
1

CS 2451
Database Schema Design:
Normalization

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari

Based on slides © Ramakrishnan&Gerhke, ElMasri&Navathe, Dr R. Lawrence, UBC

Summary of Schema Design thus far.…

 Desirable properties of relational schemas
• Avoid anamolies (exhaustive searches), lossless join, NULLs,…
 Concept of functional dependencies

• X Y : X determines Y
If two tuples have same value in columns/attributes X, they

have same value in columns Y
• Functional dependencies depend on meaning and domain of

attributes and not based on an instance of the DB
 Closure of set of dependencies

• Armstrong’s Axioms – infer sets of dependencies starting with
a small set

 Attribute set closure X+

• All attributes determined by set X
If X+ = all attributes, then X is key – math. definition of key

Recall: Functional Dependencies

 Functional dependencies represent constraints on the values of
attributes in a relation and are used in normalization.

 A functional dependency (abbreviated FD) is a statement
about the relationship between attributes in a relation. We say
a set of attributes X functionally determines an attribute Y if
given the values of X we always know the only possible value
of Y.
• Notation: X Y
• X functionally determines Y
• Y is functionally dependent on X

 Example:
• eno ename
• eno, pno hours

Sets of Functional Dependencies

 Some obvious functional dependencies
• {SSN} {NAME, ADDRESS, DNUMBER}
• {DNUMBER} {DNAME, MGRSSN}

 From above dependencies, we can infer
• {SSN} {DNAME, MGRSSN}

 Concept of a set of dependencies that can be inferred from
the given set
• Inference rules ?
• Closure: F+ is all dependencies that can be inferred from F

2

Definition: Closure of a Set of FD’s
Defn. Let F be a set of FD’s.

Its closure, F+, is the set of all FD’s:
{X Y | X Y is derivable from F by Armstrong’s

Axioms}
 Two sets of dependencies F and G are equivalent if

F+=G+

• i.e., their closures are equal
• i.e., the same sets of FDs can be inferred from each

 Algorithm to compute closure…read notes
• Repeated application of the transitive rule

Attribute Set Closure
 Another interesting (important) question is: ”Given a set X of

attributes, what is the set of attributes X+ that are
functionally dependent on X ?”
• X+ is the attribute set closure of X
• Values in X uniquely determine the values of all attributes in X+

 Definition of key for relation R: X is a key for R if X+ is the
set of all attributes in R

 Algorithm to determine keys for a relation ?

Computing Attribute Set Closure

 For attribute set X, compute closure X+ by:

Closure X+ := X;
repeat until no change in X+ {

if there is an FD U V in F
such that U is in X+

then add V to X+}

Attribute Set Closure and Keys
 If X is a key over relation scheme R, then what is X+

• Formal definition of a Key
 How to determine the keys for relation R ?

• R is a set of attributes {A1,A2,…,An}
• For each subset S of R, compute S+

If S+ = R then S is Key
• What is the “catch” here ?
• Can you improve this ?

 Some techniques to prune the search space:
• If an attribute does NOT appear on RHS of any dependency then it

must be part of a key
• If a set S is a key, then all supersets of S are superkeys
• If S is a key, and an attribute set Q determines S then Q is a key

Cycle in a graph

3

Now we are ready to define normal forms and
normalization Normalization

 Normalization is a technique for producing relations with
desirable properties.
• Using concept of functional dependencies

 Normalization decomposes relations into smaller relations
that contain less redundancy. This decomposition requires
that no information is lost and reconstruction of the original
relations from the smaller relations must be possible.

 Normalization is a bottom-up design technique for producing
relations. It pre-dates ER modeling and was developed by
Codd in 1972 and extended by others over the years.
• Normalization can be used after ER modeling or independently.
• Normalization may be especially useful for databases that have

already been designed without using formal techniques.

Normalization Goal

 The goal of normalization is to produce a set of relational
schemas R1, R2, …, Rm from a set of attributes A1, A2, … ,An.

• Imagine that the attributes are originally all in one big relation R= {A1, A2,
.., An} which we will call the Universal Relation.

• Normalization divides this relation into R1, R2, …, Rm.

Desirable Relational Schema Properties
 1) The most basic property is that relations consists of

attributes that are logically related.
The attributes in a relation should belong to only one entity or
relationship.

 2) Lossless-join property ensures that the information
decomposed across many relations can be reconstructed
using natural joins.

 3) Dependency preservation property ensures that
constraints on the original relation can be maintained by
enforcing constraints on the normalized relations.

