Definition: We say $f(n) = \Omega(g(n))$ if \exists constants c and N such that $f(n) \geq cg(n)$ when n > N.

- Translation: for large enough n, f(n) grows at least as fast as g(n).
- Example: $f(n) = 43n^3 \log n$ and $g(n) = n^2$.
- Example: $f(n) = n^3$ and $g(n) = 1000n^2$.

Definition: We say that $f(n) = \Theta(g(n))$ if both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

- Translation: for large enough n, f(n) grows at the same rate as g(n).
- Alternatively, f(n) is within a constant of g(n).
- Example: $f(n) = n^2$ and $g(n) = 10n^2$.