiable cells. Each node also stores one key for each of its
verifiable cells. Such keys are used to verify events claimed
to happen in those cells. As we shall see in Section 4.3, the
selection of remote verifiable cells is guided by the location
information of the node itself and the sink.
A legitimate report carries m distinct MACs, jointly gen-

erated by the detecting nodes using the keys bound to the
event’s cell. Specifically, upon an event, the detecting nodes
first reach agreement on the event description, including
the event’s location, through techniques such as [21]. Each
node then independently generates a MAC using its own key
bound to the event’s cell, and broadcasts a tuple {s,MACs},
where s is the key index. Each node also records all such
tuples announced by its neighbors, and constructs a com-
plete report after it has received m distinct MAC tuples. To
avoid duplicate reports, nodes overhear the wireless chan-
nel. Each node sets a random timer, and the node that first
fires the timer sends out its final report to the sink. An
overhearing node checks the report and updates a counter
about how many tuples in its overheard list are sent. If the
counter reaches m, it cancels the timer because there are
enough MACs endorsing the report. Otherwise, upon time-
out, it sends out its own report that carries m distinct MAC
tuples, with higher priority over the unsent ones.
Note that a legitimate node participates in report gener-

ation only when it has sensed the event by itself. Thus a
compromised node cannot deceive its neighbors into endors-
ing a forged report. The number of MACs in a report, m,
provides a tradeoff between overhead and security strength.
The more MACs each report carries, the stronger protection

2A cell is a sensing cell if there exists a point in the cell that
is covered in the node’s sensing range.

LBRS provides, yet at the cost of increased communication
overhead. We will analyze this aspect in Section 5.
When an intermediate node receives a report, it verifies

the report as follows: It first checks whether the report
carries m distinct MACs and indices. If not, the report
is dropped. It then retrieves the event’s location from the
report and checks whether the location is in one of its ver-
ifiable cells. If so, it checks whether it has one of the keys
whose indices are carried in the report. If it has such a
key, it recomputes the MAC and compares to the carried
one. If the two MACs do not match, the report is dropped.
Otherwise, it forwards the report.
The sink performs final verification on the received re-

ports. It knows all location-binding keys, thus able to verify
every MAC in the report. If any of the carried MACs is
incorrect, the report is rejected. This way, the sink serves
as the final guard to detect and drop those forged reports
that have escaped probabilistic en-route filtering.

4.2 Location-Binding Key Generation
The location-binding approach to key generation in LBRS

constrains the degree to which compromised nodes can abuse
their keys, and minimizes the global damage that multiple
local subverted nodes can cause. To successfully forge a
bogus report, the attacker must collect enough keys from a
single cell, because each report must be endorsed by multiple
distinct MACs using keys bound to one cell. A collection of
keys from different cells are useless, i.e., they cannot be com-
bined to endorse any reports in a meaningful way. More im-
portantly, even when the attacker has collected enough keys
from one cell, he can only fabricate reports “happening” in
that particular cell. Such constraints not only reveal valu-
able diagnosis/traceback information to the sink, but also
quarantine the damaged area in terms of false alarms. As
such, the shift from traditional node-based keys to location-
binding keys results in graceful performance degradation,
in contrast to threshold break-down in existing solutions
[23, 28], when more and more nodes are compromised. We
will analyze it in the next section. Moreover, the location-
binding key generation also provides high-degree resiliency
to node failures, because multiple nodes exist in one cell and
have the same role in endorsing the real nearby events.
In LBRS, in order to facilitate the generation of location-

binding keys, the terrain is divided into a virtual, pre-defined
geographic grid. Once a node is deployed, it obtains its own
position and then derives its location-binding keys. To make
this seemingly simple operation work, we need to address the
following three issues:

• How to construct the grid without maintaining a real,
physical infrastructure?

• How to derive keys based on the location information
in a computationally efficient manner?

• How to enhance resiliency for key generation?
Constructing the virtual grid Unlike the conven-
tional approach that maintains a real, physical grid infras-
tructure [22], we construct a virtual square grid used only
to delineate cells and bind keys. The square grid is uniquely
defined by two parameters: a cell size C and a reference
point (X0, Y0) (e.g., the sink location, or arbitrarily speci-
fied position). Accordingly, we denote a cell by the location

37

of its center (see Figure 1), which is (Xi, Yj) such that

{Xi = X0 + i · C, Yj = Y0 + j · C; i, j = 0,±1,±2, · · · }
Note that the above grid does not require any actual main-
tenance, which can be quite complex in the presence of node
failures and incur significant communication overheads.
The cell size,C, represents a tradeoff between key stor-

age and protection granularity. Intuitively, with larger cells,
each node can store fewer keys because there are fewer cells
in total. This in turn increases the difficulty for the attacker
to collect enough keys (i.e., requires him to compromise more
nodes). However, in this case, when the attacker has indeed
obtained enough keys from one cell, he can fabricate events
in a larger area. We will analyze this tradeoff in Section 5.
Deriving keys in an efficient fashion Before the de-
ployment, we preload each node with the cell size C, the ref-
erence location (X0, Y0), and a master secret K

I . Once de-
ployed, a node first obtains its geographic location through
a localization scheme [26], then derives the keys during a
short bootstrapping phase as follows. It identifies which cells
are within its sensing range3 using simple geometry calcula-
tions. For each sensing cell, the node generates a key based
on the cell’s location (Xi, Yj), together with KI , through a
secure one-way function H(·)[19]:

KXi,Yj = HKI (Xi||Yj) (1)

where || denotes concatenation. In addition, the node also
selects a few remote verifiable cells, a scheme to be described
shortly, and derives one key for each of them similarly. This
ends the bootstrapping phase, and the node permanently
removes the master secret KI from its storage, similar to
[27]. After that, the node can no longer derive any keys.
The above key derivation is efficient because it involves

only local computation of light-weight one-way functions,
without any message exchange. As a result, the bootstrap-
ping process is very fast, and the master secret is erased
before the attacker can successfully compromise any node.
Enhancing resiliency In the above description, only
one key is bound to each cell. To exploit the dense sensor
deployment and improve the resiliency against node com-
promises, we bind L distinct keys to each cell. Accordingly,
there are L master secrets, and each of the L keys for a cell
(Xi, Yj) is derived from one master secret:

KXi,Yj ,s = HKI
s
(Xi||Yj) (2)

where KI
s is the s-th master secret, and s is an index ranging

from 1 to L. Each node is preloaded with one of the master
secrets before deployment, and it still derives only one key
for each local or selected remote cell.
The number of keys bound to a cell, L, impacts filtering

power and generation of legitimate reports. As shown in
Equation 5 (Section 5), a smaller value of L leads to larger
filtering power; however, it also increases the chance that
two neighboring nodes are preloaded with the same master
secret. In such cases, they contribute only one distinct MAC
when a real event occurs.

4.3 Location-guided Key Selection
Now we describe the location-guided key selection scheme

used by a node to pick up its verifiable cells and the associ-

3The sensing range can be preloaded into the node, or esti-
mated by the node after deployment.

ated keys. Compared with the popular solutions of preload-
ing sensor nodes with secret keys before deployment [28, 23,
6, 2, 5], LBRS allows the nodes to select keys in a location-
guided manner after deployment. The goal is to retain the
desirable filtering power yet improve the resiliency by lim-
iting the number of keys exposed to individual nodes. To
achieve this, we need to address the following three issues:

• How to exploit the location knowledge in key selection?
• How to select remote cells to balance key sharing and
key separation?

• How to accommodate node failures?
Leveraging location knowledge in key selection In
the absence of any a priori information, perhaps the best
strategy is to uniformly randomly select cells from the grid.
However, when the sink is static and a geographic routing
protocol [7, 9] is used in report delivery, we can exploit the
location information of a node and the sink to store signifi-
cantly fewer keys, while retaining the filtering power.
The idea is that if a node can estimate its upstream re-

gion, i.e., those remote cells whose reports it may potentially
forward, it only needs to pick verifiable cells from this re-
gion, rather than the entire field. However, when the node
selects verifiable cells only from its upstream region, the at-
tacker may deliberately forge events “happening” outside
this region, so that the node possesses no keys to verify the
carried MACs. To prevent such attacks, each forwarding
node should perform one more check in verifying a report
(the original rules were described in Section 4.1): When
it extracts the event’s location from the report, it checks
whether the location resides in its upstream region. If not,
it drops the report. Otherwise, it proceeds with the proba-
bilistic MAC verification as usual.
Randomized selection to balance key sharing and
separation After a node determines its upstream re-
gion (details to be described shortly), it needs to select veri-
fiable cells and derive keys from this region. The key issue is
to balance key sharing and key separation. By storing more
verifiable cell keys, a node has higher degree of key sharing
with the upstream nodes, which enables more powerful fil-
tering; however, more keys exposed to each node imply less
resiliency against compromised nodes. On the other hand,
high-degree key separation improves resiliency but degrades
the en-route filtering performance.
We take a simple, yet carefully designed, randomized se-

lection method as follows. For each cell in a node’s upstream
region, the node selects it as a verifiable cell with probability

P =
d

Dmax
(3)

where d is the node’s distance to the sink, and Dmax is
the maximum distance between network edge and the sink.
Given that the terrain size and the shape are known, Dmax

can be preloaded into the nodes.
The above method has three desirable features that en-

hance system resiliency. First, the verifiable cells are chosen
in a randomized manner. This is because if a deterministic
algorithm is used, the attacker will know which cells are not
the verifiable cells of a node. Thus he can fool the node by
fabricating events claimed in those locations.
Second, the selection probability is solely determined by

the node’s location, and all cells in the upstream region are

38

l 2l 1 A’s Upstream Region

α

d

b/2
b/2

Beam Width b

Sink

Node A

Figure 2: A report is forwarded inside a beam of width b

from the source to the sink. Thus each node can estimate

its upstream region.

considered equally important and chosen with equal prob-
ability. This improves the worst-case filtering performance.
For any non-uniform strategy that selects some upstream
cells with higher probability and others with smaller prob-
ability, the attacker can increase his chance of success by
fabricating events in the unfavored cells.
Finally, the above method can filter out most forged re-

ports at the initial several hops while minimizing the key
storage. For a node further away from the sink (i.e., when d
increases), it picks up verifiable cells with a higher probabil-
ity; however, its upstream region shrinks, and the net effect
still allows it to stay within the key storage budget. Our
analysis in Section 5 shows that such a randomized selec-
tion scheme can indeed balance effective filtering and strong
resiliency, at a moderate storage overhead.
Accommodating node failures The design needs to
further handle node failures, which may disrupt an oper-
ational forwarding path. Fortunately, geographic routing
can typically find detours and bypass the failing nodes via
perimeter routing. Under moderate node failures, these de-
toured paths are still close to each other. This leads us to
model the forwarding path with a generic beam in accommo-
dating node failures. In this model, the possible forwarding
paths form a beam, the width of which is b, connecting from
the source to the sink (illustrated in Figure 2). The intuition
here is to accommodate a failure “hole” up to a diameter of
b in the forwarding path. We will validate this model and
discuss its impact in Section 6.
With the beam model, a node can estimate its upstream

region using simple geometry. As illustrated in Figure 2, a
node A’s upstream region is the shaded area between the
two radiating lines l1 and l2, and d-distance away from the
sink. From geometry we can calculate the spanning angle
between l1 and l2 as