 4) Avoid update anomalies

4

Functional Dependencies & Normal
Forms

 Normalization requires decomposing a relation into smaller
tables

 Normal forms are properties of relations
 We say a relation is in xNF if its attributes satisfy certain

properties
• Properties formally defined using functional dependencies
• For example, test the relation to see if it is in 3NF
• If not in 3NF, then change design…how ?

Decomposition

How to go about designing a good
schema ?
 How to create a 3NF or BCNF database schema ? (i.e., a

good design) ?
 Ad-hoc approach

• Create relations intuitively and hope for the best!
 Formal method – procedure Start with single relation with all

attributes
• Systematically decompose relations that are not in the desired normal

form
• Repeat until all tables are in desired normal form
• Can decomposition create problems if we are not careful ?

Yes: (i) Spurious tuples and (ii) lost dependencies

 Can we automate the decomposition process…
Input: Set of attributes and their functional dependencies
Output: A ‘good’ schema design

General Thoughts on Good Schemas
We want all attributes in every tuple to be determined only by

the tuple’s key attributes, i.e. part of a superkey (for key X
Y, a superkey is a “non-minimal” X)
What does this say about redundancy?

But:
• What about tuples that don’t have keys (other than the entire value)?

Normal Forms
 A relation is in a particular normal form if it satisfies certain

normalization properties.
 There are several normal forms defined:

• 1NF - First Normal Form
• 2NF - Second Normal Form
• 3NF - Third Normal Form
• BCNF - Boyce-Codd Normal Form
• 4NF - Fourth Normal Form
• 5NF - Fifth Normal Form

 Each of these normal forms are stricter than the next.
For example, 3NF is better than 2NF because it removes more
redundancy/anomalies from the schema than 2NF.

 3NF and BCNF are relevant to ‘real design’…
• Others are of academic interest

5

All relations (non-normalized)
1NF (First Normal Form)

2NF (Second Normal Form)
3NF (Third Normal Form)

BCNF (Boyce-Codd NF)
4NF (Fourth NF)

5NF (Fifth NF)

Normal Forms The two Important Normal Forms
Boyce-Codd Normal Form (BCNF). For every relation
scheme R and for every X A that holds over R,

either A X (it is trivial) ,or
or X is a superkey for R

Third Normal Form (3NF). For every relation scheme R
and for every X A that holds over R,

either A X (it is trivial), or
X is a superkey for R, or
A is a member of some key for R

Definitions
 Relation schema R

• Superkey
• Key
• Candidate key – same as key
• Primary key – a key designated for common use
• Prime attribute – an attribute that belongs to some

candidate key
• Non-prime attribute – does not belong to any key
• Set of attributes can be partitioned into Prime or Non-

prime attributes

Formal Definitions
 We discussed lossless joins…how to define it formally ?

• Recall: bad decompositions create spurious tuples, and/or we cannot
reconstruct the original data

6

Lossless Join Decomposition

R1, … Rk is a lossless join decomposition of R w.r.t. an FD
set F if for every instance r of R that satisfies F,

R1(r) ⋈ ... ⋈ Rk(r) = r

sid name cid subj crnum exp-
grade

1 Sam 570103 SW cs143 B
23 Dan 550103 DB cs178 A

Is (sid, name) and (cid, subj, crnum, exp-
grade) a lossless join decomposition ?

sid name cid subj crnum exp-
grade

1 Sam 570103 SW cs143 B
23 Dan 550103 DB cs178 A

sid name
cid crnum, exp-grade
crnum subj

Testing for Lossless Join

R1, R2 is a lossless join decomposition of R with respect
to F iff at least one of the following dependencies is in
F+

(R1 R2) R1 – R2
(R1 R2) R2 – R1

 Set of attributes common to the two tables are key to
one of the two table.
So for the FD set:

sid name
cid crnum, exp-grade
crnum subj

Is (sid, name) and (crnum, subj, cid, exp-grade) a
lossless decomposition?

Functional dependencies after
decompositions

 Definition: Given a set of dependencies F on R, the
projection of F on Ri, denoted by pRi(F) where Ri is
a subset of R, is the set of dependencies X Y in
F+ such that the attributes in X υ Y are all
contained in Ri.

 Informally: each decomposed relation will have a
set of dependencies, such that LHS and RHS from
the original set F are both in the relation
 Let this set be Gi for each decomposed relation Ri
 The set of relations after decomposition will have

G= union of all the sets Gi

7

Properties of Relational Decompositions (5)
 Dependency Preservation Property of a Decomposition

(cont.):
• Dependency Preservation Property:

A decomposition D = {R1, R2, ..., Rm} of R is dependency-
preserving with respect to F if the union of the projections of F on
each Ri in D is equivalent to F; that is
((R1(F)) υ . . . υ (Rm(F)))+ = F+

(See examples in Fig 14.13a and Fig 14.12)
 Claim 1:

• It is always possible to find a dependency-preserving decomposition D
with respect to F such that each relation Ri in D is in 3nf.

