Topics

- **Interconnecting LAN segments**
 - Hub (Physical Layer)
 - Bridge (Link layer)
 - Layer 2 Switch (multi-port bridge, link layer)

- **Interconnecting networks**
 - Layer 3 Switch (network layer)
 - Router (network layer)

- **ATM Networks**

Interconnecting LAN Segments

- (Repeating) Hubs (layer 1 devices)
- Bridges (layer 2 devices)
 - Basic Functions
 - Self learning and bridge forwarding table
 - Forwarding/filtering algorithm
 - Bridge looping problem and spanning tree algorithm

- Ethernet Switches
 - Remark: switches are essentially multi-port bridges.
 - What we say about bridges also holds for switches!

- **Readings**
 - Sections 3.1 and 3.2

Interconnecting with Hubs

- Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain
 - if a node in CS and a node EE transmit at same time: collision
- Can't interconnect 10BaseT & 100BaseT
 - Encoding is different: Manchester vs. 4B/5B
 - Recreates each bit, boosts its energy strength, and transmits the bit to all other interfaces

Bridges

- Link layer device
 - stores and forwards Ethernet frames
 - examines frame header and selectively forwards frame based on MAC destination address — filtering
 - when frame is to be forwarded on a LAN segment, uses CSMA/CD to access the LAN segment
 - transparent
 - hosts are unaware of the presence of bridges
- plug-and-play, self-learning
 - bridges do not need to be configured

Bridges: Traffic Isolation

- Bridge installation breaks LAN into LAN segments
- Bridges filter packets:
 - same-LAN-segment frames not usually forwarded onto other LAN segments
 - segments become separate collision domains

Forwarding

- How to determine to which LAN segment to forward frame?
Self Learning

- A bridge has a bridge (forwarding) table
- Entry in bridge forwarding table:
 - (Node LAN Address, Bridge Interface, Time Stamp)
 - stale entries in table dropped (TTL can be 60 min)
- Bridges learn which hosts can be reached through which interfaces
 - when frame received, bridge "learns" location of sender:
 - incoming LAN segment
 - records sender/location pair in bridge forwarding table

Filtering/Forwarding

When bridge receives a frame:

index bridge table using dest MAC address
if entry found for destination
 then
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 else flood
forward on all but the interface on which the frame arrived

Bridge Example

Suppose C sends a frame to D and D replies back with a frame to C.

- Bridge receives a frame from C
 - notes in bridge forwarding table that C is on interface 1
 - because D is not in table, bridge sends frame into interfaces 2 and 3
- frame received by D

Bridge Learning: Example

- D generates a frame for C, send
- bridge receives the frame
 - notes in bridge forwarding table that D is on interface 2
 - bridge knows C is on interface 1, so selectively forwards frame to interface 1

Interconnection without Backbone

- Not recommended for two reasons:
 - single point of failure at Computer Science hub
 - all traffic between EE and SE must path over CS segment

Backbone Configuration

Recommended!
Looping and Bridge Spanning Tree

- for increased reliability, desirable to have redundant, alternative paths from source to dest
- with multiple paths, cycles result - bridges may multiply and forward frame forever
- solution: organize bridges in a spanning tree by disabling subset of interfaces

Bridge Spanning Tree Algorithm: Algorhyme

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree that must be sure to span
So packets can reach every LAN.
First, the root must be selected.
By ID, it is elected.
Least cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
Then bridges find a spanning tree.
-- Radia Perlman

Some Bridge Features

- Isolates collision domains resulting in higher total max throughput
- "limitless" number of nodes and geographical coverage
 - Scalable? (broadcast, spanning tree algorithm)
 - Heterogeneity (understands one type of LAN address only)
- Can connect different Ethernet types
- Transparent ("plug-and-play"): no configuration necessary
 - Dropping packets? Long latency? Frames reordered?

Ethernet Switches

- Essentially a multi-interface bridge
- layer 2 (frame) forwarding, filtering using LAN addresses
- Switching: A-to-A' and B-to-B' simultaneously, no collisions
- large number of interfaces
- often: individual hosts, star-connected into switch
 - Ethernet, but no collisions!

