CS 2451:
Database Systems

Spring 2020

Instructors: Dr Roxana Leontie and Bhagi Narahari
TAs: Ayush Singh and Huzefa Raja

UTA: Billy Miller

LAs: Kevin Deems, Jonathan Minkin

http://www.seas.gwu.edu/~bhagiweb/cs2541

What Is a Database System

= A Database is a large collection of related data.
* Not arbitrary, unrelated data
- Definition changes with ‘big data’ databases
* Models real-world enterprise.
- Entities: University = Students, Courses,Professors
- Relationships: Students are taking courses

» Data organized using a data model

= A Database Management System (DBMS) is the
software system to store/retrieve/manage the
database.
* Provides an interface over the database
* Examples: Oracle, MySQL, MongoDB, Hadoop, Dynamo,....

= Database System: DBMS + Data (+ Applications)

Why Study Databases?

= Shift from computation to information/data
* Huge amount of data today

= To effectively analyze data:
« collect relevant data
« store in manner amenable to efficient access
 provide programming interface

= Most CS courses concentrate on code/system— this focuses
on managing, manipulating and representing data

= As a S/W developer you may be required to
» Query database, program with databases, design databases....
« Full stack development (LAMP stack)

= And then there is Accreditation requirement ©

Databases in the Real-World

= Databases are everywhere in the real-world even though
you do not often interact with the DBMS directly.
» ~$50 billion annual industry

= Examples:
» Retailers manage their products and sales using a database.

- Wal-Mart has one of the largest databases in the world ~40
Petabytes !

* Online web sites such as Amazon, eBay, etc..
» Social media sites — Facebook (PHP+MySQL!), Instagram,...
- Facebook: >500 Terabytes data per day!
» The university maintains all your registration information in a
database.
= Lots of other examples..

= What data do you have?...concept of “ownership”

Why use a DBIVIS? Why not use tile
processing ?

= Why do we need a DBMS, instead of coding your app in C ?
* i.e., why not just use File processing systems?

= A file-based system (file processing) is a set of
applications that use files to store their data.

File Processing

Ques: When did most of you implement such a
(conceptual) system?

PROGRAM 1
Data
Management

PROGRAM 2
Data
Management

PROGRAM 3

Data
Management

File Processing- example

= “database” storing student course enrollment information

» For each student we store a record containing name, course, grade

[Name, Course, Grade]
John Smith, CS2461, C
Ketan Patel, CS1311, B
Billy Miller, CS2541, A

File system does not even know this

Records (Data) stored using some
data structure
(ex: linked list)

* Query1: Find all courses taken by Billy Miller
* Query 2: Find all of Billy’s Grades

Each of above queries have code associated with them...
1. Now consider query 3: Print Billy’s transcript (GPA, etc.)

2. Next consider, changing the data structure...Can we use
the same code?

File Processing systems?

= Each application in a file-based system contains its own
code for accessing and manipulating files. This causes
several problems:

» Code duplication of file access routines

» Change in data (structure) requires change in code
» High maintenance costs

» Hard to support multi-user access to information

Difficult to connect information present in different files
Difficulty in developing new applications/handling data changes

DBMS - Data Independence and Abstraction

= The major problem with developing applications based on

files is that the application is dependent on the file structure.

= there is no program-data independence separating the
application from the data it is manipulating.

« If the data file changes, the code that accesses the file may require
changes to the application.

= A major advantages of DBMS is they provide data
abstraction.

= Data abstraction allows the internal definition of an object to
change without affecting programs that use the object
through an external definition.

Data Independence

= Logical data independence
Protects the user from changes in the logical structure of the data:

could reorganize the student “schema” without changing how we
query/store it

= Physical data independence

Protects the user from changes in the physical structure of data:

could change how student data/table is stored in memory without
changing how the user would write the query

Data Independence: Example

What this means....

= A user of a relational database system should be
able to use the database without knowing about how
the precisely how data is stored, e.g.

SELECT Name, Courses
FROM Students
WHERE Name= ’'Billy Miller’

Above “query” does not need to know how the data in
Students in stored

After all, you don't worry about IEEE floating-point when
you do division in a Java program or with a calculator

So what can we conclude thus far....