α = 2arcsin
b

max(b, 2d)
(4)

where d is the distance from node A to the sink. We can see
that a node’s upstream region depends on the locations of

Meaning Default
N total number of nodes in the network 4K ∼ 400K
R radius of the circular terrain 1Km ∼ 10Km
ρ node density per cell 12 nodes
C width of the square cell 100 m
Rc communication range of a node 50 m
b width of the forwarding beam 150 m
L number of keys bound to a cell 10
m number of MACs carried in a report 5
s length of each MAC in bytes 4

Table 1: Notations and default parameter settings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Relative distance from compromised nodes to the sink (d0/R)

Ex
pe

cte
d n

um
be

r o
f fo

rw
ard

ing
 ho

ps

R=1 Km
R=5 Km
R=10 Km

Figure 3: LBRS quickly drops forged reports en-route,

and its filtering power scales well to the network size.

both the sink and itself. In general, a node closer to the sink
has a larger upstream region, because reports originating
from different locations will converge around the sink.
The choice of b, the beam width, affects the system re-

siliency and the delivery ratio of legitimate reports. As
shown later, the number of keys stored at each node grows
linearly with b. This is because with a wider beam, each
node has a larger upstream region, thus stores more keys.
As a result, the attacker can obtain more keys by compro-
mising a node, a negative impact on the system resiliency.
On the other hand, because a forwarding node always drops
those reports originated from areas outside its upstream re-
gion, a narrow beam may result in unnecessary dropping of
legitimate reports when they traverse outside the expected
beam, e.g., due to massive node failures. We evaluate the
impact of b using analysis and simulations in later sections.

5. ANALYSIS
In this section we analyze the performance of our design.

We start with the filtering power of LBRS against single
compromised node, then analyze its resiliency when more
and more nodes are compromised. We also provide an over-
head analysis and a security analysis on relevant attacks.
The analysis results quantify the resiliency, efficiency, and
scalability of LBRS.
To simplify the analysis, we consider a circular terrain

with a radius of R, over which N sensor nodes are uniformly
spread at random. The sink is located at the center of the
terrain, defined as the origin in the 2D coordinate space.
Our analysis can be applied to other forms of terrain shapes,
such as rectangles, and sink locations as well. However,
the presentation will be more involved. Table 1 summarizes
the notations used hereinafter, and the default parameter
settings used in our numeric evaluations.

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Relative distance from compromised nodes to the sink (d0/R)

Ex
pe

cte
d e

ne
rgy

 co
ns

um
pti

on
 ra

tio
 (%

)

R=1 Km
R=5 Km
R=10 Km

Figure 4: LBRS significantly saves energy by filtering

forged reports en-route, especially in large networks.

5.1 Filtering Effectiveness
We analyze the filtering performance of LBRS using two

metrics: (1) detection ratio: the percentage of forged reports
that are detected and dropped, and (2) filtering position: the
number of hops a forged report can traverse before being
dropped.
Consider a base setting where there is a single compro-

mised node (or equivalently, non-colluding compromised nodes).
Let node Z be the compromised node, with a distance of d0

to the sink. A forged report injected by node Z is forwarded
along a multihop path to the sink, denoted by Z → A1 →
· · · → Ah → Sink, in which the h nodes Ai (1 ≤ i ≤ h) are
intermediate forwarding nodes.
Detection Ratio Because the compromised node has
at most one key for any cell, it has to forge at least m − 1
MACs (8s(m − 1) bits), which will be detected either en-
route or at the sink. This leads to a detection ratio of 1 −
1/28s(m−1) . Given a secure hash function in generating the
MACs, and a security setting with reasonable number and
length of MACs, the brute-force MAC fabrication has almost
negligible chances to succeed.
Filtering Position LBRS can quickly filter the forged
reports en-route by accumulating the filtering power along
the forwarding path. This is shown by the following theorem
(proof in Appendix).

Theorem 1. The filtering position h′, defined as the ex-
pected number of hops that a forged report can traverse, is
upper bounded as:

h′ ≤ 1 +
hX

i=2

i−1Y
j=1

(1− (m− 1)(d0 − jRc)

RL
) (5)

We illustrate the above results in Figure 3, which plots the
filtering position versus the compromised node’s location,
specified by its relative distance to the sink. In this fig-
ure, we fix the node density and vary the terrain radius R
from 1 Km to 10 Km, and the node population N from
4K to 400K, respectively (see Table 1 for other parame-
ter settings). We can see that in a 1Km-radius network, a
forged report traverses only 4.2 hops on average, and 6 hops
at most. In contrast, without LBRS, a forged report can
traverse as many as 20 hops. Moreover, when the terrain
radius increases from 1Km to 10Km, leading to an 100-fold
increase in node population, the average distance traversed
by a forged report only doubles (from 4.2 hops to 7.2 hops),
while the worst-case distance only triples (from 6 hops to 18
hops). This shows that the filtering power of LBRS scales
very well when the network size increases.

Energy Saving The early dropping of forged reports
leads to significant energy savings in large sensor networks.
Assuming that all nodes in the network use the same trans-
mission power, we plot in Figure 4 the energy consumption
ratio between the LBRS-protected paths and the unpro-
tected paths, i.e., h′/h. The figure shows that on average
LBRS can save energy by a ratio of 43.7% in a 1Km-radius
network, and 81.3% in a 10Km-radius network. The reason
for such an increase in the energy saving ratio is that the
filtering position in LBRS increases much slower than the
network size.
Figure 4 also shows that the energy savings of LBRS de-

pend on the compromised node’s location. This is because
each node picks up its verifiable cells in a probability pro-
portional to its distances to the sink (Equation 3). As a
result, when the compromised node is further away from
the sink, the downstream nodes along the forwarding path
have larger chances to detect the forged reports, which are
dropped more quickly.