Dependency Preservation

 Ensures we can “easily” check whether a FD X Y is
violated during an update to a database:
• The projection of an FD set F onto a set of attributes Z, FZ is

{X Y | X Y F +, X Y Z}
i.e., it is those FDs local to Z’s attributes

• A decomposition R1, …, Rk is dependency preserving if
F + = (FR1 ... FRk)+

 Why is this important/desirable ?
 The decomposition hasn’t “lost” any essential FD’s,

so we can check without doing a join

Example of Lossless and
Dependency-Preserving Decompositions
Given relation scheme

R(name, street, city, st, zip, item, price)
And FD set name street, city

street, city st
street, city zip
name, item price

Consider the decomposition
R1(name, street, city, st, zip) and R2(name, item, price)
 Is it lossless?
 Is it dependency preserving?
What if we added FD street, city item?

Dependency Preservation

 Example:
• FD set F= C → {everything}, JP → C, SD → P, J → S
• Is decomposition of CPSJDQ into R1=(SDP), R2= (JS) and R3=(CJDQ)
• (a) lossless join and (b) dependency preserving

 It is a lossless join decomposition.
• CPSJDQ = (SDP) ⋈ ((JS) ⋈ (CJDQ))

 But not dependency preserving – since JPC is not in one table
 In this case, adding JPC to the collection of relations gives us

a dependency preserving decomposition.
JPC tuples stored only for checking FD! (Redundancy!)

8

FD’s and Keys
 Ideally, we want a design s.t. for each nontrivial

dependency X Y, X is a superkey for some relation
schema in R and all dependencies are preserved
• We just saw that this isn’t always possible

 What if a dependency is lost during decomposition, but we
want to enforce the condition ??
• Is there anything in SQL that can help us enforce this dependency

condition ?
Triggers and Assertions

Now ready to define Normal Forms…

First Normal Form (1NF)
 A relation is in first normal form (1NF) if all its attribute

values are atomic.

 That is, a 1NF relation cannot have an attribute value that is:
• a set of values (multi-valued attribute)
• a set of tuples (nested relation)

 1NF is a standard assumption in relational DBMSs.
• However, object-oriented DBMSs and nested relational DBMSs relax

this constraint.
• NoSQL DBs do not have this assumption…in fact, it is a feature!

 A relation that is not in 1NF is an unnormalized relation.

eno ename pno resp hours
E1 J. Doe P1 Manager 12

P1 Analyst 24E2 M. Smith
P2 Analyst 6
P3 Consultant 10E3 A. Lee
P4 Engineer 48

E4 J. Miller P2 Programmer 18
E5 B. Casey P2 Manager 24
E6 L. Chu P4 Manager 48
E7 J. Jones P3 Engineer 36

eno ename pno resp hours
E1 J. Doe P1 Manager 12
E2 M. Smith {P1,P2} {Analyst,Analyst} {24,6}

E3 A. Lee {P3,P4} {Consultant,Engineer} {10,48}

E4 J. Miller P2 Programmer 18
E5 B. Casey P2 Manager 24
E6 L. Chu P4 Manager 48
E7 J. Jones P3 Engineer 36

A non-1NF Relation

Two equivalent
representations

9

Converting non-1NF to 1NF
 Two ways to convert a non-1NF relation to a 1NF relation:

• 1) Splitting Method - Divide the existing relation into two relations:
non-repeating attributes and repeating attributes.

Make a relation consisting of the primary key of the original relation
and the repeating attributes. Determine a primary key for this new
relation.
Remove the repeating attributes from the original relation.

• 2) Flattening Method - Create new tuples for the repeating data
combined with the data that does not repeat.

Introduces redundancy that will be later removed by normalization.
Determine primary key for this flattened relation.

eno ename pno resp hours
E1 J. Doe P1 Manager 12

P1 Analyst 24E2 M. Smith
P2 Analyst 6
P3 Consultant 10E3 A. Lee
P4 Engineer 48

E4 J. Miller P2 Programmer 18
E5 B. Casey P2 Manager 24
E6 L. Chu P4 Manager 48
E7 J. Jones P3 Engineer 36

Converting a non-1NF Relation
to 1NF Using Splitting

eno ename
E1 J. Doe
E2 M. Smith
E3 A. Lee
E4 J. Miller
E5 B. Casey
E6 L. Chu
E7 J. Jones

eno pno resp hours
E1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36

Repeating group:
(pno, resp, hours)