= File processing is not an effective/efficient solution

= Need a “database approach” that provides data
independence

= So how do we specify business rules of the data,
relationships within the data, who gets access to what
data,.....How to organize and manage the data ?

Data Models: How to organize the data ?

= What is the data needed ?
» Eg: What do we need to store to uniquely identify a student entity ?

= How to store & organize the data ?
* How many attributes are really needed about a student/course/faculty
* What is an efficient way to organize the data ?
- This is why we need to study schema design and Normal forms
= How to query the data and generate reports for the end
users ?
* Need a database query language, such as SQL

Data Models and data representation

= All of the data have an implicit data model

+ Basic assumption on what is an item of data, how to interpret it, etc.
= A data model is a formal framework for describing data.

+ Data objects, relationships, constraints (business rules)

» Provides primitives for data manipulation and data definition

« Starting point to design of DBMS

* Provides us with the mathematical basis to prove/assert properties
and show correctness of algorithms

= The relational model was the first model of data that is
independent of its data structures and implementation
» Data organized as relations (tables)
» A theory of normalization guides you in designing relations
» Other data models: network, hierarchical, Object Oriented...

= With explosion in unstructured data and big data, new
models emerged...NoSQL database models

» Relational model is observed to be ‘inefficient’ for many such
applications

How to define and use the database: Data
Definition and Manipulation Languages

= data definition language (DDL) to specify database schema
* What data, and how it is organized (logical level)

= Data manipulation language (DML) allows users to access
or manipulate data as organized by data model

« procedural DMLs: require user to specify what data and how to get it

* non-procedural DMLs: require user to specify what data is needed
without specifying how to get it.
« Commercial languages — SQL

Relational DB Query Languages

= Formal query languages:
» Relational algebra,
* Relational Calculus,
* Why study formal languages ?

= Commercial query languages: SQL
= SQL: “descendent” of SEQUEL; mostly relational algebra
and some aspects of relational calculus

* has procedural and non-procedural aspects
* Has DDL and DML components

Database Schema

= Similar to types and variables in programming languages

= Schema - structure of the database

« Ex: database contains information about Students and Courses and
the relationships between them

» Expressed in some data model — using a DDL
= Occurs at multiple levels:
* Logical Level: Database design at the logical level
» Physical Level: Database design at the physical level

Levels of Data Modelling

= Logical Level: describes data stored in the database and
the relationship between them

ex: type student { name: string
street: string
GWID: integer }
= Physical Level: describes how a record is stored (i.e., how
is data organized on the disk)
« Ex: sorting, page alignment, index
= Big Idea: Logical and Physical level independence
« Can change one without chaning the other !!
= Additional View level: application programs hide details of
data types and can also hide some information (salary?) for
security & privacy purposes

Summary- Levels of Abstraction

= Many views, single
conceptual (logical)
schema and physical
schema.

» Views describe how users
see the data.

[View 1] [View 2| |View 3]

|Conceptual Schema|

[Physical Schemal

» Conceptual/Logical schema
defines logical structure

* Physical schema describes

the files and indexes used.
Schemas are defined using Data Definition Language (DDL);
data is modified/queried using Data Manipulation Lang(DML).

Building DB applications:
The Database System Approach - Abstract view

-

PROGRAM 2 |- Collection of

Data Management
Functions

Transaction Mgr

Storage Mgr

DBMS

= The data abstraction is provided by the DBMS
« Separation b/w Logical and Physical, Query language parsing etc.

= A database management system provides efficient,
convenient, and safe multi-user storage and access to
massive amounts of persistent data.
« Efficient & Convenient - Able to handle large data sets, complex

queries without searching all files and data items, easy to write
queries.

« Scalability — Large/huge data.

* Persistence & Safety - Data exists after program execution
completes, handles loss of power.

* Multi-user - More than one user can access and update data at the same
time while preserving consistency....concept of transactions

Components of a DBMS

= A database management system provides efficient,
convenient, and safe multi-user storage and access to
massive amounts of persistent data.