Ethernet Switches

- cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame
 - slight reduction in latency
 - Cut-through vs. store and forward
- combinations of shared/dedicated, 10/100/1000 Mbps interfaces
A Few Words about VLAN

• Virtual LAN (VLAN) – defined in IEEE 802.1q
 - Partition a physical LAN into several "logically separate" LANs
 - reduce broadcast traffic on physical LAN
 - provide administrative isolation
 - Extend over a WAN (wide area network), e.g., via layer 2 tunnels (e.g., L2TP, MPLS) over IP-based WANs!

• Two types: port-based or MAC address-based
 - each port optionally configured with a VLAN id
 - inbound packets tagged with this "VLAN" id
 - require change of data frames, carry "VLAN id" tags
 - tagged and untagged frames can co-exist
 - "VLAN-aware" switches forward on ports part of same VLAN

• More complex! - require administrative configuration
 - static ("manual") configuration
 - some configuration can be learned using GARP and GVRP protocols
 - more for info: google search on "VLAN tutorial"

Summary of LAN

• Local Area Networks
 - Designed for short distance
 - Use shared media
 - Many technologies exist

• Media Access Control: key problem!
 - Different environments/technologies -> different solutions!

• Topology refers to general shape
 - Bus
 - Ring
 - Star

Summary (continued)

• Address
 - Unique number assigned to station
 - Put in frame header
 - Recognized by hardware

• Address forms
 - Unicast
 - Broadcast
 - Multicast

Summary (continued)

• Type information
 - Describes data in frame
 - Set by sender
 - Examined by receiver

• Frame format
 - Header contains address and type information
 - Payload contains data being sent

Summary (continued)

• LAN technologies
 - Ethernet (bus)
 - Token Ring
 - FDDI (ring)
 - Wireless 802.11

• Wiring and topology
 - Logical topology and Physical topology (wiring)
 - Hub allows
 - Star-shaped bus
 - Star-shaped ring

• Interconnecting LAN Segments
 - (Repeating) Hubs
 - Bridges
 - Self learning and bridge forwarding table
 - Forwarding/filtering algorithm
 - Bridge looping problem and spanning tree algorithm
 - (Layer-2) Switches
 - store and forward switching
 - cut-through switching

Summary (cont’d)
Switching and Forwarding
Network Layer

• Switching and Forwarding
 - Generic Switch Architecture
 - Forwarding Tables:
 • Bridges/Layer 2 Switches: VLAN
 • Routers and Layer 3 Switches
 - Forwarding in Layer 3 (Network Layer)
 - Network Layer Functions
 - Network Service Models: VC vs. Datagram
 - ATM and IP Datagram Forwarding

Readings: Textbook Chapter 3: Sections 3.1, 3.3-3.4

Switching and Forwarding

Hubs vs. Bridges vs. Routers

• Hubs (aka Repeaters): Layer 1 devices
 - repeat (i.e., regenerate) physical signals
 - don't understand MAC protocols
 - LANs connected by hubs belong to same collision domain

• Bridges (and Layer-2 Switches): Layer 2 devices
 - store and forward layer-2 frames based on MAC addresses
 - speak and obey MAC protocols
 - bridges segregate LANs into different collision domains

• Routers (and Layer 3 Switches): Layer 3 devices
 - store and forward layer-3 packets based on network layer addresses (e.g., IP addresses)
 - rely on data link layer to deliver packets to (directly connected) next hop
 - network layer addresses are logical (i.e., virtual), need to map to MAC addresses for packet delivery

Switching and Forwarding

Function Division:
• input interfaces (input ports):
 - perform forwarding
 - need to know to which output ports to send frames/packets
 - may enqueue packets and perform scheduling

• switching Fabric:
 - move frames or packets from input ports to output ports

• output interfaces (output ports):
 - may enqueue packets and perform scheduling
 - Perform MAC to transmit frames/packets to next hop

Generic Switch Architecture

Input Port Functions

• Buffering required when datagrams arrive from fabric faster than the transmission rate
• Scheduling discipline chooses among queued datagrams for transmission

Output Ports

Generic Switch Architecture

• Input and output interfaces are connected through a switching fabric (backplane)
• A backplane can be implemented by
 - shared memory
 • bridges or low capacity routers (e.g., PC-based routers)
 - shared bus
 • e.g., "low end" routers
 - point-to-point (switched) interconnection switching fabric
 • high performance switches (e.g., as used in high capacity routers)
Three Types of Switching Fabrics

