
1

CS 2451
Database Systems:
Relational Data Model

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari & R. Leontie

Based on slides © Ramakrishnan&Gerhke, R. Lawrence

1

Today…
§ Relational Data Model- Definitions

• High level concepts
• We discuss how these are implemented in SQL

More details when we cover SQL

§ Front end tools – HTML/CSS/…
§ Next class - start with formal query languages before

moving to SQL

2

Database “People” – i.e., roles
§ There are several types of database ‘personnel’:

• Database administrator (DBA) - responsible for installing,
maintaining, and configuring the DBMS software.
o gets paid the big bucks !

• Data administrator (DA) - responsible for organizational policies on
data creation, security, and planning.

• Gets to be on the hot seat if data leaks happen..
• Database designer - defines and implements a schema for a

database and associated applications.
Logical/Conceptual database designer - interacts with users to
determine data requirements, constraints, and business rules.
Physical database designer - implements the logical design for a
data model on a DBMS. Defines indexes, security, and constraints.

• DBMS developer - writes the DBMS software code.
• Application developer - writes code that uses the DBMS.
• User - uses the database directly or through applications.

YOU

3

Some Terminology
§ Database:

• A collection of related data.
§ Data:

• Known facts that can be recorded and have an implicit meaning.
§ Mini-world:

• Some part of the real world about which data is stored in a database.
For example, student grades and transcripts at a university.

§ Database Management System (DBMS):
• A software package/ system to facilitate the creation and maintenance

of a computerized database.
Example: MySQL, Oracle, MongoDB

§ Database System:
• The DBMS software together with the data and (usually) the

applications

4

http://www.seas.gwu.edu/~bhagiweb/cs2541

2

Recent Developments
(Recent in my timeline J)
n Social Networks started capturing a lot of information about

people and their communications (tweets, photos, videos..)
n - Facebook, Twitter, Linked-In,….

n All of the above constitutes data
n Search Engines: Google, Bing, Yahoo : collect their own

repository of web pages for searching purposes
§ New Technologies emerging to manage vast amounts of

data generated on the web:

• Big Data storage systems involving large clusters
• NOSQL (Not Only SQL) systems
• A large amount of data now resides on the “cloud” which means it is in

huge data centers using thousands of machines.

5

How will your database system be architected:
Three-Tier Client-Server Architecture

Tier 1: Client (Web/mobile)
•User Interface (using HTML/CSS)

Tier 3: Database Server
•Data storage/management
•Using MySQL

Database

Tier 2: Application Server
•Business logic – written using PHP
•Data processing logic

6

Data Models..more definitions
§ Data Model:

• A formal framework to describe the data and structure,
constraints, of a database, and

• the operations for manipulating these structures
• Constructs used to define the database structure

Data types, format (table),…ex: name is a char string
§ Constraints:

• Constraints specify some restrictions on valid data; these
constraints must be enforced at all times..ex: GWID is unique

§ Data Model Operations:
• These operations are used for specifying database retrievals and

updates by referring to the constructs of the data model.
Ex: find student name with GWID= abcd

7

More terminology..Levels of Data Models
§ Conceptual (high-level, semantic) data models:

• Provide concepts that are close to the way many users
perceive data.

§ Logical level:
• Provide concepts used by DBMS implementations
• *In earlier definition we mixed conceptual and logical

§ Physical (low-level, internal) data models:
• details of how data is stored in the DBMS/computer.
• These are usually specified in an ad-hoc manner through

DBMS design and administration manuals
§ Self-Describing Data Models:

• Combine the description of data with the data values.
Examples include JSON/XML, key-value stores and some
NOSQL systems.

8

3

Conceptual Data Model:
The Entity-Relationship (ER) Model

§ Provide database design that is easy to interpret by a wide
class of users
• Not just database/CS experts
• You want to provide a design to a “client” using a representation they

can understand

§ What’s a natural way to provide an easy to interpret
representation….
• Fill in the blanks: A ________ is worth a thousand words

§ “Visual” representation of the data, how it interacts,
constraints, etc.
• And can be automatically mapped to a data model (relational)

§ ER-Model is one such data model
• We will return to it after we cover the relational model

9

Example: ER Design for mini-banner:

STUDENT COURSETakes

namesid cid subj

PROFESSOR

Teaches

semester

fid name

exp-grade

“Who’s taking what, and what grade do they
expect?”