= A DBMS is a complicated software system containing many
components:
* Query processor - translates user/application queries into low-level
data manipulation actions.
- Sub-components: query parser, query optimizer
» Storage manager - maintains storage information including memory
allocation, buffer management, and file storage.
- Sub-components: buffer manager, file manager
» Transaction manager - performs scheduling of operations and
implements concurrency control algorithms.

- You will learn more about storage management and concurrency in the
Operating Systems course

DBMS Architecture: Complete Picture

End-User Direct (SQL) Database
Users Programs Users Administrators

DBMS

Query
Processor

Storage
Manager

Operating
System

This course is about Database Design...

= Focus is on design of databases
» Working at the logical level

= Internals of DBMS is not the focus in this course
* BUT we will touch upon a few key concepts that make DBMS’ work

+ DBMS design brings together several key concepts from Computer
Science
- Languages, Compilers/translation, Algorithms, Data structures,
Operating systems....
- Back in the “good old days” (~2009) one of the projects was to
build a DBMS!!

Database System Architectures & Application
Development

= There are several different database architectures:
* File-server (embedded) architecture - files are shared but DBMS
processing occurs at the clients (e.g. Microsoft Access or SQLite)
- You will work with this in Systems Programming 3410

« Two-Tier client-server architecture - dedicated machine running
DBMS accessed by clients (e.g. SQL Server)

* Three-Tier client-server architecture - DBMS is bottom tier, second
tier is an application server containing business logic, top tier is clients
(e.g. Web browser-Apache/Tomcat-Oracle)

- i.e., a LAMP Stack

Two-Tier Client-Server Architecture

Clients Tier 1: Client
eUser Interface
\ / eBusiness and Data Logic
Database
Server

= Tier 2: Database Server
eServer-side validation
4 eData storage/management- DBMY
= Advantages:

» Only one copy of DBMS software on dedicated machine.
* Increased performance.

* Reduced hardware and communication costs.

« Easier to maintain consistency and manage concurrency.

Three-Tier Client-Server Architecture — our

approach
Tier 1: Client (Web/mobile)

«User Interface

&‘g HTML/CSS/Javascript
N\ 7 Tier 2: Application Server
/ -Business logic
-Data processing logic
network PHP
[l , Database Webserver/Apache
: Tier 3: Database Server
+ DBMS
= -Data storage/management
= Advantages: MysaL

» Reduced client administration and cost using thin web clients.
« Easy to scale architecture and perform load balancing.

* Proposed in 1975!!
ANSI/SPARC

Users &‘

External [|JExiernal External External
Schema view view view

3-schema
architectur
Conceptual Conceptual chitecture
view
Schema

Internal it al
view

Schema _ | DBMS 4

-
- Views based

on use case

Ques: Example ?

CS 2541: What is it about ?

1. database systems design and implementation
* Theory of relational database design and query languages
- Relational algebra, Relational Calculus, SQL

* Application development using Relational DBMS (MySQL), with
web front end, PHP

2. Intro to database models for unstructured data (Big data)
* Overview of NoSQL database models
3. Database system Project: Full stack development
4. Teamwork — S/W development in teams
« Project (S/W) integration
5. Improving technical communication skills:
* Writing in the disciplines (WID)* in tandem with CS2501

*Course is not just about Database design — you have to learn and participate in the
| ofhertwo course objectives (WID Team SW)

Course Objectives

= Relational database theory and design
» Concepts of data storage and retrieval
= Fluency in SQL and database application dev. with front end
» Working with relational database systems: MySQL
» PHP to develop apps (can be something else in the future)
= Software integration experience and team S/W development experience
» Design and deploy a large database application
* Full stack (web stack) development
= Brief introduction to NoSQL database models

Course Schedule - Topics

= Part 1: Relational Databases. Weeks 1-6
+ Relational model & Formal query languages (Rel. Algebra & Calculus)
+ SQL - query language, and MySQL DBMS
» PHP (and brief review of HTML/CSS — webpage design)
* Relational Schema Design
- Entity-Relationship (ER) Model
- Normal forms and DB tuning
» Overview of DBMS: Security, File manager/Indexing
= Part 2: Project (Teams). Weeks 7-14