5.2 Resiliency in Graceful Degradation
Now we analyze the resiliency of LBRS to an increasing

number of compromised nodes. We consider a general case
where the attacker compromises Nc nodes and fabricates
reports on bogus events “happening” in an arbitrary cell
(X, Y). We will show that the security protection offered
by LBRS degrades gracefully, rather than completely breaks
down in the entire network as in existing designs [23, 28].
Note that the attacker cannot arbitrarily abuse the keys

due to their location-binding nature. To fabricate reports
without being detected, the attacker must collect m distinct
keys bound to cell (X, Y). We term this as cell compromise.
Even in such cases, the attacker cannot use these keys to
successfully forge events in other cells. Thus the fabricated
reports reveal important diagnostic information to the sink.
The sink can quarantine the compromised cells by informing
the nodes not to forward any reports from them. This way,
the sink may lose monitoring capability in the compromised
cells, but the rest of the network is still protected by LBRS.
There are two cases for multiple compromised nodes: they

are randomly distributed, or co-located in the same cell. The
location-guided key selection ensures that the chance of cell
compromise is extremely low when nodes are randomly com-
promised. In fact, the simulation results in Section 6 show
that in such cases, the chance of cell compromise decreases
exponentially with respect to m. Each additional MAC car-
ried in the reports can reduce the probability of cell com-
promise by an order of magnitude.
Below we consider the worst-case scenarios where all Nc

compromised nodes are local neighbors, with a distance of
d0 to the sink. Because neighboring nodes have largest cor-
relation in their keys, the attacker has largest chance in com-
promising a cell. For example, when Nc > m, the attacker
can compromise the cell where these nodes reside, and fabri-
cate events in this cell without being detected. In addition,
he may compromise a few remote cells, but LBRS limits the
compromised remote cells within the upstream region of the
compromised nodes. Based on Equation 3 we know that the
attacker can collect d0Nc

R
keys of a remote verifiable cell on

average. When the attacker forges events in such remote
cells, the degradation of LBRS’s filtering power is charac-
terized in Theorem 2 (proof in Appendix).

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Relative distance from compromised nodes to the sink (d0/R)

Ex
pe

cte
d n

um
be

r o
f fo

rw
ard

ing
 ho

ps

Nc=1
Nc=5
Nc=10

Figure 5: The performance of LBRS degrades gracefully

even in the worst-case scenarios.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Relative distance from the node to the sink (d/R)

Nu
mb

er
of

ke
ys

 st
ore

d

R=1 Km
R=5 Km
R=10 Km

Figure 6: Each node stores only a small number of keys,

and the key storage overhead scales well in large net-

works.

Theorem 2. With Nc neighboring compromised nodes,
the filtering position h′ is upper bounded as:

h′ ≤ 1 +
hX

i=2

i−1Y
j=1

(1− (mR− d0Nc)(d0 − jRc)

R2L
) (6)

Figure 5 illustrates the above graceful performance degra-
dation in the worst-case scenarios. In this figure, we fix the
node population as 4K and the terrain radius as 1Km, and
gradually increase Nc, the number of compromised nodes.
The figure shows that the expected number of forwarding
hops for forged reports increases only slightly as more nodes
are compromised. For example, when Nc increases to 5,
on average LBRS can still filter forged reports in 7.3 hops,
leading to 27% energy savings. We emphasize that this is
a worst-case analysis, and LBRS is much more effective in
average cases, which we will show in Section 6 using simu-
lations.

5.3 Key Storage Overhead
In LBRS, each node stores one key for each sensing cell

and a few remote verifiable cells. The number of sensing
cells is a constant, decided by the sensing range and the cell
size. Thus we count only the number of keys for remote
verifiable cells. Based on Equation 3, we can characterize
the key storage overhead in the following theorem (proof in
Appendix).

Theorem 3. The number of keys stored by a node is:

Nkey ≈ d(R2 − d2)

2RC2
× arcsin b

max(b, 2d)
≈ O(

bR

C2
) (7)

where d is the node’s distance to the sink.

Despite its strong filtering power, LBRS only requires the
nodes to store a small number of keys. As shown in Fig-
ure 6, when 4K nodes are spread over a 1Km-radius terrain,
each node stores only 3.35 keys (not including the constant
number of sensing cell keys) on average, and 8 keys at most.
Note that the terrain is divided into roughly 300 cells in this
setting. This clearly demonstrates the efficiency of LBRS.
The key storage overhead is also location-dependent. A node
closer to the sink tends to store more keys, mainly because
it has a much larger upstream region. Moreover, the key
storage overhead scales well because it increases almost lin-
early with the terrain radius, i.e., O(

√
N) given a fixed node

density. Even in a network with 400K nodes and 30K cells,
each node stores only 32.1 keys on average, and 50 keys at
most, which is still within the resource constraint of existing
sensor hardware.

