
1

CS 2451

DBMS System Design: A
brief Introduction

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari

Based on slides © Ramakrishnan&Gerhke,

Building Database Applications: Steps
1. Start with a conceptual model

• “On paper” using certain techniques (E-R Model)
• ignore low-level details – focus on logical representation
• “step-wise refinement” of design with client input

2. Design & implement schema
• Design and codify (in SQL) the relations/tables
• Refine the schema – normalization
• Do physical layout – indexes, etc.

3. Import the data
4. Write applications using DBMS and other tools

Many of the hard problems are taken care of by other people
(DBMS, API writers, library authors, web server, etc.)

DBMS takes care of Query Optimization, Efficiency, etc.

Three-Tier Client-Server Architecture

Tier 1: Client (Web/mobile)
•User Interface

Tier 3: Database Server
•Data validation
•Data storage/management

Database

Tier 2: Application Server
•Business logic
•Data processing logic

DBMS
 A database management system provides efficient, convenient, and

safe multi-user storage and access to massive amounts of persistent
data.

 Efficient - Able to handle large data sets and complex queries without
searching all files and data items.

 Convenient - Easy to write queries to retrieve data.
 Safe - Protects data from system failures and hackers.
 Massive - Database sizes in gigabytes/terabytes/petabytes.
 Persistent - Data exists after program execution completes.
 Multi-user - More than one user can access and update data at the

same time while preserving consistency….concept of transactions

2

Components of a DBMS
 A DBMS is a complicated software system containing many

components:
• Query processor - translates user/application queries into low-level

data manipulation actions.
Sub-components: query parser, query optimizer

• Storage manager - maintains storage information including memory
allocation, buffer management, and file storage.

Sub-components: buffer manager, file manager

• Transaction manager - performs scheduling of operations and
implements concurrency control algorithms.

DBMS Architecture

DBMS
Parser +
Compiler

Database API

Users

DB
Files

End-User
Programs

Direct (SQL)
Users

Database
Administrators

Query
Planner

Optimizer Execution
Engine

Buffer
Manager

File
Manager

Transaction
Manager

Recovery
System

Query
Processor

Result
Formatting

Storage
Manager

Operating
System

Next: Look inside a DBMS
 Storage Manager: File organization

• How is data organized/stored in secondary memory
• Concept of indexing
• Memory management…..more in operating systems

 (if time permits) Query processor
• Very brief look at how queries are executed by the machine
• Translation of SQL code to C code

 (if time permits) Transaction manager
• Dealing with concurrency – abstract definition of scheduling primitives

In operating systems you will work with implementation

Storage and Organization: Overview
 A database system relies on the operating system to store

data on storage devices.

 Database performance depends on:
• Properties of storage devices
• How devices are used and accessed via the operating system

 Quick look into techniques for storing and representing data
• Important Note: These apply for SQL as well as NoSQL systems
• Key in efficient storage and retrieval systems

Including search engines

3

Review from architecture (?):
Memory Definitions
 Temporary memory retains data only while the power is

on.
• Also referred to as volatile storage.
• e.g. dynamic random-access memory (DRAM) (main memory)

 Permanent memory stores data even after the power is off.
• Also referred to as non-volatile storage or secondary storage
• e.g. flash memory, SSD, hard drive, DVD, tape drives

 Cache is faster memory used to store a subset of a larger,
slower memory for performance.
• processor cache (Level 1 & 2), disk cache, network cache

Physical Storage: Memory Hierarchy

 Primary Storage: cache & main memory
• Can be directly accessed by CPU
• Currently used data

 Secondary Storage: flash, SSD, magnetic disks, optical
disks, tapes
• Larger capacity, low cost, slow access
• Cannot be directly processed by CPU

 DB stores large amount, persist over time
• Data is stored in secondary storage
• Contrast with run-time data structures

 Time taken to fetch data depends on how data is
organized on disk/file

Why Not Store Everything in Main Memory?
 Costs too much.
 Main memory is volatile.

• We want data to be saved between runs. (Obviously!)
• Situations that cause permanent loss of data occur less frequently in

disks than primary memory
• Disk/Flash storage is non-volatile

Recall: Disks

 Secondary storage device of choice.
 Main advantage over tapes: random access vs.

sequential.
 Data is stored and retrieved in units called disk

blocks or pages.
 Unlike RAM, time to retrieve a disk page varies

depending upon location on disk.
• Therefore, relative placement of pages on disk has major

impact on DBMS performance!

4

Disk Geometry

 Disks consist of platters, each with two surfaces.
 Each surface consists of concentric rings called tracks.
 Each track consists of sectors separated by gaps.

spindle

surface
tracks

track k

sectors

gaps

Components of a Disk

Platters

The platters spin (say, 90rps).