One picture provides info on what your system stores and models
UML anyone ?

Entities = Professors, Students, Courses
Relationship between entities

10

Some more terminology…..
Schemas versus Instances
§ Similar to types and variables in programming languages
§ Database Schema: structure of the database

• The description of a database.
• Includes descriptions of the database structure, data types, and the

constraints on the database.
• Schema Diagram: illustrative display of a database schema.

§ Database instance/state: actual data (content) stored in a
database at a particular moment in time
• Initial state: when database is loaded
• Valid state: A state that satisfies the structures and constraints of the

database…
job of DBMS to ensure valid entries

• The database schema changes very infrequently.
Preferably never

• The database state changes every time the database is updated.

11

Database Schema for a COMPANY
Database

12

4

Example of a Database Schema

13

Populated database state/instance for
COMPANY

14

Example Instance & Schema

§ Our focus now:
relational schema – set
of tables

§ Can have other kinds of
schemas – XML, object,
…

sid name
1 Ross
2 Lee
3 Emily

fid name
1 Wood
2 Heller
8 Narahari

sid exp-grade cid
1 A 550-0103
1 A 700-1003
3 C 500-0103

cid subj sem
550-0103 DB S13
700-1003 AI S13
500-0103 Arch F12

fid cid
1 550-0103
2 700-1003
8 500-0103

STUDENT Takes COURSE

PROFESSOR Teaches

15

Slide 2- 16

History of Data Models

§ Network Model
§ Hierarchical Model
§ Relational Model
§ Object-oriented Data Models

• Object-Relational Models

§ NoSQL/ Big Data technologies
• Schema-less designs

16

5

History of Data Models
§ Network Model:

• Network of records
• The first network DBMS implemented by Honeywell in 1964-65
• Can model complex relationships between records i.e., graphs!

§ Hierarchical Model:
• First implemented by IBM and Rockwell Intl. 1965 (?)
• Hierarchical network of records (trees like)
• Abstract view of an Org Chart – models hierarchy in the data

§ Query language: COBOL
• Hear about the Y2K bug/problem ?

§ Disadvantages:
• Database contains complex set of pointers that thread through sets

of records
Little scope for “query optimization”, Procedural nature of processing
Do you like working with pointers ? J

17

Next: Relational Model Concepts
§ The relational Model of Data is based on the concept of a

Relation
• The strength of the relational approach to data management

comes from the formal foundation provided by the theory of
relations

§ start with review of essentials of the formal relational model
§ In practice, there is a standard model based on SQL

§ Note: There are several important differences between the
formal model and the practical model
• And, there are variations in SQL features provided on different DBMS

systems
Oracle SQL, MySQL, MS-SQL,…

18

Relational Model Concepts
§ The model was introduced by Dr. E.F. Codd of IBM

Research in 1970
"A Relational Model for Large Shared Data Banks," Communications
of the ACM, June 1970
Describes the data minimally and mathematically

– A relation describes an association between data items – tuples with
attributes

Uses standard mathematical (logical) operations over the data –
relational algebra or relational calculus

§ It contributed: data independence, query languages, query
optimization

§ The above paper caused a major revolution in the field of
database management and earned Dr. Codd the coveted
ACM Turing Award

19

Why Did It Take So Many Years to Implement
Relational Databases?

§ Codd’s original work: 1969-70
§ Earliest relational database research: ~1976
§ Commercial Relational DBMSs: ~mid 1980s
§ Widespread deployment” mid-1990’s
§ Why the gap? Top 10 reasons…

1. “You could do the same thing in other ways”
2. “Nobody wants to write math formulas”
3. “Why would I turn my data into tables?”
4. “It won’t perform well”
5. …

§ What do you think?

20

6

Relational Model Definitions
§ A relation is a table with columns and rows.
§ An attribute is a named column of a relation.
§ A tuple is a row of a relation.
§ A domain is a set of allowable values for one or more

attributes.
§ The degree of a relation is the number of attributes it

contains.
§ The cardinality of a relation is the number of tuples it

contains.
§ A relational database is a collection of normalized relations

with distinct relation names.