5.4 Impact of Other Attacks
LBRS focuses on event fabrication attacks launched by

compromised nodes. Our intention is to demonstrate, through
LBRS, how to achieve resilient security through the location-
based design approach. There are certainly many other at-
tacks that LBRS cannot, and is not designed to, defend
against. Nevertheless, we discuss below the impact of two
relevant attacks on LBRS, and how we may handle them.
Report Disruption Attack An attacker may launch
several attacks to disrupt the legitimate reports. These at-
tacks include 1) MAC falsification attacks in which a com-
promised node announces an incorrect MAC to its neigh-
bors; 2) impersonation attacks in which a compromised node
impersonates another legitimate node; and 3) Sybil attacks
[3, 14] in which a compromised node presents multiple iden-
tities and announces one incorrect MAC in each identity. As
a result, the final report on a real event may be poisoned by
incorrect MACs, and dropped in delivery or finally rejected
by the sink.
LBRS can localize the damage of such attacks to the cell

where the compromised nodes reside. A compromised node
cannot launch the above attacks against a remote area due
to its limited transmission range. Instead, it has to be phys-
ically close to the event’s location. A local authentication
mechanism, e.g., pairwise keys [6] and µTESLA [15], or Sybil
defense mechanism [14] can limit the damage of such at-
tacks: As long as we ensure that each node can announce
only one MAC, the chance that a legitimate report is prop-
erly generated is large. Also, when the sensing range of the
nodes is larger than half of their communication range, the
detecting nodes of an event may reside in different commu-
nication neighborhoods. The legitimate nodes one-hop away
from the compromised nodes can still properly generate the
report.
Sensor Relocation Attacks The attacker may physi-
cally relocate a node from its original location to a new one.
When a real event happens nearby the new location, this
node may generate an incorrect report using its original lo-
cation. There are two possible cases: a) The attacker has
already compromised the relocated node. Thus the sensor
relocation attacks do not incur additional damage to LBRS,
because the attacker is already able to control the compro-
mised node to fabricate any report. b) The attacker has not
compromised the relocated node. In such cases, sensor relo-
cation attacks can be defeated by local authentication mech-
anisms, because the relocated node cannot establish trust

41

10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Compromised Nodes

Nu
mb

er
of

ful
ly

co
mp

rom
ise

d c
ell

s (
Kc

>=
5)

b=100m
b=150m

Figure 7: The attacker can hardly collect enough keys

bound to a cell when the compromised nodes are ran-

domly scattered in the network.

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of distinct keys compromised in a cell

Nu
mb

er
of

co
rre

sp
on

din
g c

ell
s

Nc=10
Nc=30
Nc=50
Nc=100

Figure 8: The difficulty to obtain more distinct keys of

a cell increases exponentially.

with its new neighbors, hence its reports will be dropped at
the first hop.

6. SIMULATION EVALUATION
In this section, we evaluate the performance of LBRS

through simulations that complement our analysis. Specifi-
cally, we evaluate the resiliency of LBRS under random node
compromises, and validate the beam model on geographic
forwarding in the presence of node failures.
Resiliency to random node compromise Given that
we have analyzed the worst-case resiliency of LBRS when
multiple compromised nodes are within the same cell, we are
interested to use simulations to study its average-case per-
formance when multiple compromised nodes are randomly
distributed. For this purpose, we developed our own simula-
tion platform using Parsec, mainly because other simulators
scale poorly to large numbers of nodes. Our simulator im-
plemented the basic geographic forwarding [9] and the LBRS
protocol stack. We simulated rectangular terrains to com-
plement our circular terrain based analysis. The parameter
settings are similar to those in Table 1, unless explicitly
stated. Our simulation results show that LBRS is highly
resilient to random node compromise.
We first study how many cells can be compromised, and

to what extent, by an attacker combining keys from multi-
ple compromised nodes. In the simulations, 30K nodes are
spread over a 5Km× 5Km field, divided into 100m×100m
cells. The sink is located at the center of the field. We vary
the beam width b with 100m and 150m, and gradually in-
crease the number of randomly chosen compromised nodes
from 10 to 100. Each simulation setting is repeated 1000
times with different random network topology and distribu-
tion of compromised nodes.
The simulation results show that even by combining keys

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative distance from compromised nodes to the sink (D0/R)

Re
lat

ive
 po

sit
ion

 w
he

re
the

 re
po

rt i
s d

rop
pe

d (
for

wa
rde

d/D
0)

Kc=1
Kc=2
Kc=3
Kc=4

Figure 9: The filtering power of LBRS degrades grace-

fully when the attacker has collected more keys of a cell.

100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beam width (m)

De
liv

ery
 ra

tio
 fo

r le
git

im
ate

 re
po

rts

Density = 12 nodes per neighborhood
Density = 20 nodes per neighborhood

Figure 10: With a moderate beam width, most legiti-

mate reports can be successfully delivered to the sink.

from all compromised nodes, it is still quite difficult for the
attacker to obtain enough keys bound to a same cell. This
is illustrated in Figure 7, which plots the number of fully
compromised cells versus the number of compromised nodes.
Because we carry 5 MACs in each report, the attacker can
fully compromise a cell when it has collected 5 distinct keys
bound to that cell. We can see that with a beam width of
150m, 100 compromised nodes only lead to the compromise
of 17 cells, or 0.68% of the entire terrain. A decrease of the
beam width to 100m further reduces the damage to 1.8 fully
compromised cells on average.
Figure 8 provides a more detailed view on the aggregated

effects of combining keys from multiple compromised nodes.
The figure plots, in a log-linear manner, how many cells have
a given number of keys disclosed, when 10, 30, 50, 100 nodes
are compromised respectively. The Y axis is the number of
cells who has X keys disclosed. We can see that the number
of cells with x keys disclosed decreases almost exponentially
when x increases. For instance, when 100 nodes are compro-
mised, there are about 12 cells having 4 keys disclosed, but
only 1.8 nodes having 5 keys disclosed. Therefore, each ad-
ditional MAC carried in the report can decrease the chance
of cell compromise (hence successful report fabrication) by
about an order of magnitude. By requiring each report to
carry more MACs (i.e., increasing m), we can significantly
enhance the resiliency of LBRS against a large collection of
randomly compromised nodes.
Next we simulate how the filtering power of LBRS de-

grades when the attacker has obtained a few keys of a cell.
In the simulations, we vary the locations where the fabri-
cated reports are injected, from adjacent to the sink to net-
work edge. Since each report carries only 5 MACs, there is
no need to simulate the cases when the compromised nodes
collectively have 5 or more keys of the same cell. The simula-
tion results are shown in Figure 9. We can see that with each