* Full stack development, Integration of modules, Team S/W Dev

= Part 3: Intro to Databases (& Analytics) for Semi/Un-
structured Data. Weeks 10-12
» NoSQL DB Models; Experience working with MongoDB

= Writing requirements (WID) — CS2501& final project report

Instruction team

= Co-Instructors: Roxana Leontie & Bhagi Narahari
= Grad TAs: Ayush Singh and Huzefa Raja

= Undergraduate TAs and LAs:
- Billy Miller-UTA (Senior, BS-CS)
« Jonathan Minkin (Senior, BS-CS)
« Kevin Deems (Junior, BS-CS)
+ All grading inquiries on database homeworks directed to
TAs (and then follow up with instructor) via email
- No posting to piazza
= All inquiries on labs, lectures, and projects directed to
Instructors or post on Piazza

In-class work

» You will learn through in-class activities/demos and
exercises most classes (lecture+lab)

» Must read the material and come to class

» [f you are assigned an exercise during class (i.e., an
“in class exercise”), you need to complete the
exercises by the end of the class — no exceptions!

» Each team is assigned to a table
* We may ask a team to present solutions to class

= [f you do not come prepared to class/lab it is not

going to be smooth sailing....

Course Materials — “confusion will be my epitaph”!

= Course webpage — will have links to syllabus, lecture notes,
online resources (and inclass exercises when applicable)
* www.seas.gwu.edu/~bhagiweb/cs2541
» Teams will be posted on this page

= Github — please make sure you have an active account
before Wednesday!
» Used to post and submit ‘lab’ assignments (requiring code)
* Project submissions
» Team project development
= Blackboard will be used for:
* Homeworks and solutions, Project posting and team assignment
* Electronic submission of non-programming homeworks
* Reporting grades

= Pijazza — for discussions

Piazza

= you've used this before, so you know the protocols:
* The purpose of this:

- to encourage you to ask and answer questions
— Most of the time, you do better than we do!

- Be very careful not to border on plagiarism!
- Don’t post your HW solution to the world,
» Signup email sent...check your piazza account
» Do not expect instant response or substitute Piazza for office hours!
- Piazza is not manned 24 hours/7 days a week
- Sometimes an answer may take more than 24 hours!
* NO TA can excuse you from anything/or give any extensions
» Posting on piazza, not the same as telling instructor things
- E.g.: I'm going to miss the exam!
» Do NOT wait until the last minute to ask for clairifications...

- The instructors & TAs do NOT plan on spending their weekend checking
Piazzal

Textbooks/Software

Textbook:
* Online notes and resources

- Suggested readings/resources linked from course webpage (go to
Lectures)

» Reference books (if you want to purchase a textbook) are also listed in
the syllabus

- But you could do just as well with most any Database textbook
MySQL and PHP...
* You can install it locally on your laptop

* We will use the install on SEAS server —
gwupyterhub.seas.gwu.edu

= MongoDB (an example NoSQL database)

= Explore setting up your own DB services on AWS
* We may have a short session on how to do this

Course Requirements: Grading

= Exam (midterm): 22.5%
» Closed book, based on lectures and labs
» Approximately weeks 6/7

= Homeworks, Lab Assignments, In-class: 35%
* Homeworks include programming homeworks
* In-Lab/Class exercises given out during class & equivalent to a “quiz”

= Team Project (and Teamwork): 42.5%
» Phase 1 (15%) + Teamwork (7.5%) + Phase 2 (20%)
* No final exam BUT final project demos are required

+ To pass project, your demos have to work...NO partial credit.

= Grades curved (and scaled as percentage of highest score in class)
« Approximate grading method after curving and scaling
A-to A: 90-100% B-to B+:80to <90 C-to C+: 70to <80 D-: >60

The Project

som@cards

= A significant part of your grade for the course is a large

database systems project.

= In the project you will design & mplement a database system

Full stack development:
- Front End (HTML/CSS & optional Javascript)
- Application server — in PHP
- DBMS backend — MySQL
« All the above are useful (high demand) skills
- Note that limited background will be given on web programming.
The project will involve working in teams of 2 to 4.
» Larger teams must develop projects with more features.