21

Example of a Relation

Degree= 7, Cardinality = 5

22

Relational Model: Formal Definition
§ Formally, a table is a relation over K sets (domains)

• R Í A1× A2 …. × AK
Subset of the cartesian product of the K domains

• Tuple= (t1,t2,…,tK), where ti Î Ai

§ A database is a collection of relations
§ Theoretically: a relation is a set of tuples; no tuple can occur

more than once
• Real systems may allow duplicates for efficiency or other reasons –

we’ll ignore this for now

23

Relation Schemas and Instances
§ A relation schema is a definition of a single relation.

§ A database schema is a set of relation schemas (modeling
a particular domain).

§ A relation instance denoted r(R) over a relation schema R(A1, A2, …,
An) is subset of the Cartesian product of the domains of all attributes in
the relation schema

§ r(R) Í dom(A1) ´ dom(A2) ´ … ´ dom(An)
• i.e., a set of n-tuples <d1, d2, ..., dn> where each di is an element of

dom(Ai) or is null.
• A value of null represents a missing or unknown value.

24

7

Definition Summary

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column
Values

Domain

Row Tuple

Cardinality Number of rows

Table Definition Schema of a Relation

Populated Table State of the Relation

25

Properties of relations
§ Each relation name is unique

• No two relations have the same name

§ Each cell of the relation (value of a domain) contains exactly
one atomic (single) value

§ Each attribute of a relation has a distinct name
§ values of an attribute are all from the same domain
§ Each tuple is distinct. There are no duplicate tuples

• Properties of a relation; in SQL can be bags (allow duplicates)

§ order of attributes is not really important
• Note difference from mathematical def of relations

Tuple (x,y) is not the same as (y,x) in def of relation
• Reason: attribute names represent domain and can be reordered

§ Order of tuples is not important

26

Properties and constraints of the data
§ Data represented as a relation/table
§ Schema specifies the attributes/columns and their type

§ Any other properties we need to define to capture the
“application”

§ Need to capture the ‘business’ rules:
• How do we uniquely identify a student ?
• Can their letter grade be any alphabet ?
• Can a student take a course that is not in the course schedule/bulletin

?
• ….

§ Concept of Constraints

27

CONSTRAINTS
Constraints determine which values are permissible (or not) in
the database. three main types:
§ Inherent or Implicit Constraints:

• These are based on the data model itself. (E.g., relational model does
not allow a list as a value for any attribute)

§ Schema-based or Explicit Constraints – Integrity
Constraints: are rules or restrictions that apply to the
database and limit the data values it may store
• They are expressed in the schema by using the facilities provided by

the model.

§ Application based or semantic constraints:
• These are beyond the expressive power of the model and must be

specified and enforced by the application programs.

28

8

Integrity Constraints (ICs)
§ IC: condition that must be true for any instance of the

database; e.g., domain constraints.
• ICs are specified when schema is defined.
• ICs are checked when relations are modified.

§ A legal instance of a relation is one that satisfies all
specified ICs.
• DBMS should not allow illegal instances.

§ Why is this useful
• If the DBMS checks ICs, stored data is more faithful to real-

world meaning.

§ Think of the constraints as the business rules derived
from the application

§ Carefully analyze the semantics of the real world app
before defining the constraints

29

Where do ICs Come From?

§ ICs are based upon the semantics of the real-world
enterprise that is being described in the database
relations.
• Need to carefully analyze the application before reaching a

conclusion on the Integrity Constraints!

§ We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true by
looking at an instance.
• An IC is a statement about all possible instances!
• From example, we know name is not a key, but the assertion

that sid is a key is given to us.

§ Key and foreign key ICs are the most common; more
general ICs supported too.
• Shall return to these after we cover DML aspect of SQL

30

Definition: Relational Model Integrity Constraints
§ Integrity rules are used to ensure the data is accurate.
§ Types of constraints:

• Domain constraint - Every value for an attribute must be an element
of the attribute's domain or be null.
null represents a value that is currently unknown or not applicable.
null is not the same as zero or an empty string.

• Entity integrity constraint - In a base relation, no attribute of a
primary key can be null.

• Key constraint – every relation must have a key
• Referential integrity constraint - If a foreign key exists in a relation,

then the foreign key value must match a primary key value of a tuple
in the referenced relation or be null.

