CS 2541- Normal Forms: Inclass exercises. Solutions

Ques.1: R2(A,B,F), $A B \rightarrow F, B \rightarrow F$

First compute keys for R2. A,B do not appear on RHS of any dependency, so start by computing attribute set closure of $\{A B\}$. Since $A B \rightarrow F$, we have $\{A B\}+=\{A B F\}$ and therefore $\{A B\}$ is the key.

Since we have B \rightarrow F, i.e., F is partially dependent on the key, the relation is not in second normal form. Therefore it is not in 3NF (and therefore not in BCNF).

During BCNF decomposition, we have $\mathrm{B} \rightarrow \mathrm{F}$ as the non- BCNF relation therefore create new schema $(A, B)(B, F)$. Both are in BCNF. Note however that now we have lost the dependency $A B \rightarrow F$.

Ques.2: Consider the schema R1=(C,T,H,R,S,G) with attributes Course(C), Time (T), Hour (H), Section (S), Grade (G) Room (R) and the dependencies:
$\mathrm{C} \rightarrow \mathrm{T}$
$\mathrm{CS} \rightarrow \mathrm{G}$
$\mathrm{HS} \rightarrow \mathrm{R}$
$\mathrm{HT} \rightarrow \mathrm{R}$
$\mathrm{HR} \rightarrow \mathrm{C}$
a) Find the keys for R1.

First observe that H and S do not appear on the right hand side of any dependency, i.e., they cannot be derived from any other attribute. Therefore $\{\mathrm{HS}\}$ must be part of any key.
Next, compute attribute set closure starting with initial set $\mathrm{X}=\mathrm{X}^{+}=\{\mathrm{HS}\}$.
Since HS \rightarrow R, and LHS is in X^{+}we add R to the closure to get $X^{+}=\{H S R\}$
Next since $H R$ is in closure, and $H R \rightarrow C$ we add C to the closure to get $X^{+}=\{$HSRC $\}$
Since $\mathrm{C} \rightarrow \mathrm{T}$ and C is in closure, we add T to closure to get $\mathrm{X}^{+}=\{\mathrm{HSRCT}\}$.
Finally since $\mathrm{CS} \rightarrow \mathrm{G}$ and CS is in closure we add G to closure to get $\mathrm{X}^{+}=\{$HSRCTG $\}$and therefore $X=\{H S\}$ is the key.
b) Is R1 in 3NF?

No- because not all dependencies are of the form $\mathrm{A} \rightarrow \mathrm{B}$ where A is superkey or B is prime attribute. For example, $\mathrm{C} \rightarrow \mathrm{T}$ does not satisfy this (it is a transitive dependency).
c) Is R1 in BCNF? If not, then decompose into BCNF relations.

Since it is not in 3NF it is not in BCNF. To decompose, apply algorithm - note that we may end up with different schemas depending on which non-BCNF dependencies you remove first.

- Dependency $\mathrm{C} \rightarrow \mathrm{T}$ is not in BCNF. Therefore decompose into (C,T) and (H,S,C,R,G)
- (C,T) is in BCNF since only dependency in this table is $\mathrm{C} \rightarrow \mathrm{T}$
- $\mathrm{CS} \rightarrow \mathrm{G}$ is not in BCNF. Therefore decompose (HSCRG) into (CSG) and (HSCR)
- (HSCR) is not in BCNF since $\mathrm{HR} \rightarrow \mathrm{C}$ is not in BCNF. Therefore decompose into (HRC) and (HSR). Both these are in BCNF
- Final schema: (HRC), (HSR), (CSG) and (CT)

We have lost the dependency HT $\rightarrow \mathrm{R}$.