Spindle

The arm assembly is
moved in or out to position
a head on a desired track.
Tracks under heads make
a cylinder (imaginary!).

Disk head

Arm movement

Arm assembly

Only one head
reads/writes at any
one time.

Tracks

Sector

• Block size is a multiple
of sector size (which is fixed).

Disk Structure

 For READ/WRITE operations
• H/W address of block and address of buffer is supplied to disk IO

hardware via disk controller
• Buffer is contiguous reserved area in main memory that holds block

(page)
 Actual H/W that reads blocks is disk head, part of disk

drive
 Disk drives rotate disk pack
 Disk arm positions disk head over block read

• When block passes under disk head, data transferred to buffer

Logical Disk Blocks
 Modern disks present a simpler abstract view of

the complex sector geometry:
• The set of available sectors is modeled as a sequence of

b-sized logical blocks (0, 1, 2, ...)
 Mapping between logical blocks and actual

(physical) sectors
• Maintained by hardware/firmware device called disk

controller.
• Converts requests for logical blocks into

(surface,track,sector) triples.
• Block 200 mapped to disk location (x,y,z)

5

Accessing a Disk Page

 Time to access (read/write) a disk block:
• seek time (moving arms to position disk head on track)
• rotational delay (waiting for block to rotate under head)
• transfer time (actually moving data to/from disk surface)

 Seek time and rotational delay dominate.

 Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

Disk Access Time
 H/W address of disk block: (surface #, track #, sector #)
 Average time to access a target sector approximated by :

• Taccess = Tavg seek + Tavg rotation + Tavg transfer
 Seek time (Tavg seek)

• Time to position heads over cylinder containing target sector.
• Typical Tavg seek = 9 ms

 Rotational latency (Tavg rotation)
• Time waiting for first bit of target sector to pass under r/w head.
• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

 Transfer time (Tavg transfer)
• Time to read the bits in the target sector.
• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Summary: Accessing a Disk Page

 Time to access (read/write) a disk block:
• seek time (moving arms to position disk head on track)
• rotational delay (waiting for block to rotate under head)
• transfer time (actually moving data to/from disk surface)

 Seek time and rotational delay dominate.

 Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

Example
 SELECT * FROM EMP;
 Need to scan entire file

• Read all records

 Access all blocks/pages of the file on the disk
• Assume N pages

 How long does this take ?

 Simple approach: N* Taccess
• Taccess = Tavg seek + Tavg rotation + Tavg transfer

6

Example: Arranging Pages on Disk

 `Next’ block concept:
• blocks on same track, followed by
• blocks on same cylinder, followed by
• blocks on adjacent cylinder

 Blocks in a file should be arranged sequentially on
disk (by `next’), to minimize seek and rotational
delay.

 For a sequential scan, pre-fetching several pages at
a time is a big win!

Disk Geometry and File Layout

track k

sectors

File = { block 1, b2, ….}
Need to read/scan entire file:

Example: time using next block approach
 Need to scan entire file

• Read all records
 Time to read first block: T_seek + T_rotation + T_transfer
 Time to read next block: T_transfer
 ….
 Time to read all N blocks: First block and then one block

every T_transfer cycles
• (T_seek + T_rotation + T_transfer) + (N-1) T_transfer

 About (N-1)*(T_seek + T_rotate) less than naive approach
• ~ O(N) faster since T_seek >> T_transfer

So what does this tell us ?

 Time to process a query can be reduced by careful mapping
of the pages to the physical disk blocks

 Page and File organization on disk affects Query
performance
• Database performance linked to physical organization of data

7

File Interfaces
 Besides the physical characteristics of the media and

device, how the data is allocated on the media affects
performance…file organization.

 The physical device is controlled by the operating system.
The operating system provides one or more interfaces to
accessing the device.

Block-Level Interface
 A block-level interface allows a program to read and write

a chunk of memory called a block (or page) from the
device.

 The page size is determined by the operating system. A
page may be a multiple of the physical device's block size.

 The OS maintains a mapping from logical page numbers
(starting at 0) to physical blocks on the device.

File and Data Organization
 How is data stored on disk?

• Records
• file of records

 how to organize the files to enable fast processing of
queries
• how to measure speed - computation or I/O time ?

