
1

CS 2451
Database Schema Design

http://www.seas.gwu.edu/~bhagiweb/cs2541
Instructor: Dr. Bhagi Narahari

Based on slides © Ramakrishnan&Gerhke, ElMasri & Navathe, Dr R. Lawrence, UBC

Building Database Applications: Steps
1. Start with a conceptual model

• “On paper” using certain techniques
E-R Model

• ignore low-level details – focus on logical representation
• “step-wise refinement” of design with client input

2. Design & implement schema
• Design and codify (in SQL) the relations/tables
• Refine the schema – normalization
• Do physical layout – indexes, etc.

3. Import the data
4. Write applications using DBMS and other tools

Many of the hard problems are taken care of by other people
(DBMS, API writers, library authors, web server, etc.)

DBMS takes care of Query Optimization, Efficiency, etc.

Next:

Database Design Process- How to design a good
schema ?

Relational Model: Definitions Review
 Relations/tables, Attributes/Columns, Tuples/rows

• Attribute domains
 Superkey
 Key

• No two tuples can have the same value in the key attribute
• Primary key, candidate keys
• No primary key value can be null

 Referential integrity constraints
• Foreign key

2

Relational Schema Design
 Logical Level

• Whether schema has intuitive appeal for users
 Manipulation level

• Whether it makes sense from an efficiency or correctness point of
view

Informal Design Guidelines for Relational
Databases
 What is relational database design?

• The grouping of attributes to form "good" relation schemas
 Two levels of relation schemas

• The "user view" level
• The storage "base relation" level

 Design is concerned mainly with base relations
 What are the criteria for "good" base relations?

Schema Design Decisions

 Guidelines for database schema design: how to design a
“good” schema ?

 Example of a COMPANY database: two possible designs to
represent Employees and Department information

S1: EMPLOYEE(LNAME,FNAME,SSN,DNO)
DEPT(DNUM, DNAME, MGRSSN)

S2:
EMPDEPT(LNAME,FNAME,SSN,DNUM,DNAME,MGRSSN)

Question: Which one is better ?? S1 or S2 ?

Schema Design & Functional
Dependencies/Normal Forms

 Informal methods
• Rules of thumb, intuitive reasoning, experience

 Formal methods
• Provable properties
• Involve concept of Functional Dependencies
• Develop theoretical model to define what we mean by “good

schema”
• Normal forms are defined in terms of properties of the

functional dependencies and link to ‘good’ or ‘bad’ schema
design

If a relation is in Third Normal Form it is a “good”
design..etc.

3

Design Guidelines for Relational Databases
 We first discuss informal guidelines for good relational

design
 Then we discuss formal concepts of functional

dependencies and define normal forms
• - 1NF (First Normal Form)
• - 2NF (Second Normal Form)
• - 3NF (Third Normal Form)
• - BCNF (Boyce-Codd Normal Form)

Informal Guidelines: 1

 1: Try to make user interpretation easy
S1: EMP(FNAME, LNAME, SSN)

WORKS_ON (SSN, PNO)
PROJECT_LOC(PNO, PLOC)

S2: EMP(FNAME,LNAME,SSN, PNO,PLOC)

 Perhaps S2 has too much information to absorb per
tuple ?

Semantics of the Relational Attributes must be
clear
 GUIDELINE 1 : Informally, each tuple in a relation should

represent one entity or relationship instance. (Applies to
individual relations and their attributes).
• Attributes of different entities (EMPLOYEEs, DEPARTMENTs,

PROJECTs) should not be mixed in the same relation
• Only foreign keys should be used to refer to other entities
• Entity and relationship attributes should be kept apart as much

as possible.
 Bottom Line: Design a schema that can be explained easily

relation by relation. The semantics of attributes should be
easy to interpret.

Informal Guidelines: 2
 Try to reduce redundancy

• In S2, suppose only few projects
PLOC is unnecessarily repeated too often

• On the other hand, S1 repeats SSN in WORKS_ON
But SSN is a smaller attribute than PLOC (which may be a large
string)

S1: EMP(FNAME, LNAME, SSN)
WORKS_ON (SSN, PNO)
PROJECT_LOC(PNO, PLOC)

S2: EMP(FNAME,LNAME,SSN, PNO,PLOC)

4

Redundant Information in Tuples and Update
Anomalies
 Information is stored redundantly

• Wastes storage
Size of file relates to time to retrieve data

• Causes problems with update anomalies
Insertion anomalies
Deletion anomalies
Modification anomalies

Informal Guidelines: 3
 Try to avoid update anomalies

• Avoid having to search through entire table during update operation
Insert, delete, update/modify
Searching using a non-key attribute may require searching the entire
table

• Avoid losing information

 This is an important criteria
• efficiency

EXAMPLE OF AN UPDATE ANOMALY
 Consider the relation:

• EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
 Update Anomaly:

• Changing the name of project number P1 from “Billing” to “Customer-
Accounting” may cause this update to be made for all 100 employees
working on project P1.