Switching Via Memory
First generation routers:
• traditional computers with switching under direct control of CPU
• packet copied to system's memory
• speed limited by memory bandwidth (2 bus crossings per datagram)

Switching Via a Bus
• datagram from input port memory to output port memory via a shared bus
• bus contention: switching speed limited by bus bandwidth
• 1 Gbps bus, Cisco 1900: sufficient speed for access an enterprise routers (not regional or backbone)

Switching Via An Interconnection Network
• overcome bus bandwidth limitations
• Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
• Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
• Cisco 12000: switches Gbps through the interconnection network

Forwarding in Layer 3
Putting in context
• What does layer-3 (network layer) do?
 - deliver packets "hop-by-hop" across a network
 - rely on layer-2 to deliver between neighboring hops
• Key Network Layer Functions
 - Addressing: need a global (logical) addressing scheme
 - Routing: build "map" of network, find routes, ...
 - Forwarding: actual delivery of packets!
• Two basic network layer service models
 - datagram: "connectionless"
 - virtual circuit (VC): connection-oriented

What Does Network Layer Do?
• End-to-end deliver packet from sending to receiving hosts, "hop-by-hop" thru network
 - A network-wide concern
 - Involves every router, host in the network
• Compare:
 - Transport layer
 - between two end hosts
 - Data link layer
 - over a physical link directly connecting two (or more) hosts
Network Layer Functions

- **Addressing**
 - Globally unique address for each routable device
 - Logical address, unlike MAC address (as you've seen earlier)
 - Assigned by network operator
 - Need to map to MAC address (as you’ll see later)

- **Routing**: building a "map" of network
 - Which path to use to forward packets from src to dest

- **Forwarding**: delivery of packets hop by hop
 - From input port to appropriate output port in a router

Routing and forwarding depend on network service models: datagram vs. virtual circuit

Network Service Model

Q: What service model for "channel" transporting packets from sender to receiver?

- **virtual circuit** vs. **datagram**?

 The most important abstraction provided by network layer:

Virtual Circuit vs. Datagram

- Objective of both: move packets through routers from source to destination

 Datagram Model:
 - **Routing**: determine next hop to each destination a priori
 - **Forwarding**: destination address in packet header, used at each hop to look up for next hop
 - **VCI**: virtual circuit id, VCI, which determines next hop
 - **routers maintain “per-call” state**

 Virtual Circuit Model:
 - **Routing**: determine a path from source to each destination
 - **Call**: Set-up fixed path ("virtual circuit") set up at "call" setup time, remains fixed thru "call"
 - **Data Forwarding**: each packet carries "tag" or "label" (virtual circuit id, VCI), which determines next hop

Virtual Circuit Switching

- Explicit connection setup (and tear-down) phase
- Subsequence packets follow same circuit

 Sometime called connection-oriented model

- **Analogy**: phone call

- Each switch maintains a VC table

Datagram Switching

- No connection setup phase
- Each packet forwarded independently
- Sometimes called connectionless model

- **Analogy**: postal system

- Each switch maintains a forwarding (routing) table
Forwarding Tables: VC vs. Datagram

- **Virtual Circuit Forwarding Table**
 - a.k.a. VC (Translation) Table
 - (switch 1, port 2)

- **Datagram Forwarding Table**
 - (switch 1)

<table>
<thead>
<tr>
<th>VC In</th>
<th>VC Out</th>
<th>Port Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More on Virtual Circuits

- *source-to-dest path behaves much like telephone circuit* (but actually over packet network)
 - call setup/teardown for each call *before data can flow*
 - need special control protocol: "signaling"
 - every router on source-dest path maintains "state" (VCI translation table) for each passing call
 - VCI translation table at routers along the path of a call "weaving together" a "logical connection" for the call
 - link, router resources (bandwidth, buffers) may be reserved and allocated to each VC
 - to get "circuit-like" performance

Virtual Circuit: Signaling Protocols

- used to setup, maintain, teardown VC
- used in ATM, frame-relay, X.25
- used in part of today's Internet: Multi-Protocol Label Switching (MPLS) operated at "layer 2+1/2" (between data link layer and network layer) for "traffic engineering" purpose