 Study file/data organization techniques that lead to more
efficient processing of queries

File and Record Organizations
 DB applications typically need small portion of database

• when specific data needed:
located on disk
copied into main memory
rewritten into disk if data changed

 data stored on disk is organized as file of records
• File is a sequence of records

Records mapped to disk blocks

8

Files of Records
 Page or block is OK when doing I/O, but higher levels of

DBMS operate on records, and files of records.
 FILE: A collection of pages, each containing a collection of

records. Must support:
• insert/delete/modify record
• read a particular record (specified using rid: record id)
• scan all records (possibly with some conditions on the records to be

retrieved)

Mapping Relations to Files
 Most DBMS store each relation in separate file

• records correspond to rows
• record fields correspond to columns
• joins require accessing multiple files

Recap: Representing Data in Databases

 A database is made up of one or more files.
• Each file contains one or more blocks.
• Each block has a header and contains one or more records.
• Each record contains one or more fields.
• Each field is a representation of a data item in a record.

File = Relation; Record = row/tuple; Field = column/attribute

9

Organization of Records
 Record is collection of related information

• Each tuple/row is a record
• each value is one or more bytes, corresponds to a particular field of

record
• each field specifies some attribute
• collection of field definitions and their types constitutes record type or

format
data type associated with each field

• blocks are fixed size, but record sizes vary
 Two main types of records:

• Variable length: size of record varies
• Fixed length: all records have fixed length

Record Types
 Fixed length vs Variable length records

• fixed is easier to implement
• fixed wastes space when block size not multiple of record size

 spanned vs unspanned
• when parts of a record can be placed onto a block, need pointers to

next block where remainder of record is placed

Record Formats: Fixed Length

 Information about field types same for all records
in a file; stored in system catalogs.

 Finding i’th field requires scan of record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Record Formats: Variable Length

 Two alternative formats (# fields is fixed):

* Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

10

File Management
 Support search, scan, and insert/delete
 When records deleted or inserted, need to move records to

occupy space or mark empty space
 maintain file header

• point to next record that is deleted
• first record point to next empty record etc.
• can have dangling pointer problem on delete

pinned records: avoid moving or deleting records that are pointed to
by other records

Link between file organization and
DBMS efficiency ?

File Organizations
 File organization determines how records are physically

placed on disk
• heap file: no particular order
• Sorted file
• indexed file

hash index
tree indices

 Efficiency of file organization typically measured in terms of
number of disk/SSD accesses to fetch data
• Why ?

Evaluation of File Organizations

 Time always measured in # disk accesses
 Access time or lookup time

• time to find particular data item
 Insertion time

• time to insert new record
time to find correct location and time to insert

 Deletion time
 Modification time
 Space overhead

• additional space occupied by index structure

11

Evaluation of File Organizations
 Relation of size n records – n rows/tuples
 disk block size b bytes – page size
 record size r bytes

• average size
 “blocking factor” p, number of records/block

• p = b/r
 number of disk blocks to store relation

• n/p

Example
 File of 1,000,000 records
 record size 200 bytes
 blocks are 4096 bytes

• n = 1,000,000
• r = 200
• b = 4096
• Blocking factor, p = b/r = 4096/200 = 20
• file size = N = n/p = 1,000,000/20 = 50,000 blocks

Evaluation of File Organizations
 Baseline we use Heap File

• The do nothing approach!
 Derive performance for each type of file organization

• note that query type plays a large role in determining efficiency

Heap File Implemented as a List

 The header page id and Heap file name must be
stored someplace.

 Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

12

Evaluation of Heap Files
 Lookup time: on average retrieve ½(n/p) I/Os

• worst case = n/p= N

 insertion time: retrieve last record on heap, if no empty
space then start new block
• 2 disk I/O

 deletion: find record and then delete
• ½(n/p)+1 average, n/p+1 worst case

 modification: same as deletion

Example
 File of 1,000,000 records
 record size 200 bytes
 blocks are 4096 bytes

• n = 1,000,000
• r = 200
• b = 4096
• Blocking factor, p = b/r = 4096/200 = 20
• file size = N = n/p = 1,000,000/20 = 50,000 blocks

Heap File Example
 Successful lookup ?
 Insertion time ?
 Deletion time ?
 Modification ?

Heap File: Example
 Successful lookup: average ½(n/p)= 25,000

• worst case is n/p= 50,000 disk accesses
• At 10ms disk access time, this is 500 seconds ~ 8

minutes!
 insertion = 2
 deletion = ½(n/p)+1 = 25,001

• worst case = 50,001
 header page of pointers can get large
 Heap file summary: not a smart solution!

13

Lesson 1: better organize the records
on the file

 Heap file will not cut it!
 Need to organize physical records on the file

in some “smart” manner
• Sorted file
• Hash file

But….
 Sorted File

• Search time: Log (Number of disk blocks)

 What if you are searching by another field….
• Sorted by Number, search by name

Lesson 2: do we really need to access
the entire file to answer a query ?

 Many queries reference small portion records
• system should be able to locate these without having to

search all records
• Without having to search through the physical file of

records ?

 Concept of Indexing