Also need original
primary key: eno

eno ename pno resp hours
E1 J. Doe P1 Manager 12

P1 Analyst 24E2 M. Smith
P2 Analyst 6
P3 Consultant 10E3 A. Lee
P4 Engineer 48

E4 J. Miller P2 Programmer 18
E5 B. Casey P2 Manager 24
E6 L. Chu P4 Manager 48
E7 J. Jones P3 Engineer 36

Converting a non-1NF Relation
to 1NF Using Flattening

eno ename pno resp hours
E1 J. Doe P1 Manager 12
E2 M. Smith P1 Analyst 24
E2 M. Smith P2 Analyst 6
E3 A. Lee P3 Consultant 10
E3 A. Lee P4 Engineer 48
E4 J. Miller P2 Programmer 18
E5 B. Casey P2 Manager 24
E6 L. Chu P4 Manager 48
E7 J. Jones P3 Engineer 36

Second Normal Form (2NF)
 A relation is in second normal form (2NF) if it is in 1NF and

every non-prime attribute is fully functionally dependent on a
candidate key.
• A prime attribute is an attribute in any candidate key.

 Alternate definition: there is no partial dependency on the
key

 If there is a FD X Y that violates 2NF:
• Compute X+.
• Replace R by relations: R1 = X+ and R2 = (R – X+) U X

 Note:
• By definition, any relation with a single key attribute is in 2NF.

10

Partial Dependency
 A FD X Y is a partial dependency if there exists an

attribute A X such that X – A Y
• Y is partially dependent on X

 Second Normal Form: Relation is in 2NF if no non-prime
attribute is partially dependent on the primary key.

What problems (if any) caused by partial
dependencies

EMP_PROJ(SSN, PNUMBER, HOURS,ENAME,
PNAME, PLOCATION)

{SSN,PNUMBER} → HOURS

{SSN, PNUMBER} → ENAME

SSN → ENAME
PNUMBER → PNAME, PLOCATION

Key for above relation is (SSN,PNUMBER)

The last two dependencies are partial dependencies
since the LHS is part of the key

Problems with partial dependencies
 Insert tuple

• <987654321, 3, 12,Jones,Sprite,Atlanta>
• Need to check that 987654321 is Jones

 We have insertion anomaly
• Check if 987654321 is Jones, project 3 is Sprite…

 We have deletion problem
• If last tuple with Project #1 is deleted

 Similarly, we have modification anamoly
• Smith changes name to Brown

Second Normal Form (2NF) Example

 EmpProj relation:

eno pno resp hoursename title salary dno pname budgetbdate supereno

fd1

fd2

fd3

fd4

fd1 and fd4 are partial functional dependencies. Normalize to:
Emp (eno, ename, title, bdate, salary, supereno, dno)
WorksOn (eno, pno, resp, hours)
Proj (pno, pname, budget)

11

Second Normal Form (2NF) Example

 WorksOn relation:

eno pno resp hours

fd3 fd4

Emp relation:

eno ename title salary dnobdate supereno

fd1

fd2

Proj relation:

pno pname budget

Transitive Dependencies
 FD X Y is a transitive dependency in relation R if there

exists set of attributes Z R such that
• X Z and Z Y
• Z is not a subset of any key of R

Problem with Transitive Dependencies
 EMP_DEPT(ENAME, SSN, BDATE,ADDRESS,

DNO, DNAME, MGRSSN)
FDs in relation:
{SSN} {DNO}

{DNO} {MGRSSN}

{DNO} {DNAME}
 Insertion, Deletion, Modification anamolies in above schema

 Recall earlier discussion on the same example…..

Third Normal Form (3NF)
 A relation is in third normal form (3NF) if it is in 2NF and

there is no non-prime attribute that is transitively dependent
on the primary key.

 That is, for all functional dependencies X Y of R, one of
the following holds:
• Y is a prime attribute of R
• X is a superkey of R

12

Problem with 3NF?
 ADDR_INFO(CITY, ADDRESS, ZIP)
{CITY, ADDRESS} ZIP
{ZIP} {CITY}

Possible keys: {CITY, ADDRESS} or {ADDRESS,ZIP}
Is it in 3NF?

every attribute is prime, so in 3NF

Problems with the 3NF schema
 Delete <Washington, 800 22nd St, 20052>
 What if this is the last 20052 tuple ?

• We lose the info that 20052 is in Washington
• We also have insert, modify anomalies

 Why the problem ?
• Dependencies from an attribute to part of a key

 Solution ?
• Make all LHS of dependencies be key or superkey!