Virtual Circuit Setup/Teardown

Call Set-Up:
- Source: select a path from source to destination
 - Use routing table (which provides a "map of network")
- Source: send VC setup request control ("signaling") packet
 - Specify path for the call, and also the (initial) output VCI
 - perhaps also resources to be reserved, if supported
- Each router along the path:
 - Determine output port and choose a (local) output VCI for the call
- need to ensure that no two distinct VCs leaving the same output port have the same VCI!
- Update VCI translation table ("forwarding table")
 - add an entry, establishing a mapping between incoming VCI & port no. and outgoing VCI & port no. for the call

Call Tear-Down: similar, but remove entry instead

Virtual Circuit: Example

"call" from host A to host B along path:
host A → router 1 → router 2 → router 3 → host B
- each router along path maintains an entry for the call in its VCI translation table
 - the entries piece together a "logical connection" for the call
- Exercise: write down the VCI translation table entry for the call at each router
Virtual Circuit Model: Pros and Cons

• Full RTT for connection setup
 - before sending first data packet.
• Setup request carries full destination address
 - each data packet contains only a small identifier.
• If a switch or a link in a connection fails
 - new connection needs to be established.
• Provides opportunity to reserve resources.

ATM Networks

• Asynchronous Transfer Mode
 - Single technology for handling voice, video, and data
• Connection-oriented service using virtual circuits
 - In-sequence but unreliable
• Cell switching using fixed-size cells: 53 bytes
 - Statistical multiplexing of cells of different circuits
• Provide QoS guarantees/assurance
 - Variety of services such as CBR, VBR, ABR etc

Variable vs Fixed-Length Packets

• No optimal length
 - if small high header-to-data overhead
 - if large: low utilization for small messages
• Fixed-Length easier to switch in hardware
 - simpler
 - enables parallelism

Big vs Small Packets

• Small improves Queue behavior
 - finer-grained pre-emption point for scheduling link
 • maximum packet = 4kB
 • link speed = 100Mbps
 • transmission time = 4096 x 8/100 = 327.68us
 • high priority packet may sit in the queue 327.68us
 • in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 • two 4KB packets arrive at same time
 • link idle for 327.68us while both arrive
 • at end of 327.68us, still have 8kB to transmit
 • in contrast, can transmit first cell after 4.24us
 • at end of 327.68us, just over 4kB left in queue

Big vs Small (cont)

• Small improves latency (for voice)
 - voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
 - need full cell's worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancellors
• ATM Compromise: 48 bytes = (32+64)/2

ATM Cell Format

Bits: 0 1 2 3 4 5 6 7
FLOW CONTROL VPI (FIRST 4 BITS)
VCI (FIRST 4 BITS)
VCI (LAST 4 BITS) PAYLOAD TYPE PRO
CYCLIC REDUNDANCY CHECK
48 DATA OCTETS START HERE
More on Cell Format

- User-Network Interface (UNI)
 - host-to-switch format
 - GFC: Generic Flow Control (still being defined)
 - VCI: Virtual Circuit Identifier
 - VPI: Virtual Path Identifier
 - Type: management, congestion control, AAL5 (later, type field contains a user signaling bit to identify the end of a PDU)
 - CLP: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

- Network-Network Interface (NNI)
 - switch-to-switch format
 - GFC becomes part of VPI field

Virtual Paths and VP Switch

- Why use Virtual Paths (VPs)?
- VCs of different VPs can have same VCIs
- VPI/VCI translation
 - Cells are routed using VPI/VCI pairs in the header
- VP Switch
 - Routing based on VPI only, VCI not translated

Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
 - Sets above ATM layer and below the layer with variable length frame
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

AAL 3/4

- Convergence Sublayer Protocol Data Unit (CS-PDU) - encapsulation before segmentation

 - CPI: common part indicator (version field)
 - Btag/Etag: beginning and ending tag
 - BAsize: hint on amount of buffer space to allocate
 - Length: size of whole PDU

AAL 3/4 Cell Format

- Add AAL 3/4 header and trailer to bring up to 48B
 - Type
 - BOM (00): beginning of message
 - COM (01): continuation of message
 - EOM (11): end of message
 - SSMS (11): Single-segment message
 - SEQ: sequence number
 - MID: multiplexing id or message id
 - Length: number of bytes of PDU in this cell

Encapsulation and Segmentation for AAL 3/4
AAL5

- **CS-PDU Format**
 - < 64 KB
 - 47 bytes
 - 16 bytes
 - 16 bytes
 - 32 bytes
 - pad so trailer always falls at end of ATM cell
 - CRC-32 (detects missing or misordered cells)

- **Cell Format**
 - end-of-PDU bit in Type field of ATM header

Datagram Networks: the Internet model

- no call setup at network layer
- routers: no state about end-to-end connections
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths, when intermediate routes change!

