
1

CsciCsci 136 Computer Architecture II136 Computer Architecture II
–– Designing a MultiDesigning a Multi--Cycle ProcessorCycle Processor

Xiuzhen Cheng
cheng@gwu.edu

Announcement

Homework assignment #8, Due time – before class,
March 29.

Readings: Sections 5.5-5.6
Problems: 5.32, 5.33, 5.36.

Quiz #3: March 29

Project #3 is on-line

Review on Single Cycle Datapath

Subset of the core MIPS ISA
Arithmetic/Logic instructions: AND, OR, ADD, SUB, SLT
Data Flow instructions: LW, SW
Branch instructions: BEQ, J

Five steps in processor design
Analyze the instruction
Determine the datapath components
Assembly the components
Determine the control
Design the control unit

The Complete Single Cycle Datapath

How lw, sw, R-Type, beq, j instructions work?

Why the design of AUL control takes two levels?

Delays in Single Cycle Datapath

1ns2ns

2ns

2ns

2ns

2ns

What are the delays for lw, sw, R-Type, beq, j instructions?

Remarks on Single Cycle Datapath

Single Cycle Datapath ensures the execution of any
instruction within one clock cycle

Functional units must be duplicated if used multiple times by one
instruction. E.g. ALU. Why?
Functional units can be shared if used by different instructions

Single cycle datapath is not efficient in time
Clock Cycle time is determined by the instruction taking the
longest time. Eg. lw in MIPS
Variable clock cycle time is too complicated.
Multiple clock cycles per instruction – this lecture
Pipelining – Chap 6

2

Multiple Cycle Datapath
Minimizes Hardware: 1 memory for data and instruction, 1 ALU

A functional unit can used more than once as long as it is used on
different clock cycles
Advantages: shared functional units, different cycles for different
instructions, short clock cycles
Assumptions: each clock cycle can accommodate at most one of the
following operations: a memory access, a register file access, or an ALU

Temporary registers: A, B, IR, MDR, ALUOut

A high level view of the multi-cycle datapath

Multiple Cycle Datapath with Control

IorD

MemRead

MemWrite

IRWrite

RegDest

MemtoReg

RegWrite
ALUSrcA

ALUSrcB

ALU
Control

ALUOp

Supporting Jump and Conditional Branch

Need PC control
PC is updated conditionally for branch and unconditionally for
normal increment and jumps
Control unit generates PCWrite and PCWriteCond based on op
code of the instruction

For branch, PCWriteCond and Zero must be set
For Jump or other unconditional PC update, PCWrite must be set
Thus PCControl = (PCWriteCond and Zero) or PCWrite

PC source selection
A mux with 3 inputs: PC+4, PC + signExt(IR[15-0])<<2),
PC[31-28] || (IR[25-0]<<2)

The Complete Multicycle Dataath

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15–11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5–0]

Instruction
[31-26]

Instruction [5–0]

M
u
x

0

2

Jump
address [31-0]Instruction [25–0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Breaking Instruction Execution into Multiple Cycles

Instruction Fetch
IR = Memory[PC] PC = PC+4

Instruction Decode/Register Fetch
A = Reg[IR[25-21]] B = Reg[IR[20-16]]
ALUOut = PC + (sign-extend(IR[15-0])<<2)

Execution, Address compuation, branch/jump completion
R-type: ALUOut = A op B
Memory access: ALUOut = A + sign-extend(IR[15-0])
Branch: if (A==B) then PC = ALUOut
Jump: PC = PC[31-28] || (IR[25-0]<<2)

Memory Access or R-type Completion
R-type: Reg[IR[15-11]] = ALUOut
Load: MDR = Memory[ALUOut] or
Store: Memory[ALUOut] = B

Memory read completion
Load: Reg[IR[20-16]] = MDR

Defining the Control

The control of the multicycle datapath must specify
both the signals to be set in any step and the next
step in the sequence

Two techniques:
Finite state machine

Each state (a circle) contains the valid control signals
Directional links point to next state
Each cycle corresponds to one state
FSM is the graphical representation of the control

Microprogramming
Assume the set of control signals that must be asserted in a
state as an instruction to be executed by the datapath
Microprogram is a symbolic representation of the control that
will be translated by a program to control logic

3

The high-level view of the FSM control

Instruction fetch / decode and register fetch

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

start

Finite State Machine Control
Figure 5.42

Implementation of the FSM Control
Figure 5.37

In-Class Exercise

How to modify the complete datapath (Figure 5.33) for
the multiple cycle implementation to accommodate
the ori (or immediate) instruction? Given the FSM
control design
What about addi, jal and jr instructions?

Exception Handling (1/6)

Exception vs. Interrupt: both are unexpected events
in control flow

Interrupt: externally caused events
Exception: internally caused events

Consider two types of exceptions in our current
implementation

Arithmetic overflow
Undefined instructions

How exceptions are handled?
Save the address of the offending instruction to EPC. How to find
out the address of the offending instruction?
Transfer control to the OS at some specified address. How?
May transfer control back through EPC

Exception Handling (2/6)

Cause register: a status register to record the
reason of the exception

One single entry point for all exceptions can be used.
Vectored interrupt

Control will be transferred based on the cause of the exception
Eg: Exception Type Exception Vector Address
undefined instruction C000 0000
arithmetic overflow C000 0020

example

4

Exception Handling (3/6)

EPCWrite and CauseWrite
IntCause

The LSB of the cause register to hold the state
0 for undefined instruction
1 for arithmetic overflow
IntCause will be used to set the LSB of the Cause register

exception address: 8000 0180
The entry point for exceptions

Question: How to modify the current datapath for
exception handling?

Exception Handling (4/6)

Exception Handling (5/6) Exception Handling (6/6)

Questions?

