
1

CS 2451
DBMS Implementation:
Indexing and Index
Structures

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari

Based on slides © Ramakrishnan&Gerhke, Dr R. Lawrence, UBC

General Overview

 Relational model - SQL
• Formal & commercial query languages

 Functional Dependencies
 Normalization

 Physical Design
 Indexing
 Query evaluation
 Query optimization
 ….

Application
Oriented

Systems Oriented

Recap: File Organization
 Tables mapped as File

• Row is a Record
• Column is field (in record)

 Data stored in secondary storage
• Disks – organized as number of disk blocks

 Records mapped to disk blocks
 Size of file in disk blocks/pages: N

• Number of records/tuples/rows: n
• Size disk block (i.e., page): b bytes
• Size of record (row): r bytes
• Blocking factor p = b/r
• File size N = n/b pages

 Efficiency/performance of a file organization
• Time for Search, Insert, Delete

Example
 File of 1,000,000 records
 record size 200 bytes
 blocks are 4096 bytes

• n = 1,000,000
• r = 200
• b = 4096
• Blocking factor, p = b/r = 4096/200 = 20
• file size = N = n/p = 1,000,000/20 = 50,000 blocks

2

File Organizations
 File organization determines how records are physically

placed on disk
• heap file: no particular order
• Sorted file
• indexed file

hash index
tree indices

 Efficiency of file organization typically measured in terms of
number of disk/SSD accesses to fetch data
• Why ?

Heap File Performance: Example
 Successful lookup: average ½ N= 25,000

• worst case is N= n/p= 50,000 disk accesses
• At 10ms disk access time, this is 500 seconds ~ 8

minutes!
 insertion = 2
 deletion = ½(n/p)+1 = 25,001

• worst case = 50,001
 header page of pointers can get large
 Heap file summary: not a smart solution!

Lesson 1: better organize the records
on the file

 Heap file will not cut it!
 Need to organize physical records on the file

in some “smart” manner
• Sorted file
• Hash file

Other approaches…
 Sorted File… how long ?

• Search time: Log (Number of disk blocks)
• Log (50,000) blocks = 16 IF the blocks are contagious on the disk

Big/unrealistic assumption that records are stored in consecutive
blocks on disk

 What if you are searching by another field….
• Sorted by Number, search by name

3

Lesson 2: do we really need to access
the entire file to answer a query ?

 Many queries reference small portion records
• system should be able to locate these without having to

search all records
• Without having to search through the physical file of

records ?

 Create another type of record (pointer?!) which
contains subset of the information in the record

“Data” layout in the classroom
 12 tables, students are the “data”
 Information for each student stored as a “index record”

• Table Number, Name, GWID
 Assume 6 of these index records fit on one sheet

• This sheet stored on disk as one page
 Need to find a student using their name

Storage Model 1:
Information on where students are located

Table Number Student Name GWID
1 Ryan G777
1 Ryan G778
1 Shang G333
1 Graham G555
1 Bryson G234
1 Nicholas G345

6 records on one page (one table seating)

Information on where students are located
Table Number Student Name GWID
2 Xiaoyuan G876
2 Oliver G123
2 Ramim G789
2 Linnea G999
2 Marvin G235
2 Genevieve G456

4

Information on where students are located

Table Number Student Name GWID
12 Katie G567
12 Christina G456
12 Samuel G321

Search Key
 When searching for records/rows/tuples, we use one of the

attributes – search key

 Name is the search key
 To find a student:

• Look up one of the sheets
• Find table number next to the student name – this is the “address” of

the student
Table number is a pointer to the student

 Questions:
• To find a student how many data sheets do I need to look at ?
• To find a student how many tables do I need to visit ?