 BCNF – Boyce Codd Normal Form: if all FDs are of the
form X → Y where X is superkey.

General Definition of 3NF, BCNF
 Can simplify the 3NF definition to remove the reference to

partial dependencies/2NF
 R is in 3NF if for every FD X → Y, either

• X is a superkey or
• Y is a prime attribute

 R is in BCNF if for every FD X → Y , X is a superkey
• R in BCNF R is in 3NF

 Important: If R is in BCNF then it is in 3NF and 2NF
• If R is not in 3NF it is not in BCNF

Testing for 3NF, BCNF
 Is the schema in BCNF ?

• Check if there are non-BCNF dependencies

 Is the schema in 3NF ?
• Check if there are non-3NF dependencies

Is there a dependency to non-prime attribute from something that is
not a key ?

13

Decomposition Algorithms
 Algorithms for lossless join dependency preserving 3NF

Decomposition
• Polynomial time algorithm

 Algorithm for lossless join BCNF decomposition
• No known polynomial time algorithm (NPC)
• If no of attributes and functional dependencies is a small set, then

okay to run an exponential time algorithm

BCNF Decomposition Algorithm
 Input: Relation R (consisting of all attributes), set of functional

dependencies F

 Output: BCNF schema result
 Algorithm: Initialize result := {R}
 while there is a schema Ri in result that is not in BCNF
{

let A B be a FD that violates BCNF in relation Ri

result:= (result – Ri) {(Ri - B), (A,B)}
}
 Note that decomposition {(Ri - B), (A,B)} is lossless join

• Since A is key for (A,B) and A is intersection of these two relations

Example Decomposition into BCNF

 Consider relation R with FDs F. If X Y violates BCNF,
decompose R into R - Y and XY.
• Repeated application of this idea will give us a collection of relations that

are in BCNF; lossless join decomposition, and guaranteed to terminate.
 Example: R=(CSJDPQ)

• key C (C → everything), JP → C, SD → P, J → S
 Algorithm iteration 1: SD → P is non-BCNF

• Decompose into R1=(SDP) and R2=(CSJDQV)
 Iteration 2: J → S is not in BCNF in R2=(CSJDQ)

• Decompose R2 into R3=(JS) and R4=(CJDQ)
 Iteration 3: R1,R3,R4 are in BCNF therefore terminates
 In general, several dependencies may cause violation of

BCNF. The order in which we ``deal with’’ them could lead to
very different sets of relations!

BCNF and Dependency Preservation

 In general, there may not be a dependency preserving
decomposition into BCNF.

 Example: decomposition of CSJDQ into SDP, JS and CJDQ is
not dependency preserving (we lose the FD JP C,

non BCNF FDs SD P and J S).
• However, it is a lossless join decomposition.
• In this case, adding JP C to the collection of relations gives us a

dependency preserving decomposition.
JPC tuples stored only for checking FD! (Redundancy!)

14

Normalization Procedure: Summary
 Input= (Set of dependencies F, Set of attributes – single

table schema)
1. Use attribute set closure algo to find (a) keys and (b) prime

attributes
 Prune the search using the various “tricks”

2. Test each FD in F to see if it satisfies 3NF/BCNF properties
3. Decompose into smaller relations using decomposition

algorithm
4. If BCNF is not dependency preserving, then go with a 3NF

decomposition

Testing for 3NF, BCNF
 Is the schema in BCNF ?

• Check if there are non-BCNF dependencies

 Is the schema in 3NF ?
• Check if there are non-3NF dependencies

Is there a dependency to non-prime attribute from something that is
not a key ?

Conclusion

 Normalization is produces relations with desirable properties
and reduces redundancy and update anomalies.

 Normal forms indicate when relations satisfy certain properties.
• 1NF - All attributes are atomic.
• 2NF - All attributes are fully functionally dependent on a key.
• 3NF - There are no transitive dependencies in the relation.
• BCNF – 3NF and all LHS are superkeys.

 In practice, normalization is used to improve schemas produced
after ER design and existing relational schemas.
• Full normalization is not always beneficial as it may increase query time.
• Problem with relational DBs and large data sets…..NoSQL !!

In-Class Exercises

 1. R0 = (A,B,F) with dependencies AB F and B F
 2. R1= (C,T,H,R,S)

• Course (C), Time (T), Hour (H), Room (R), Section (S), Grade (G)
C T CS G
HS R HR C
HT R

 (a) What are the keys ?
 (b) Is it in 3NF?
 (c) Is it in BCNF ? If not, then decompose into BCNF
 (d) Is the decomposition dependency preserving ?

