
1

CsciCsci 136 Computer Architecture II136 Computer Architecture II
––SingleSingle--Cycle Cycle DatapathDatapath

Xiuzhen Cheng
cheng@gwu.edu

Announcements

Homework Assignment #7 is due on March 10, before
class.

Readings: Sections 5.1-5.4
Problems: 5.1, 5.2, 5.8-5.10, 5.13, 5.28.

Project #2 is due on 11:59PM, March 10.

Quiz #3: March 29, 2005

The Big Picture

The Five Classic Components of a Computer

Performance of a machine is determined by:
Instruction count; Clock cycle time; Clock cycles per instruction

Processor design (datapath and control) will determine:
Clock cycle time; Clock cycles per instruction
Who will determine Instruction Count?

Compiler, ISA

Control

Datapath

Memory

Processor
Input

Output

How to Design a Processor: Step by Step
1. Analyze instruction set => datapath requirements

1. the meaning of each instruction is given by the register
transfers

2. datapath must include storage element for registers
3. datapath must support each register transfer

2. Select the set of datapath components and establish
clocking methodology

3. Assemble the datapath meeting the requirements
4. Analyze the implementation of each instruction to

determine the settings of the control points that
effects the register transfer

5. Assemble the control logic

MIPS Instruction Format

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op target address
02631

6 bits 26 bits

All MIPS instructions are 32 bits long. 3 formats:

R-type

I-type

J-type

The different fields are:
op: operation (“opcode”) of the instruction
rs, rt, rd: the source and destination register specifiers
shamt: shift amount
funct: selects the variant of the operation in the “op” field
address / immediate: address offset or immediate value
target address: target address of jump instruction

MIPS Instruction Subset for Today

ADD and SUB
addu rd, rs, rt
subu rd, rs, rt

OR Immediate:
ori rt, rs, imm16

LOAD and
STORE Word

lw rt, rs, imm16
sw rt, rs, imm16

BRANCH:
beq rs, rt, imm16

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt];

PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt];

PC <– PC + 4

ORi R[rt] <– R[rs] | zero_ext(Imm16);

PC <– PC + 4

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)];

PC <– PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rt];

PC <– PC + 4

BEQ if (R[rs] == R[rt]) then

PC <– PC + 4 + ([sign_ext(Imm16)]<<2)

else PC <– PC + 4

2

Step 1: Requirements of the Instruction Set

Memory
instruction & data: instruction=MEM[PC]

Registers (32 x 32)
read RS; read RT; Write RT or RD

PC, what is the new PC?

Extender: sign-extension or 0-extension?

Add and Sub register or extended immediate

Add 4 or extended immediate to PC

Step 2: Components of the Datapath

Combinational Elements
Storage Elements

Clocking methodology

Combinational Logic Elements
(Basic Building Blocks)

32A

B 32

Y32

Select

M
U

X

32

32

A

B
32 Result

OP

A
L

U

32

32

A

B
32 Sum

Carry

A
dder

CarryIn

Basic Hardware Review

D Latch
D Flip Flop

Storage Element: Register
(Basic Building Block)

Similar to the D Flip
Flop except

N-bit input and output
Write Enable input

Write Enable:
negated (0): Data Out will
not change
asserted (1): Data Out will
become Data In

Clk

Data In

Write Enable

N N
Data Out

Storage Element: Register File

Register File consists of 32 registers:
Two 32-bit output busses:
busA and busB
One 32-bit input bus: busW

Register is selected by:
RA (number) selects the register
to put on busA (data)
RB (number) selects the register to put on busB (data)
RW (number) selects the register to be written via busW
(data) when Write Enable is high

Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, behaves as combinational logic:

RA or RB valid => busA or busB outputs valid after
“access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

3

Storage Element: Idealized Memory

Memory (idealized)
One input bus: Data In
One output bus: Data Out

Memory word is selected by:
Address selects the word to put on Data Out
Write Enable = 1: address selects the memory
word to be written via the Data In bus

Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, behaves as a combinational logic
block:

Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address

Clocking Methodology

All storage elements are clocked by the same clock edge
Clock Cycle Time must be >=

CLK-to-Q + Longest Delay Path + Setup Time + Clock Skew

Hold Time is also effected by clock skew
Need enough time for signal to propagate through

Clk

Don’t Care
Setup Hold

.

.

.

.

.

.

.

.

.

.

.

.

Setup Hold

Step 3: Assemble DataPath
meeting our requirements

Instruction Fetch
Instruction = MEM[PC]
Update PC

Read Operands and Execute Operation
Read one or two registers
Execute operation

Datapath for Instruction Fetch

Fetch the Instruction: mem[PC]
Update the program counter:

Sequential Code: PC <- PC + 4
Branch and Jump: PC <- “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic

Datapath for R-Type Instructions

R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt
Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
ALUctr and RegWr: control logic after decoding the instruction

32
Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs RtRd

A
L

U

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

Logic Operations with Immediate
R[rt] <- R[rs] op

ZeroExt[imm16]]
Eg. Ori $7, $8, 0x20

32

Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

Z
eroE

xt

M
ux

RtRd
RegDst Mux

3216
imm16

ALUSrc

A
L

U

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd?

immediate
016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rt?

4

Load Operations

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

RtRd
RegDst

E
xtender

M
ux

Mux

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U

MemWr M
u

x

W_Src

??

Rt?