Team Project: Requirements & Expectations

= Project broken into 2 (+ 0.1) phases:
» Phase 0.1: theoretical (paper) design of the database (ER model)
* Phase 1: teams to build an application assigned to your team

» Phase 2: Work in new teams to integrate different applications and
produce the final project

- Different teams may be assigned different projects
- This requires integration and NOT redesign

- You take what you built in Phase 1 and integrate with systems built
by others....
—If you “hide” in Phase 1, then you will be exposed in Phase 2 !!

= You HAVE to deliver a working project...else Zero on project
= Agile SW Development process

« Build the system iteratively rather than all in one (giant) step
» works well with your teamwork assessment (weekly check-ins)

Why do we have team projects (team S/W
development) ?

* Real World: Teamwork and S/W development in teams is

the default!
» Communication
+ Collaboration
+ Conflict resolution
» Addition of using tools to enable collaborative SW dev (Github)
* And yeah, ABET accreditation requires this too!

10

Teamwork Assessment...part of your grade!

= You have to work in teams
» Each team member required to ‘produce’ equitable share ‘product’
» Teamwork will be assessed...
- Not all team members may get the same grade on the project!
- You must bring teamwork issues to attention of the instructor
= The second half of the course will have one session (
lecture or a lab) dedicated to teamwork check-ins

« Instruction team will meet with each team, and assess if the weekly
deliverables are being met by each team member

= |f you cannot commit time each week to working on the
team project then please drop the course!

« If you do not want to work in a team and do the work, then we do not
want your attitude to negatively impact other students

Lab Sections: treated as one lab section

= Lab sections conducted by the instructor(s) and TAs:
 Lead Instructor for Labs: Roxana
= Lab sections will cover
* Intro MySQL
« Short tutorials — including application development using
* PHP, Front end
- CSS?HTML ?
- Javascript — tutorials provided by Kevin during office hours
« Intro to a NoSQL DB - MongoDB
« Clarifications on Programming Assignments
= In-class assignments in some weeks

« Example: have to implement SQL queries during class; no
extensions!..treated as a quiz

Academic Integrity Policy

= No collaboration (of any sort) on homeworks/
programming assignments
« Including external resources, tutors, online
« Okay to clarify questions
* Not Okay to share solutions
» Not okay under any circumstances to share or show Code
= No collaboration between teams on team projects

« within team each team member must have clear role - i.e.,
clearly partitioned tasks for each team member

Academic Integrity

= Strictly enforced! You are here to learn — so keep that in mind

= Today’s CS job process: Technical interview is the first step — employers
do not care about your 4.0 GPA if you do not pass the first technical
interview!

» Grad schools (for PhD) don’t care about high GPA if you do not have independent
research experience (ideally with a published work)

= Violations will lead to at least a zero on the work and a grade lower than
final grade

= Stay on top of your work — and come ask us questions!

= PDT: Plagiarism detection software tool

* We may be running code submissions through software tool

+ Any pair of submissions with more than 25% similarity will be closely
examined

11

Expectations

= In-class expectations — don’t want to sit in class then better
to leave the room than disturb others or check your social
media...
« Once you complete in-class assignments you can leave the room
= need to spend at >= 4-6 hours outside class time each week
* Depending on how much ‘outside the classroom CS’ you have done,
you may need to learn new ‘generic CS skills’ on your own (Example:
HTML, AWS, Github) — this will add to the total hours per week
= There will be some open ended aspects in the projects —
this is an opportunity for you to learn more on your own, and
to go above and beyond the minimum project expectations.
= Generic advice: You will be expected to learn some of the
materials on your own...

« This is only the beginning..things get more demanding when you get
to your junior year.

Next..

= Read Notes for Relational model
* Review your HTML/CSS

= Complete the survey that will be mailed to you by COB
Tuesday
« Without this you will NOT be able to do the lab exercises

= Make sure you have your Github account...next class you
need you accept assignments

= Sign up for the class Piazza page

12