EXAMPLE OF AN INSERT ANOMALY
 Consider the relation:

• EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
 Insert Anomaly:

• Cannot insert a project unless an employee is assigned to it.
 Conversely

• Cannot insert an employee unless an he/she is assigned to a project.

5

EXAMPLE OF A DELETE ANOMALY
 Consider the relation:

• EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
 Delete Anomaly:

• When a project is deleted, it will result in deleting all the employees
who work on that project.

• Alternately, if an employee is the sole employee on a project, deleting
that employee would result in deleting the corresponding project.

Guideline for Redundant Information in Tuples
and Update Anomalies

 GUIDELINE 2:
• Design a schema that does not suffer from the insertion, deletion and

update anomalies.
• If there are any anomalies present, then note them so that applications

can be made to take them into account.

Informal Guidelines: 4
 Avoid too many NULL values

• Space is wasted…why is this a problem ?
• Problems occur when using aggregate functions like count or sum
• NULLs can have different intentions

Attribute does not apply
Value unknown and will remain unknown
Value unknown at present

What are Lossless Joins & Spurious
Tuples ?

 Split a table into smaller tables (with fewer columns in each)
– sometimes a better design in our examples
• How to split ?

 Must be able to reconstruct the ‘original’ table
 When reconstructing the “original” data, should not

introduce spurious tuples
• Also called non-additive joins

6

Informal Guidelines 5: Generation of Spurious
Tuples – avoid at any cost
 Bad designs for a relational database may result in

erroneous results for certain JOIN operations
 The "lossless join" property is used to guarantee meaningful

results for join operations

 GUIDELINE :
• The relations should be designed to satisfy the lossless join condition.
• No spurious tuples should be generated by doing a natural-join of any

relations.

Decomposition of a Table into smaller tables
 There are two important properties of decompositions:

a) Non-additive or losslessness of the corresponding join
b) Preservation of the functional dependencies.

 Note that:
• Property (a) is extremely important and cannot be sacrificed.
• Property (b) is less stringent and may be sacrificed. (Or can

enforce using Triggers and constraints.)

Informal Guidelines: 6
 Do not lose the dependencies

• Will define this after we define functional dependencies….

 Informally:
• Do not lose constraints and business rules when we decompose

tables into smaller tables

Example: Decomposing a table into smaller
tables

Original Table S has 3
columns

Decompose into:
S1: CAR (ID, Make, Color)

S2: CAR1 (ID, Color)
CAR2 (Color, Make)

123 Toyota Blue

456 Audi Blue

789 Toyota Red

7

Question: Is there a problem with this
decomposition ?

123 Blue

456 Blue

789 Red

Blue Toyota

Blue Audi

Red Toyota

S2-Car 1 S2-Car 2

Spurious tuples…We do not get back the
original table

123 Blue Toyota

123 Blue Audi

456 Blue Toyota

456 Blue Audi

789 Red Toyota

Summary of Problems
 Insertion, Deletion, modification anomalies
 Too many NULLs
 Spurious tuples – called non-additive join
 We need a theory of schema design

• Functional dependencies and normalization
 Using functional dependencies define “normal forms” of

schema
• A schema in a “Third Normal Form” will avoid certain anomalies

Normalization
 Normalization is a technique for producing relations with

desirable properties.

 Normalization decomposes relations into smaller relations
that contain less redundancy. This decomposition requires
that no information is lost and reconstruction of the original
relations from the smaller relations must be possible.

 Normalization is a bottom-up design technique for producing
relations. It pre-dates ER modeling and was developed by
Codd in 1972 and extended by others over the years.
• Normalization can be used after ER modeling or independently.
• Normalization may be especially useful for databases that have

already been designed without using formal techniques.

8

Normalization Motivation

 The goal of normalization is to produce a set of relational
schemas R1, R2, …, Rm from a set of attributes A1, A2, … ,An.

• Imagine that the attributes are originally all in one big relation

R= {A1, A2, .., An} which we will call the Universal Relation.

• Normalization divides this relation into R1, R2, …, Rm.

Desirable Relational Schema Properties
 Relational schemas that are well-designed have several

important properties:
• 1) The most basic property is that relations consists of attributes that

are logically related.
The attributes in a relation should belong to only one entity or
relationship.

• 2) Lossless-join property ensures that the information decomposed
across many relations can be reconstructed using natural joins.

• 3) Dependency preservation property ensures that constraints on
the original relation can be maintained by enforcing constraints on the
normalized relations.