42

Module ROM RAM
Bootstrapping 236 58
Report Generation 2820 225
Filtering 106 40
Radio Stack 4130 114
RC5-Crypto 646 128
Others(Timer, Sensing Drivers) 1420 100
Total 9358 665

Table 2: Code size breakdown (in bytes) in MICA2
Platform

additional compromised key, the decrease of filtering power
is only marginal, leading to graceful performance degrada-
tion.
On the beam model Now we verify the effectiveness
of the beam forwarding model in accommodating node fail-
ures. In particular, we want to confirm that the legitimate
reports would indeed be forwarded to sink without being ac-
cidentally dropped by a node outside the forwarding beam.
For this purpose, we vary the beam width b as 100m, 150m,
200m, and 250m, and simulate different node failure cases.
The effective node density varies from 12 to 20 nodes per
communication neighborhood.
The delivery ratio of legitimate reports is plotted in Figure

10, which shows that with a moderate beam width of 200m,
the delivery ratio can be as high as 97.6% in a dense network,
and 90.6% in a relatively sparse network. Note that the
transmission range of each node is 50m in the simulations.
That is, the beam width is roughly four-hop communication
range. Clearly the delivery ratio depends on both the beam
width and the node density, and the beam width should be
set based on the expected node density. With decreased
node density, the beam width should increase accordingly
to ensure a high delivery ratio.

7. PROTOTYPE IMPLEMENTATION
We implemented the LBRS design on MICA2 motes de-

veloped by X-Bow. These tiny devices are equipped with an
8-bit 4MHz microcontroller running a microthread operat-
ing system, called TinyOS, from its internal flash memory.
The memory size available at each node is limited: 128KB of
program memory and 4KB of data memory. These stringent
resource constraints clearly require a compact implementa-
tion that can fit into the underlying hardware platform.
We implemented a cryptographic primitive of secure hash

function based on a block cipher using RC5 algorithms [17].
This module facilitates the derivation of location-binding
keys, as well as the generation and verification of MACs. We
also implemented a generic wireless communication module
to exceed the packet size limit of 29 bytes in the TinyOS
GenericComm interface. It directly reads and writes the
buffer associated with the low-level radio device, and can
transmit packets of any length.
Code size Table 2 shows a breakdown of the implemen-
tation code size on the MICA2 platform. The LBRS proto-
col stack (i.e., bootstrapping, report generation, and filter-
ing) consumes around 3.2K bytes in ROM and 323 bytes in
RAM. Together with the communication and cryptography
modules, timer and sensing drivers, the entire system con-
sumes 9.4K bytes in ROM and 0.67K bytes in RAM, or 7.3%
and 16.6% in percentages for ROM and RAM, respectively.

Execution time Our measurement results show that,
given a grid of 100×100 cells, it takes a MICA2 mote 2.8 sec-
onds to derive the cell keys in the bootstrapping phase. The
master key is permanently erased afterward, posing high
time constraints for an attacker to compromise the master
key. The MAC generation and verification are also fast: 10
ms to generate or verify a MAC for 24-byte data reports.

8. DISCUSSION
In this section we comment on several design issues and

identify future research directions.
Sensor deployment Sensor nodes can be deployed in
different ways. In many cases, their deployed locations are
not known a priori, e.g., when they are dropped via vehicles
or aircrafts. In such cases, LBRS needs a secure localization
protocol, so that sensors can securely obtain their locations
with certain accuracy. In fact, secure localization is required
in all applications that work in an hostile environment to tag
events with correct locations. A number of proposals [10, 13,
11] have started to address this problem.
In LBRS, the master secrets must be protected during the

bootstrapping phase of the new nodes. Because the boot-
strapping phase is typically very short (e.g., a few seconds),
the chance for successful attacks is very limited. Appropri-
ate network planning and deployment can also keep away
attackers during the bootstrapping process. We can further
protect the master secrets by setting a timer at each newly
deployed node, which erases the master secret upon time-
outs even though it has not been fully bootstrapped. This
may lead some nodes to be useless; however, given the high
density, the network can still function well as a whole.
Sensor nodes can also be deployed to pre-determined lo-

cations, where deployment is carefully planned or security
requirement is stringent, for instance, for in-building or high-
way monitoring applications. With such a deployment model,
we can preload the sensors directly with location-binding
keys, rather than the master secret, because the deployed
locations of the nodes are known a priori. As a result, the
secret keys can be strictly protected.
Node density Topology control protocols [24] are com-
monly used to prolong the sensor network lifetime by turn-
ing redundant nodes into sleeping. To allow enough sensing
nodes to jointly generate a report, a sleeping node can leave
its sensing module on and turn off the communication mod-
ule, the dominant energy consumer. Once an event happens,
nearby nodes wake up, triggered by the sensing module, and
collaborate in generating the reports. This way, LBRS can
still achieve energy efficiency and resilient security.
Routing The upstream region estimation in LBRS is
designed to work with geographic routing protocols. We
conducted experiments and found several non-geographic
sensor routing protocols, such as Directed Diffusion [8] and
GRAB [21], also fit well with the beam forwarding model.
They can potentially work with LBRS. However, a thorough
investigation is needed and we leave it for future research.
In concave terrains (e.g., with half-moon shapes), the beam

forwarding model may not work well as the forwarding paths
cannot be accurately approximated as straight lines. In such
cases, a node can use different strategies, such as a uniform
one, in selecting the verifiable cells. The tradeoff between
resiliency and data delivery needs further investigation.
Key update and revocation Currently LBRS does
not provide any key update or revocation mechanism. Re-

43

cent work [25] has started to address sensor re-keying. We
plan to extend LBRS by binding keys to a spatial-temporal
space, i.e., a combination of geographic location and time,
through mechanisms such as hash chains [15]. Thus we can
update or revoke the keys either periodically or upon secu-
rity compromises.