R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw rt, rs, imm16

Store Operations
Mem[R[rs] + SignExt[imm16] <- R[rt]] Example: sw rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrcExtOp

Clk

Data In
WrEn

32
Adr

Data
Memory

MemWr
A

L
U

32

M
ux

W_Src

The Branch Instruction

beqrs, rt, imm16

mem[PC] Fetch the instruction from
memory

Equal <- R[rs] == R[rt] Calculate the branch condition

if (Equal) Calculate the next instruction’s address
PC <- PC + 4 + (SignExt(imm16) x 4)

else
PC <- PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Datapath for Branch Operations
beq rs, rt, imm16 Datapath generates condition (equal)

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

imm16

PC

Clk

00

A
dder

M
ux

A
dder

4
nPC_sel

Clk

busW

RegWr

32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs Rt

E
qu

al
?

Cond

PC
 E

xt

Inst Address

Putting it All Together: A Single Cycle Datapath

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

Step 4: Given Datapath: RTL -> Control

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr Equal

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

nPC_sel

Adr

Inst
Memory

DATA PATH

Control

Op

<21:25>

Fun

RegWr

5

Meaning of the Control Signals
Rs, Rt, Rd and Imed16 hardwired into datapath
nPC_sel: 0 => PC <– PC + 4; 1 => PC <– PC + 4 +
SignExt(Im16) || 00

Adr

Inst
Memory

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xtim
m

16

Meaning of the Control Signals

ExtOp: “zero”, “sign”
ALUsrc: 0 => regB; 1 => immed
ALUctr: “add”, “sub”, “or”

° MemWr: write memory

° MemtoReg: 1 => Mem

° RegDst: 0 => “rt”; 1 => “rd”

° RegWr: write dest register

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

0

1

0

1

01

=

Review on ALU Design

Slt, beq
NOR

0111
1100

Subtraction0110
Add0010
Or0001

And0000
FunctionALU Control Lines

ALU Control and the Central Control

Two-level design to ease the job
ALU Control generates the 4 control lines for ALU operation
Func code field is only effective for R-type instructions, whose
Opcode field contains 0s.
The operation of I-type and J-type instructions is determined only
by the 6 bit Opcode field.
Lw/sw and beq need ALU even though they are I-type instructions.
Three cases: address computation for lw/sw, comparison for beq,
and R-Type; needs two control lines from the main control unit:
ALUOp: 00 for lw/sw, 01 for beq, 10 for R-type

Design ALU control
Input: the 6 bit func code field for R-type
Input: the 2 bit ALUOp from the main control unit.

Design the main control unit
Input: the 6 bit Opcode field.

Fig 5.15 (LW/SW, ALU Operatios, BEQ) Fig 5.17 (LW/SW, ALU Operatios, BEQ)

6

Control Signals
inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?),
nPC_sel =__

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?),
nPC_sel =__

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?),
nPC_sel =__
STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?),
nPC_sel =__

BEQ if (R[rs] == R[rt]) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

ALUsrc = ___, Extop = __, ALUctr = ___, RegDst = ___, RegWr(?), MemtoReg(?), MemWr(?),
nPC_sel =__

Control Signals (Answer)

inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4”

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4”

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”,
MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4”

BEQ if (R[rs] == R[rt]) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

nPC_sel = EQUAL, ALUctr = “sub”

Step 5: Logic for each control signal

nPC_sel <= if (OP == BEQ) then EQUAL else 0
ALUsrc <= if (OP == “000000”) then “regB” else
“immed”
ALUctr <= if (OP == “000000”) then funct

elseif (OP == ORi) then “OR”
elseif (OP == BEQ) then “sub”

else “add”
ExtOp <= _____________
MemWr <= _____________
MemtoReg <= _____________
RegWr: <=_____________
RegDst: <= _____________

Step 5: Logic for each control signal (Answer)

nPC_sel <= if (OP == BEQ) then EQUAL else 0
ALUsrc <= if (OP == “000000”) then “regB” else
“immed”
ALUctr <= if (OP == “000000”) then funct

elseif (OP == ORi) then “OR”
elseif (OP == BEQ) then “sub”

else “add”
ExtOp <= if (OP == ORi) then “zero” else “sign”
MemWr <= (OP == Store)
MemtoReg <= (OP == Load)
RegWr: <= if ((OP == Store) || (OP == BEQ)) then 0
else 1
RegDst: <= if ((OP == Load) || (OP == ORi)) then 0
else 1

An Abstract View of the Critical Path
Register file and ideal memory:

The CLK input is a factor ONLY during write operation
During read operation, behave as combinational logic:

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
LU

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

An Abstract View of the Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232

A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

7

Example: R-type add $t1, $t2, $t3 Example: lw

Example: beq Example: Load Instruction

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

im
m

16

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

sign ext

addrt+4

How to Implement jump Instruction? How to Implement J Answer

8

Performance of Single-Cycle Datapath

Time needs by functional units:
Memory units: 200 ps
ALU and adders: 100 ps
Register file (r/w): 50 ps
No delay for other units

Two single cycle datapath implementations
Clock cycle time is the same for all instructions
Variable clock cycle time per instruction

Instruction mix: 25% loads, 10% stores, 45% ALU,
15% branches, and 5% jumps
Compare the performance of R-type, lw, sw, branch,
and j
Answer can be found at page 315-316

Single-Cycle Processor

Advantage
One clock cycle per instruction

Disadvantage
Clock cycle is long

Summary

5 steps to design a processor
1. Analyze instruction set => datapath requirements

2. Select set of datapath components & establish clock methodology

3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction to determine setting of
control points that affects the register transfer

5. Assemble the control logic

MIPS makes it easier
Instructions same size

Source registers always in same place

Immediates same size, location

Operations always on registers/immediates

Single cycle datapath => CPI=1, CCT => long