• 4) Avoid update anomalies

Formal Model for Schema Design:
Functional Dependencies
 Functional dependencies (FDs)

• Are used to specify formal measures of the "goodness" of relational
designs

• And keys are used to define normal forms for relations
• Are constraints that are derived from the meaning and

interrelationships of the data attributes
 A set of attributes X functionally determines a set of

attributes Y if the value of X determines a unique value for Y
 Functional dependencies represent constraints on the

values of attributes in a relation and are used in
normalization

Functional Dependencies: Definition

 A functional dependency (abbreviated FD) is a statement
about the relationship between attributes in a relation. We say
a set of attributes X functionally determines an attribute Y if
given the values of X we always know the only possible value
of Y.
• Notation: X Y
• X functionally determines Y
• Y is functionally dependent on X

 Example:
• eno ename
• eno, pno hours

9

Defining Functional Dependencies
 X  Y holds if whenever two tuples have the same value for

X, they must have the same value for Y
• For any two tuples t1 and t2 in any relation instance r(R): If

t1[X]=t2[X], then t1[Y]=t2[Y]
 X  Y in R specifies a constraint on all relation instances

r(R)
 Written as X  Y; can be displayed graphically on a relation

schema (denoted by the arrow).
• FDs are derived from the real-world constraints on the attributes

Notation for Functional Dependencies

 A functional dependency has a left-side called the determinant
which is a set of attributes, and one attribute on the right-side.

 Strictly speaking, there is always only one attribute on the RHS,
but we can combine several functional dependencies into one:

 Remember that this is really short-hand for two functional
dependencies.

determined
attributedeterminant

eno, pno hours

eno, pno hours
eno, pno resp

eno, pno hours, resp

Why the Name
"Functional" Dependencies?
 Functional dependencies get their name because you could

imagine the existence of some function that takes in the
parameters of the left-hand side and computes the value on the
right-hand side of the dependency.

 Example:

 Remember that no such function exists, but it may be useful to
think of FDs this way.

eno, pno  hours
f(eno, pno)  hours
int f (String eno, String pno)
{ // Do some lookup...

return hours;
}

Defining FDs from instances
 Note that in order to define the FDs, we need to understand

the meaning of the attributes involved and the relationship
between them.

 An FD is a property of the attributes in the schema R
 Given the instance (population) of a relation, all we can

conclude is that an FD may exist between certain attributes.
 What we can definitely conclude is – that certain FDs do not

exist because there are tuples that show a violation of those
dependencies.

10

Question
 We have attributes (A1, A2, A3, A4) in a table
 We have functional dependencies

A1 A2
A1 A3
A1  A4

Question: What property does A1 have ?

Next: Functional Dependencies &
Normal Forms

 Normalization requires decomposing a relation into smaller
tables

 Normal forms are properties of relations
 We say a relation is in xNF if its attributes satisfy certain

properties
• Properties formally defined using functional dependencies
• For example, test the relation to see if it is in 3NF
• If not in 3NF, then change design…how ?

Decomposition

How to go about designing a good
schema ?
 How to create a 3NF database schema ? (i.e., a good

design) ?
 Ad-hoc approach

• Create relations intuitively and hope for the best!
 Formal method – procedure Start with single relation with all

attributes
• Systematically decompose relations that are not in the desired normal

form
• Repeat until all tables are in desired normal form
• Can decomposition create problems if we are not careful ?

Yes: (i) Spurious tuples and (ii) lost dependencies

 Can we automate the decomposition process…
Input: Set of attributes and their functional dependencies
Output: A ‘good’ schema design

General Thoughts on Good Schemas
Ideally we want all attributes in every tuple to be determined

only by the superkey (for key X  Y, a superkey is a “non-
minimal” X)
What does this say about redundancy?

But:
• What about tuples that don’t have keys (other than the entire value)?

11

Sets of Functional Dependencies
 Relation EMP-DEPT(SSN, NAME, ADDRESS, DNUMBER,

DNAME, MGRSSN}
• Employee info; the dept they are assigned to; their manager’s ssn
• Key is SSN

 Some obvious functional dependencies
• {SSN}  {NAME, ADDRESS, DNUMBER}
• {DNUMBER}  {DNAME, MGRSSN}

 What else can we infer from above dependencies ?

Sets of Functional Dependencies

 Some obvious functional dependencies
• {SSN}  {NAME, ADDRESS, DNUMBER}
• {DNUMBER}  {DNAME, MGRSSN}

 From above dependencies, we can infer
• {SSN}  {DNAME, MGRSSN}

 Concept of a set of dependencies that can be inferred from
the given set
• Inference rules ?
• Closure: F+ is all dependencies that can be inferred from F

Some Questions:
 Given a set of functional dependencies (properties on the

data), what other properties can we infer ?
 What is the formal definition of a key ?
 How can we use the formal framework of Functional

dependencies to define a ‘good schema design” ?
 Can we automate the process (develop algorithms) ?