Datagram Model

- There is no round trip delay waiting for connection setup; a host can send data as soon as it is ready.
- Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- Since packets are treated independently, it is possible to route around link and node failures.
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.

Network Layer Service Models:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no (inferred via loss)</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

- Internet model being extended: MPLS, Diffserv

Datagram or VC: Why?

Internet

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM

- evolved from telephony
- human conversation
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network
Forwarding and Switching
Network Layer Summary

- Switching and Forwarding
 - Generic Switch Architecture
 - Forwarding Tables:
 - Bridges/Layer 2 Switches: VLAN
 - Routers and Layer 3 Switches

- Network Service (Forwarding) Models
 - Virtual Circuit vs. Datagram
 - Virtual Circuit Model: ATM example
 - VC set-up/ear-down
 - data forward operations

How to Speed Up Forwarding?

- \(C \) – input/output link capacity
- \(R_I \) – maximum rate at which an input interface can send data into backplane
- \(R_O \) – maximum rate at which an output can read data from backplane
- \(B \) – maximum aggregate backplane transfer rate

- Input interface
- Output interface

Interconnection Medium (Backplane)

- Input speedup: \(R_I/C \)
- Output speedup: \(R_O/C \)

Output Queued (OQ) Routers

- Only output interfaces store packets
 - buffering when arrival rate via switch exceeds output line speed
 - queuing (delay) and loss due to output port buffer overflow!

- Advantages
 - Easy to design algorithms: only one congestion point

- Disadvantages
 - Requires an output speedup of \(N \), where \(N \) is the number of interfaces \(\rightarrow \) not feasible

Input Queued (IQ) Routers

- Fabric slower than input ports combined \(\rightarrow \) queueing may occur at input queues

- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward \(\rightarrow \) achieve 59% of max throughput

- Queuing delay and loss due to input buffer overflow!

Input Queued Routers: Pros & Cons

- Advantages
 - Easy to build
 - Store packets at inputs if contention at outputs
 - Relatively easy to design algorithms
 - Only one congestion point, but not output
 - Need to implement backpressure

- Disadvantages
 - Head-of-line (HOL) blocking
 - In general, hard to achieve high utilization
Combined Input-Output Queueing (CIOQ) Routers

- Both input and output interfaces store packets
- Advantages
 - Utilization 1 can be achieved with limited input/output speedup (≤ 2)
- Disadvantages
 - Harder to design algorithms
 - Two congestion points
 - Need to design flow control
 - An input/output speedup of 2, a CIOQ can emulate any work-conserving OQ scheduling algo.

Backplane

- Point-to-point switch allows to simultaneously transfer a packet between any two disjoint pairs of input-output interfaces
- Goal: come-up with a schedule that
 - Meet flow QoS requirements
 - Maximize router throughput
- Challenges:
 - Address head-of-line blocking at inputs
 - Resolve input/output speedup contention
 - Avoid packet dropping at output if possible
- Note: packets are fragmented in fixed sized cells (why?) at inputs and reassembled at outputs
 - In Partridge et al., a cell is 64 bytes (cf. ATM, trade-offs?)

Head-of-Line Blocking Revisited

- The cell at head of an input queue cannot be transferred, thus blocking the following cells

Solution to Avoid Head-of-line Blocking

- Maintain at each input N virtual queues, i.e., one per output

Generic Architecture of a High Speed Router Today

- Combined Input-Output Queued Architecture
 - Input/output speedup ≤ 2
- Input interface
 - Perform packet forwarding (and classification)
- Output interface
 - Perform packet (classification and) scheduling
- Backplane
 - Point-to-point (switched) bus; speedup N
 - Schedule packet transfer from input to output