31

Key Constraints
§ Superkey of R:

• Is a set of attributes SK of R with the following condition:
No two tuples in any valid relation state r(R) will have the same
value for SK
That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ¹ t2[SK]
This condition must hold in any valid state r(R)

§ Candidate Key of R:
• A "minimal" superkey
• That is, a key is a superkey K such that removal of any attribute

from K results in a set of attributes that is not a superkey (does
not possess the superkey uniqueness property)

• A Key is a Superkey but not vice versa

§ Primary Key: a DBA chosen key for the relation/table

32

9

Primary Key Constraints
§ Every relation must have a key
§ A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key.
• Part 2 false? A superkey.
• If there’s >1 key for a relation, one of the keys is chosen (by DBA) to

be the primary key.
§ E.g., what is a key for Students relation ?
§ sid is a key for Students. (What about name?) The set {sid,

gpa} is a superkey.

33

Key Constraints (continued)
§ Example: Consider the CAR relation schema:

• CAR(State, Reg#, SerialNo, Make, Model, Year)
• CAR has two keys:

Key1 = {State, Reg#}
Key2 = {SerialNo}

• Both are also superkeys of CAR
• {SerialNo, Make} is a superkey but not a key.

§ In general:
• Any key is a superkey (but not vice versa)
• Any set of attributes that includes a key is a superkey
• A minimal superkey is also a key
• Can have many candidate keys, one of them chosen as primary

key

34

Key Constraints (continued)
§ If a relation has several candidate keys, one is chosen

arbitrarily to be the primary key.
• The primary key attributes are underlined.

§ Example: Consider the CAR relation schema:
• CAR(State, Reg#, SerialNo, Make, Model, Year)
• We chose SerialNo as the primary key

§ The primary key value is used to uniquely identify each tuple
in a relation
• Provides the tuple identity

§ Also used to reference the tuple from another tuple
• General rule: Choose as primary key the smallest of the

candidate keys (in terms of size)
• Not always applicable – choice is sometimes subjective

35

Referential Integrity
§ A constraint involving two relations

• The previous constraints involve a single relation.

§ Used to specify a relationship among tuples in two
relations:
• The referencing relation and the referenced relation.

§ Examples:
• Student enrolled in a course
• Employee working on a project: in Works_On table

36

10

Foreign Keys in SQL

§ Only students listed in the Students relation should be
allowed to enroll for courses.

• If a value of sid appears in Enrolled relation then it MUST appear in
Students relation

“Only students can take courses”

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Jazz101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

37

Foreign Keys, Referential Integrity

§ Foreign key : Set of fields in one relation that is used to
`refer’ to a tuple in another relation. (Must correspond to
primary key of the second relation.)
• Like a `logical pointer’.

§ In Enrolled table – sid is a student, what can we say about
the students table ?
• Enrolled(sid: string, cid: string, grade: string)

§ sid in enrolled is a foreign key referring to Students:
• The student with this ID MUST exist in the Students table
• If all foreign key constraints are enforced, referential integrity is

achieved, i.e., no dangling references.

38

Referential Integrity (or foreign key)
Constraint – more general definition
§ Statement of the constraint

• The value in the foreign key column (or columns) FK of the
referencing relation R1 can be either:

(1) a value of an existing primary key value of a corresponding
primary key PK in the referenced relation R2, or
(2) a null.

§ In case (2), the FK in R1 should not be a part of its own
primary key.

39

Other Types of Constraints
§ Semantic Integrity Constraints:

• based on application semantics and cannot be expressed by the
model per se

• Example:
• “the max. no. of hours per employee for all projects he or she

works on is 40 hrs per week”;
• Grade cannot be any alphabet; …

§ A constraint specification language may have to be used to
express these

§ SQL-99 allows CREATE TRIGGER and CREATE ASSERTION to
express some of these semantic constraints

§ Keys, Permissibility of Null values, Candidate Keys (Unique in SQL),
Foreign Keys, Referential Integrity etc. are expressed by the
CREATE TABLE statement in SQL.

40

11

When do Integrity Constraints get triggered…

41

Slide 5- 42

COMPANY Database Schema

42

Populated database state
§ Whenever the database is changed, a new state arises
§ Basic operations for changing the database:

• INSERT a new tuple in a relation
• DELETE an existing tuple from a relation
• MODIFY an attribute of an existing tuple

§ Next slide shows an example state for the COMPANY
database schema

§ The update operations must keep the database in a
consistent state – i.e. all instances must satisfy integrity
constraints

§ Updates may propagate to cause other updates
automatically. This may be necessary to maintain integrity
constraints.