First question:
 Given a set F of functional dependencies, what are all the

properties, i.e. dependencies, we can infer ?

 Do two sets of functional dependencies, F and G, imply the
same set of properties ?

 How to formally define this property ?

12

Armstrong’s Axioms: Inferring FDs

 Some FDs exist due to others; can compute using
Armstrong’s axioms:

 Reflexivity: If Y  X then X  Y (trivial
dependencies)

name, sid  name

 Augmentation: If X  Y then XW  YW
cid  subj so cid, exp-grade  subj, exp-grade

 Transitivity: If X  Y and Y  Z then X  Z
cid crnum and crnum  subj
so cid  subj

Armstrong’s Axioms Lead to…

 Union: If X  Y and X  Z
then X  YZ

 Pseudotransitivity: If X  Y and WY  Z
then XW  Z

 Decomposition: If X  Y and Z  Y
then X  Z

Can prove these from Armstrong’s Axioms…

Why Armstrong’s Axioms?
 Why are Armstrong’s axioms (or an equivalent rule set)

appropriate for FD’s? They are:
• Consistent: any relation satisfying FD’s in F will satisfy those

in F +
• Complete: if an FD X  Y cannot be derived by Armstrong’s

axioms from F, then there exists some relational instance
satisfying F but not
X  Y

 In other words, Armstrong’s axioms derive all the FD’s
that should hold

Closure of a Set of FD’s
Defn. Let F be a set of FD’s.

Its closure, F+, is the set of all FD’s:
{X  Y | X  Y is derivable from F by Armstrong’s

Axioms}
Which of the following are in the closure of our Student-

Course FD’s?
name  name F={ sid  name
crnum  subj cid  crnum
cid  subj (sid,cid)  expgrade
crnum, sid  subj crnum  subject}
crnum  sid

13

Computing the Closure of FDs

 The transitivity rule of FDs can be used for three purposes:
• 1) To determine if a given FD X  Y follows from a set of FDs F.
• 2) To determine if a set of attributes X is a superkey of R.
• 3) To determine the set of all FDs (called the closure F+) that can be

inferred from a set of initial functional dependencies F.

 The basic idea is that given any set of attributes X, we can
compute the set of all attributes X+ that can be functionally
determined using F. This is called the closure of X under F.
• For purpose #1, we know that X  Y holds if Y is in X+.
• For purpose #2, X is a superkey of R if X+ is all attributes of R.
• For purpose #3, we can compute X+ for all possible subsets X of R to

derive all FDs (the closure F+) .

Computing the Attribute Closure

 The algorithm is as follows:
• Given a set of attributes X.
• Let X+ = X
• Repeat

Find a FD in F whose left side is a subset of X+.
Add the right side of F to X+.

• Until (X+ does not change)

 After the algorithm completes you have a set of attributes X+

that can be functionally determined from X. This allows you to
produce FDs of the form:
• X  A where A is in X+

Computing Attribute Set Closure

 For attribute set X, compute closure X+ by:

Closure X+ := X;
repeat until no change in X+ {

if there is an FD U  V in F
such that U is in X+

then add V to X+}

Attribute Closure: Example
 Let F be:

• SSN → EName
• PNUMBER → PNAME, PLOCATION
• SSN, PNUMBER → HOURS

• What is the closure of {SSN, PNUMBER}

14

Attribute Set Closure and Keys
 If X is a key over relation scheme R, then what is X+

• Formal definition of a Key
 How to determine the keys for relation R ?

• R is a set of attributes {A1,A2,…,An}
• For each subset S of R, compute S+

If S+ = R then S is Key
• What is the “catch” here ?
• Can you improve this ?

Example
 R= (C,T,H,R,S)

• Course (C), Time (T), Hour (H), Room (R), Section (S), Grade (G)
C  T CS  G
HS  R HR  C
HT  R

Find all keys for this relation
Hint: What is the smallest attribute set that must be part of
the key ?

Attribute Set Closures
 If attribute A does not appear on RHS of any FD, then any

key must contain A
 If X is a key, then anything containing X is a superkey
 If X is a key, and Y  X is a FD then Y is a key

Example 2: Find All keys of R
 R= (A,B,C,D,E)
 A → BC
 CD → E
 B → D
 E → A

15

Next….Normal Forms
 Now we are ready to formally define the normal forms

• And procedure to decompose a relation into one of the normal forms

 Informal definitions:
 1st normal form

• All attributes depend on the key
 2nd normal form

• All attributes depend on the whole key
 3rd normal form

• All attributes depend on nothing but the key