Storage Model 2: Alternate table
assignments…New Datasheets.
 Suppose I assigned table numbers according to Name

• In sorted order

Table Number Student Name GWID
1 Ada G189
1 Alex G489
1 Alyssa G389
1 Brian G289
1 Bryson G234
1 Cassell G889

Model #2 table assignments….
 Suppose I assigned table numbers according to Name

• In sorted order

Table Number Student Name GWID
2 Catherine G275
2 Chen G475
2 Christina G458
2 Claire G175
2 Colin G875
2 Dylan G975

5

Model #2 table assignments….
 Suppose I assigned table numbers according to Name

• In sorted order

Table Number Student Name GWID
12 Will G367
12 Xiaoyuan G876
12 Yifei G667
12 Zach G567

Searching through new datasheets
 Using this new layout, how many datasheets do I need to

look at (worst case) before I find table with the name ?
 Binary search on the datasheets: Log (12) =4
 Search Procedure for name k:

• Find table number i with
name x >= k AND name y at table i+1 with k < y

Go to table i to find record with name k (if it exists)
 Question: Can we think of a new datasheet to capture how

the tables/datasheets are laid out ?

Model #3: Another “datasheet”/Index record….
Table Number Student Name GWID
1 Ada G189
2 Catherine G275
3 Ethan G***
4 Jake G***
5 Katie G***
6 Molly G***

Table Number Student Name Project
7 Oliver G***
8 Rachel G***
9 Sam G***
10 Stanislav G***
11 Terry G***
12 Will G367

Where is
Grady?

Searching through new datasheets
 Using this new layout, how many datasheets do I need?

• Just two!!
 Search the datasheets: 2
 Once table number found, go to the one table to find “data”

(student)

 This type of datasheet – Model #3- does not have entries for
each student
• Sparse index records
• Able to do this because students are sorted by name

6

Search for student with GWID= G234
 How many accesses ?
 How many datasheets do I need to find this student ?

• Assume “storage model 2” – students assigned to tables by sorted
names

What happened ?
 Records were sorted by one attribute: name
 Search key/parameter used was a different attribute: GWID

 Sorting records by Name did not help at all when we need to
search by GWID

 So what if I want to search by name and search by GWID ?
 Create TWO types of datasheets

• One as Model 2 or 3: the single sheet with name and table number
• Second one: 12 datasheets, sorted by GWID and for each GWID the

table number

2nd Type of Data sheet/Index records….
 table numbers according to Name in sorted order
 Datasheet sorted by GWID

Table Number Student Name GWID
2 Oliver G123
2 Genevieve G133
5 Sam G200
1 Zach G201
3 Grady G222
10 Alex G288

Datasheet A0

Lesson 3: Do something with the index file

 placing additional structure on index files helps search
efficiently for desired records
• Create an index structure on the actual data file

7

Multi-Level Index….
 So now you have 12 datasheets for GWID

• Datasheet is sorted by GWID
• Time to search by GWID is log(12)=4 + 1 to go to table

 Label these datasheets A0 to A11
 Create another “level” of datasheet/index

• Of Type B

GWID Address
G123 A0
G301 A1
G388 A2
G410 A3
G500 A4
G570 A5

GWID Address
G600 A6
G675 A7
G710 A8
G800 A9
G880 A10
G910 A11

Sheet B0

Sheet B1

Keep going….
 Now create another “level” of datasheet…Type C

• GWID and pointer to Datasheet Bi

• Tells us range of GWID values at datasheet Bi

GWID Address
G123 B0
G600 B1

Our Multi-Level Index:
Level 0: One datasheet C0
Level 1: 2 datasheet B0 and B1
Level 2: 12 datasheets G0 to G11

(Level 3) is actual data
Time to search for GWID:
1 at level 0 + 1 at Level 1 + 1 at Level 2 (+ Table)

= No. of Levels + 1 table/disk access

GWID Address
G123 B0
G600 B1

8

Our Multi-Level Index:

GWID Address
G123 B0
G600 B1

GWID Address
G123 A0
G301 A1
G388 A2
G410 A3
G500 A4
G570 A5

GWID Address
G600 A6
G675 A7
G710 A8
G800 A9
G880 A10
G910 A11

Level 0

Level 1
Table Name GWID

2 Oliver G123

2 Genevie
ve

G133

5 Sam G200

1 Zach G201

3 Grady G222

10 Alex G288

Level 2

Table Name GWID

2 Oliver G123

2 Genevie
ve

G133

5 Sam G200

1 Zach G201

3 Grady G222

10 Alex G288

Multi-Level Indices and Tree Structures
 Organize the index records as a tree
 But need to make sure it is balanced so we get log(N) height
 Degree of tree ?

