Csci 136 Computer Architecture Il
— Designing a Multi-Cycle Processor

Xiuzhen Cheng
cheng@gwu.edu

% Announcement

@ Homework assignment #8, Due time — before class,
March 29.
= Readings: Sections 5.5-5.6
= Problems: 5.32, 5.33, 5.36.

@ Quiz #3: March 29

@ Project #3is on-line

% Review on Single Cycle Datapath

@ Subset of the core MIPS ISA
= Arithmetic/Logic instructions: AND, OR, ADD, SUB, SLT
= Data Flow instructions: LW, SW
= Branch instructions: BEQ, J

@ Five steps in processor design
= Analyze the instruction
= Determine the datapath components
= Assembly the components
= Determine the control
= Design the control unit

% The Complete Single Cycle Datapath

How Iw, sw, R-Type, beq, j instructions work?
Why the design of AUL control takes two levels?

% Delays in Single Cycle Datapath

L [

What are the delays for Iw, sw, R-Type, beq, j instructions?

% Remarks on Single Cycle Datapath

@ Single Cycle Datapath ensures the execution of any
instruction within one clock cycle

= Functional units must be duplicated if used multiple times by one
instruction. E.g. ALU. Why?

= Functional units can be shared if used by different instructions

@ Single cycle datapath is not efficient in time
= Clock Cycle time is determined by the instruction taking the
longest time. Eg. lw in MIPS
= Variable clock cycle time is too complicated.
= Multiple clock cycles per instruction — this lecture
= Pipelining — Chap 6

% Multiple Cycle Datapath

@ Minimizes Hardware: 1 memory for data and instruction, 1 ALU

A functional unit can used more than once as long as it is used on
different clock cycles

%Multiple Cycle Datapath with Control

MemWwri
lorD emwrite

MemRead

IRWrite

RegDest

RegWrite

ALUSICA

= Advantages: shared functional units, different cycles for different
instructions, short clock cycles
= Assumptions: each clock cycle can accommodate at most one of the
following operations: a memory access, a register file access, or an ALU
« Temporary registers: A, B, IR, MDR, ALUOut

@ A high level view of the multi-cycle datapath

[I,
{4
Regsu # \._‘
)

[S—

Pegister # _.F "/

i A

ot

a2

ALUSIcB

MemtoReg
ALUOp

%Supporting Jump and Conditional Branch

@ Need PC control
= PC is updated conditionally for branch and unconditionally for
normal increment and jumps
Control unit generates PCWrite and PCWriteCond based on op
code of the instruction
« For branch, PCWriteCond and Zero must be set
« For Jump or other unconditional PC update, PCWrite must be set
« Thus PCControl = (PCWriteCond and Zero) or PCWrite
= PC source selection
= A mux with 3 inputs: PC+4, PC + signExt(IR[15-0])<<2),
PCI[31-28] || (IR[25-0]<<2)

% The Complete Multicycle Dataath

!
=1

\%@reaking Instruction Execution into Multiple Cycles

@ Instruction Fetch
= IR = Memory[PC] PC = PC+4

a Instruction Decode/Register Fetch
= A=Reg[IR[25-21]] B = Reg[IR[20-16]]
ALUOUt = PC + (sign-extend(IR[15-0])<<2)

@ Execution, Address compuation, branch/jump completion
= R-type: ALUOut=AopB
= Memory access: ALUOut = A + sign-extend(IR[15-0])
= Branch: if (A==B) then PC = ALUOut
= Jump: PC=PC[31-28] || (IR[25-0]<<2)

@ Memory Access or R-type Completion
= R-type: Reg[IR[15-11]] = ALUOut
= Load: MDR = Memory[ALUOut] or
Store: Memory[ALUOut] = B

@ Memory read completion
= Load: Reg[IR[20-16]] = MDR

2 o

[e] s 10

(o)

e

=

regter 1

eress

" Read Fead
femry erter 2 Gata 1

rsicion
ik

nstrction 5-0]

% Defining the Control

@ The control of the multicycle datapath must specify
both the signals to be set in any step and the next
step in the sequence

@ Two techniques:
= Finite state machine
= Each state (a circle) contains the valid control signals
« Directional links point to next state
= Each cycle corresponds to one state
<« FSMis the graphical representation of the control

= Microprogramming
= Assume the set of control signals that must be asserted in a
state as an instruction to be executed by the datapath

< Microprogram is a symbolic representation of the control that
will be translated by a program to control logic

\%The high-level view of the FSM control

istan

—

‘ Instruction fetch / decode and register fetch ‘

| |

Memory access R-type Branch Jump
instructions instructions instruction instruction

> Finite State Machine Control

Figure 5.42

(s

% Implementation of the FSM Control

Figure 5.37

control log output

IIIIII Next state
Inputs from instruction
register opcode field

g In-Class Exercise

@ How to modify the complete datapath (Figure 5.33) for
the multiple cycle implementation to accommodate
the ori (or immediate) instruction? Given the FSM
control design

@ What about addi, jal and jr instructions?

% Exception Handling (1/6)

@ Exception vs. Interrupt: both are unexpected events
in control flow
= Interrupt: externally caused events
= Exception: internally caused events
@ Consider two types of exceptions in our current
implementation
= Arithmetic overflow
= Undefined instructions
@ How exceptions are handled?
= Save the address of the offending instruction to EPC. How to find
out the address of the offending instruction?
= Transfer control to the OS at some specified address. How?
= May transfer control back through EPC

% Exception Handling (2/6)

@ Cause register: astatus register to record the
reason of the\exception
= One single entry point for all exceptions can be used.

@ Vectored interrupt
= Control will be transferred based on the cause of the exception

= Eg: Exceptipn Type Exception Vector Address
undefined instruction C000 0000
arithmetic overflow C000 0020

example

‘%‘ Exception Handling (3/6)

¢ EPCWrite and CauseWrite
@ IntCause

= The LSB of the cause register to hold the state

= 0 for undefined instruction

= 1 for arithmetic overflow

= IntCause will be used to set the LSB of the Cause register
@ exception address: 8000 0180

= The entry point for exceptions

@ Question: How to modify the current datapath for
exception handling?

% Exception Handling (4/6)

MarWirin
MamioFisg
1R

HIVEN
\J T
Imstructon [5-0

% Exception Handling (5/6)

% Exception Handling (6/6)

iy Questions?