9. RELATED WORK
Security is essential for sensor networks to work in prac-

tice, in particular over adverse or hostile environments. There
have been many proposals studying various aspects of sen-
sor network security. We briefly summarize and compare
the most related ones with LBRS.
Key management is among the first topics explored in

sensor network security. A number of pairwise key estab-
lishment schemes [6, 2, 5, 4, 12, 27] have been proposed.
They provide basic authentication, confidentiality and pre-
vent outsiders from attacking the network. They use the
idea of probabilistic key sharing [6] to establish trust be-
tween two nodes, with different emphasis on enhanced secu-
rity protection [2], flexibility of security requirements [27],
high probability of key establishment and reduced overhead
[12], or utilization of deployment knowledge [4]. However,
they are not designed to handle insider attacks, such as event
fabrication, launched by compromised nodes. A compro-
mised node already possesses correct keys to authenticate
its message, and it can fabricate events arbitrarily. Other
sensors and the sink cannot distinguish forged reports from
real ones. LBRS differ from all these solutions in its capa-
bility to deal with insider attacks.
Two recent proposals SEF [23] and IHA [28] provide lim-

ited protection against insider attacks through probabilistic
key sharing over a partitioned key pool and interleaved per-
hop authentication, respectively. However, both solutions
are not resilient in that they completely lose the security
protection when the attacker has compromised more than a
small, fixed number of nodes. LBRS eliminates such thresh-
old breakdown by exploiting a location-based approach as
the fundamental mechanism towards resilient security. To
our best knowledge, LBRS is the first security solution that
can achieve graceful performance degradation to an increas-
ing number of compromised nodes.
The compromised nodes may launch other insider attacks

than event fabrication attacks. For example, they can at-
tack the commonly used in-network aggregation mechanism
by producing false aggregation results. A secure aggregation
mechanism is proposed in SIA [16]. However, this problem is
different from event fabrication attacks in which the compro-
mised nodes forge reports, i.e., raw data, in the first place.

10. CONCLUSION
Node compromise presents severe security threats in sen-

sor networks. Existing solutions either do not address such
insider attacks, or completely break down when more than
a fixed threshold number of nodes are compromised. LBRS
aims at providing resilient security and graceful performance
degradation against an increasing number of compromised
nodes. It achieves resiliency by limiting the scope for which
keys are used. Different from the existing work that binds
keys to nodes, LBRS binds keys to geographical locations.
This ensures that the keys can only be used to endorse local
events where they are bound. The attacker can no longer

abuse the compromised keys for global usage, such as fabri-
cating events in arbitrary locations.
As one general design guideline, constraining the scope for

which secrets are used can lead to higher degree of resiliency.
However, in symmetric-key based designs, the same secret
key is used for two different functions: credential generation
and verification. Had these two functions relied on different
secrets (e.g., as in public-key cryptography), compromise of
verifying nodes leads to little harm because the verification
secret cannot be used to forge credentials. Our location-
binding keys offer an alternative way to limit the scope of
key usage. We have demonstrated, through LBRS, that such
a location-based design approach can achieve resilient secu-
rity in an efficient and scalable fashion. It provides a bal-
ance between secret sharing and secret separation. It enables
the sensor nodes to collaborate in securing the network by
sharing symmetric keys, yet limits the scope and usage of
individual keys.

11. ACKNOWLEDGMENTS
The authors are indebted to Jerry Cheng for his help on

the simulator, and Haiyun Luo for his insightful discussions
in the early stage of this work. We would also like to thank
the anonymous reviewers and our group members of Wire-
less Networking Group (WiNG) at UCLA for their construc-
tive criticisms.

12. REFERENCES
[1] R. Anderson, H. Chan, and A. Perrig. Key Infection:

Smart Trust for Smart Dust. In Proc. IEEE
International Conference on Network Protocols
(ICNP), 2004.

[2] H. Chan, A. Perrig, and D. Song. Random Key
Predistribution Schemes for Sensor Networks. In Proc.
IEEE Symposium on Security and Privacy, 2003.

[3] J. Douceur. The Sybil Attack. In Proc. International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[4] W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney. A
Key Management Scheme for Wireless Sensor
Networks Using Deployment Knowledge. In Proc.
IEEE INFOCOM, 2004.

[5] W. Du, J. Deng, Y. Han, and P. Varshney. A Pairwise
Key Pre-distribution Scheme for Wireless Sensor
Networks. In Proc. ACM CCS, 2003.

[6] L. Eschenauer and V. Gligor. A Key-Management
Scheme for Distributed Sensor Networks. In Proc.
ACM CCS, 2002.

[7] Q. Fang, J. Gao, and L. Guibas. Locating and
Bypassing Routing Holes in Sensor Networks. In Proc.
IEEE INFOCOM, 2004.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proc. ACM MOBICOM, 2000.

[9] B. Karp and H. T. Kung. GPSR: Greedy Perimeter
Stateless Routing for Wireless Networks. In Proc.
ACM MOBICOM, 2000.

[10] L. Lazos and R. Poovendran. SeRLoc: Secure
Range-Independent Localization for Wireless Sensor
Networks. In Proc. ACM Workshop on Wireless
Security (WiSe), 2004.

44

[11] Z. Li, W. Trappe, Y. Zhang, and B. Nath. Robust
Statistical Methods for Securing Wireless Localization
in Sensor Networks. In Proc. International Symposium
on Information Processing in Sensor Networks
(IPSN), 2005.