• In our examples each node had 6 children (except for root)

 So it is a k-ary tree…but what is k ? How do we choose ?

 Systems answer: How many index records fit on one disk
page ? This is your degree !
• Since we have to fetch a disk page, might as well pack it with

maximum degree possible

Let’s summarize:
 We have ‘data’ stored on disk blocks

• Students sitting at tables
 We created new ‘data’ and stored them on a page

• The tables with assignments and the datasheets (pages of paper)
 This new data is called an index
 To find the disk block/page with the data, we can search the

index data
• Looking at the datasheets to find the table where a student sits

 If the data was sorted, then we can organize the index data
and do a binary search on it

 If data was sorted, then we can ‘compress’ the amount of
index data and create a sparse index

Some observations…
 When the physical ordering of the data corresponded to the

search key, we ended up with one type of index and could
create a set of index records that did not have an entry to
each record
• Search key was name, and students sorted by name

 When the search key did not correspond to the key
(attribute) used to sort/order the physical records, we
needed an index record for each record
• Search key was student GWID, and we needed entries for all students

(and needed to store these on 12 datasheets)
 We can have BOTH indices for the same file

• Index/datasheet using GWID number, and Index/datasheet using
Name

• This will support queries that search by Name or search by GWID

9

Some Database Definitions….Indexing
 An index is a data structure that allows for fast lookup of

records in a file.

 An index may also allow records to be retrieved in sorted
order.

 Indexing is important for file systems and databases as
many queries require only a small amount of the data in a
file.

Index Terminology
 The data file is the file that actually contains the records.

 The index file is the file that stores the index information.

 The search key is the set of attributes stored by the index
to find the records in the data file.
• Note that the search key does not have to be unique - more than one

record may have the same search key value.

 An index entry is one index record that contains a search
key value and a pointer to the location of the record with that
value.

Types of Indexes
 There are several different types of indexes:

• Indexes on ordered versus unordered files
An ordered file is sorted on the search key. Unordered file is not.

• Dense versus sparse indexes
A dense index has an index entry for every record in the data file.
A sparse index has index entries for only some of the data file
records (often indexes by blocks).

• Primary (clustering) indexes versus secondary indexes
A primary index sorts the data file by its search key. The search key
DOES NOT have to be the same as the primary key.
A secondary index does not determine the organization of the data
file.

• Single-level versus multi-level indexes
A single-level index has only one index level.
A multi-level index has several levels of indexes on the same file.

Evaluating Index Methods
 Index methods can be evaluated for functionality, efficiency,

and performance.

 The functionality of an index can be measured by the
types of queries it supports. Two query types are common:
• exact match on search key
• query on a range of search key values

 The performance of an index can be measured by the time
required to execute queries and update the index.
• Access time, update, insert, delete time

 The efficiency of an index is measured by the amount of
space required to maintain the index structure.

10

Key Ptr
10567
11589
15973
29579
34569
75623
84920
96256

dense index

Primary Index on Ordered File

St. ID Name Mjr Yr
10567 J. Doe CS 3
11589 T. Allen BA 2
15973 M. Smith CS 3
29579 B. Zimmer BS 1
34596 T. Atkins ME 4
75623 J. Wong BA 3
84920 S. Allen CS 4
96256 P. Wright ME 2

ordered data file

Dense, primary, single-level index on an ordered file.