43

Populated database state for COMPANY

44

12

Update Operations on Relations
§ In case of integrity violation, several actions can be taken:

• Cancel the operation that causes the violation (RESTRICT or REJECT
option)

• Perform the operation but inform the user of the violation
• Trigger additional updates so the violation is corrected (CASCADE

option, SET NULL option)
• Execute a user-specified error-correction routine

45

Possible violations for each operation
§ INSERT may violate any of the constraints:

• Domain constraint:
if one of the attribute values provided for the new tuple is not of the
specified attribute domain

• Key constraint:
if the value of a key attribute in the new tuple already exists in
another tuple in the relation

• Referential integrity:
if a foreign key value in the new tuple references a primary key
value that does not exist in the referenced relation

• Entity integrity:
if the primary key value is null in the new tuple

46

Possible violations for each operation
§ DELETE may violate only referential integrity:

• If the primary key value of the tuple being deleted is referenced
from other tuples in the database

Can be remedied by several actions: RESTRICT, CASCADE, SET
NULL (see Chapter 6 for more details)

– RESTRICT option: reject the deletion
– CASCADE option: propagate the new primary key value into the

foreign keys of the referencing tuples
– SET NULL option: set the foreign keys of the referencing tuples to

NULL
• One of the above options must be specified during database

design for each foreign key constraint

47

Possible violations for each operation
§ UPDATE may violate domain constraint and NOT NULL

constraint on an attribute being modified
§ Any of the other constraints may also be violated,

depending on the attribute being updated:
• Updating the primary key (PK):

Similar to a DELETE followed by an INSERT
Need to specify similar options to DELETE

• Updating a foreign key (FK):
May violate referential integrity

• Updating an ordinary attribute (neither PK nor FK):
Can only violate domain constraints

48

13

Relational Query Languages
§ A major strength of the relational model: supports simple,

powerful querying of data.
Queries can be written intuitively, and the DBMS is responsible for
efficient evaluation.

– The key: precise semantics for relational queries.
– Allows the optimizer to extensively re-order operations, and still

ensure that the answer does not change.

49

Relational Query Languages

§ Query languages:
• Allow specification of schemas and constraints
• Allow manipulation and retrieval of data from a database.

§ Relational model supports simple, powerful QLs:
• Strong formal foundation based on logic.
• Allows for much optimization.

§ Query Languages != programming languages!
• QLs not expected to be “Turing complete”.
• QLs not intended to be used for complex calculations.
• QLs support easy, efficient access to large data sets.

50

Formal Query Languages
§ Formal query languages are defined as mathematical

operators over the set
• advantage of a formal language ?
• Relational algebra, Relational calculus are examples

§ Procedural vs Non-procedural languages
• Procedural: what data to fetch from DB and how/where to get the data
• Non-procedural: what data to fetch from DB

System/DBMS needs to figure out the “how”
• Can have a mix in practice
• Relational algebra: procedural language
• Relational calculus: non-procedural (declarative)

51

SQL: Structured Query Language
The standard language for relational data

• Invented by folks at IBM, esp. Don Chamberlin
• Actually not a great language…
• Beat a more elegant competing standard, QUEL, from Berkeley

Separated into a DML & DDL

SQL DML component based on relational algebra & calculus

52

14

SQL
§ components

• Data definition (DDL) – to define schema/tables
Define Schema
Define Constraints

• Manipulation/query (DML) – for queries
• Transaction control – to specify a transaction
• Index – to specify storage and indexing schemes
• Authorization- for access control/security

We will cover the DDL and query part of SQL first
Shall return to the other components after we cover those topics

53

The Big Picture: SQL to Algebra to
Query Plan to Web Page

SELECT *
FROM STUDENT, Takes, COURSE

WHERE STUDENT.sid = Takes.sID
AND Takes.cID = cid

STUDENT

Takes COURSE

Merge

Hash

by cid by cidOptimizer

Execution
Engine

Storage
Subsystem

Web Server /
UI / etc

Query Plan – an
operator tree

54