[12] D. Liu and P. Ning. Establishing Pairwise Keys in
Distributed Sensor Networks. In Proc. ACM CCS,
2003.

[13] D. Liu, P. Ning, and W. Du. Attack-Resistant
Location Estimation in Sensor Networks. In Proc.
International Symposium on Information Processing
in Sensor Networks (IPSN), 2005.

[14] J. Newsome, R. Shi, D. Song, and A. Perrig. The Sybil
Attack in Sensor Networks: Analysis and Defenses. In
Proc. International Symposium on Information
Processing in Sensor Networks (IPSN), 2004.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
D. Tygar. SPINS: Security Protocols for Sensor
Networks. In Proc. ACM MOIBCOM, 2001.

[16] B. Pryzdatek, D. Song, and A. Perrig. SIA: Secure
Information Aggregation in Sensor Networks. In Proc.
ACM SenSyS, 2003.

[17] R. Rivest. The RC5 Encryption Algorithm. In
Workshop on Fast Software Encryption, 1995.

[18] Y. Shang, W. Ruml, and Y. Zhang. Localization from
Mere Connectivity. In Proc. ACM MOBIHOC, 2003.

[19] G. Tsudik. Message Authentication with One-way
Hash Functions. ACM CCR, 22(5):29–38, 1992.

[20] A. Wood and J. Stankovic. Denial of Service in Sensor
Networks. IEEE Computer, October 2002.

[21] F. Ye, S. Lu, and L. Zhang. Gradient broadcast: A
robust data delivery protocol for large scale sensor
networks. ACM WINET, March 2005.

[22] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A
Two-tier Data Dissemination Model for Large-scale
Wireless Sensor Networks. In Proc. ACM MOIBCOM,
2002.

[23] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical
En-route Filtering of Injected False Data in Sensor
Networks. In Proc. IEEE INFOCOM, 2004.

[24] F. Ye, G. Zhong, S. Lu, and L. Zhang. PEAS:A
Robust Energy Conserving Protocol for Long-lived
Sensor Networks. In Proc. IEEE ICDCS, 2003.

[25] W. Zhang and G. Cao. Group Rekeying for Filtering
False Data in Sensor Networks: A Predistribution and
Local Collaboration Based Approach. In Proc. IEEE
INFOCOM, 2005.

[26] F. Zhao, J. Liu, Q. Huang, and Y. Zou. Fast and
Incremental Node Localization in Ad Hoc Networks.
Technical Report P-2003-10265, PARC, 2003.

[27] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient
Security Mechanism for Large-Scale Distributed
Sensor Networks. In Proc. ACM CCS, 2003.

[28] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An
Interleaved Hop-by-Hop Authentication Scheme for
Filtering False Data in Sensor Networks. In Proc.
IEEE Symposium on Security and Privacy, 2004.

13. APPENDIX
PROOF of Theorem 1 Let the forwarding path of the
fabricated report be Z → A1 → · · · → Ah → Sink. The ge-

ographic distance from the compromised node Z to the sink
is denoted by d0, while the distance from an intermediate
forwarding node Ai to the sink is denoted by di. Since the
maximum transmission range of a node is Rc, we know that
di ≥ d0 − iRc.
Consider the action taken by node Ai after it receives the

fabricated report. Node Ai drops the report if the claimed
event’s location is outside its upstream region. Otherwise,
node Ai has a probability of di/R (Equation 3)to have a
key bound to the event’s cell, thus able to verify the report.
On the other hand, the compromised node has to forge at
least m− 1 MACs in the report. Therefore, the probability
that node Ai drops the report, given then it has received
the report, is at least:

Pi =
(m− 1)

L
× di

R
≥ (m− 1)(d0 − iRc)

RL

Because each forwarding node performs the same checking,
the entire path collectively exhibits strong filtering power.
The filtering position h′, defined as the expected number of
hops that the fabricated report can traverse, can be derived
as follows.

h′ = 1 +
hX

i=2

i−1Y
j=1

(1− Pj) ≤ 1 +
hX

i=2

i−1Y
j=1

(1− (m− 1)(d0 − jRc)

RL
)

PROOF of Theorem 2 The proof is similar to the pre-
vious one. When the attacker has compromised Nc node in
a local neighborhood, he can collect d0Nc

R
keys bound to a

remote cell on average, where d0 is the distance from these
compromised nodes to the sink. Thus he needs to forge
m− d0Nc

R
MACs in the report. Accordingly, the probability

that node Ai drops the report becomes:

Pi =
(m− d0Nc/R)

L
× di

R
≥ (mR− d0Nc)(d0 − iRc)

R2L

Similarly, the filtering position is upper bounded as:

h′ = 1 +

hX
i=2

i−1Y
j=1

(1− Pj)

≤ 1 +

hX
i=2

i−1Y
j=1

(1− (mR− d0Nc)(d0 − jRc)

R2L
) ✷

PROOF of Theorem 3 Consider a node with a distance
of d to the sink. Let Γ denote its upstream region, as defined
in Section 4.3 (See Figure 2 for a graphical illustration).
Recall that we have derived the spanning angle of Γ, denoted
by α, in Equation 4.
Based on Equation 3, we know that the node stores one

key for each cell in Γ with a probability of d
R
. Thus, the

number of verifiable cell keys stored by the node is propor-
tional to the number of cells within Γ. That is,

Nkey =
X

Cell (Xi,Yj)∈Γ

d

R
≈ d

RC2

ZZ
Γ

r dr dθ

=
βd

RC2

Z α

0

Z R

d

r dr dθ

=
d(R2 − d2)

2RC2
× arcsin b

max(b, 2d)
= O(

bR

C2
) ✷

45