Key Ptr
10567
11589
15973
29579
34569
75623
84920
96256

dense index

(Secondary) Index on Unordered File

St. ID Name Mjr Yr
10567 J. Doe CS 3
15973 M. Smith CS 3
96256 P. Wright ME 2
29579 B. Zimmer BS 1
11589 T. Allen BA 2
84920 S. Allen CS 4
34596 T. Atkins ME 4
75623 J. Wong BA 3

unordered data file

Dense, single-level index on an unordered file.

Sequential File

20
10

40
30

60
50

80
70

100
90

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40
50
60
70
80

90
100
110
120

Primary Index…Dense index

11

Sequential File

20
10

40
30

60
50

80
70

100
90

Primary Sparse Index

10
30
50
70
90
110
130
150

170
190
210
230

42

Secondary Indexes
 Applications:

• index other attributes than primary key
• index unsorted files (heap files)
• index clustered data

43

Secondary indexes
Sequence

field

50
30

70
20

40
80

10
100

60
90

44

Secondary Indexes
 To index other attributes than primary key
 Always dense (why ?)

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

12

45

Bucket of pointersDuplicate values &
secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets
46

Why “bucket” idea is useful
Indexes Records
Name: primary EMP (name,dept,floor,...)

Dept: secondary
Floor: secondary

47

Query: Get employees in
(Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

 Intersect toy bucket and 2nd Floor
bucket to get set of matching EMP’s

Lesson 3: Do something with the index file

 placing additional structure on files helps search efficiently
for desired records
• Create an index structure on the actual data file

13

Indexed Files Performance using Indexing
 Recall our earlier example:

• 1,000,000 records, and 50,000 disk blocks
• Heap file: 50,000 accesses worst case
• Sorted file of 50,000 blocks: log (50,000)= 16 accesses

 Index record stores Key field 10 bytes, rec. pointer 10 bytes
• Index record: 20 bytes
• 4096 page size, we get blocking factor 200 index records per page

 Sparse index: 50,000 disk blocks = 50,000 index records=
• 250 disk blocks to store index records

 Search using binary search on index records to find the
pointer to the data block: log (250)=8

 Then fetch the data block: 1 read
 Total: 8+1 = 9 accesses

• Faster than sorted file

What if the index file itself gets very large….
 Example: 1,000,000 records in data file
 Dense index: 1,000,000 index records
 Index record is 20 bytes and 200 fit on disk block
 Therefore, 5000 disk blocks to store index file
 Searching through 5000 disk blocks = 5000 disk reads…not

efficient
 Aha...you can sort the index blocks and get log 5000 = 13

disk reads + 1 more to read the data block...this is still slow !
• A 20ms per disk read, this is over 300ms
• And assume disk blocks are contigious

 So ???

Organize the index file….
 If index file is large, then create a second level

index to this file

14

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70
90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

2 Level Primary Index
Performance of 2 level Index File
 For sparse index:
 have 250 disk blocks containing index records at Level 1
 We need 250 index entries at level 2:

• 200 index records per block – 250/200 = 2 blocks to store level 2
index

 To search:
• Search Level 2 index to find block at Level 1: 2 disk reads
• Get block from Level 1: 1 disk read
• Finally, get the data block: 1 disk read
 Total: 4 disk reads

2 Level Dense Index
 Recall: 5000 disk blocks at Level 1 secondary index
 How many index records at Level 2

• 5000 index records
• With 200 per block, we get 25 disk blocks at Level 2

Multi-level Index - Question
Does the 2nd level index of a dense level 1 index have to be a
dense index ?

• Example: If level 1 has 5000 index records, should level 2 index have
index entries for each of these 5000 records?

15

2 Level Secondary indexes
Sequence

field

50
30

70
20

40
80

10
100

60
90

Dense index level 1

10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

Performance of 2 level Dense index
 5000 disk blocks at Level 1 secondary index
 Create sparse index at Level 2, with 5000 index records

• With 200 per block, we get 25 disk blocks at Level 2
 To Search:

• Search 25 blocks at Level 2: log(25)= 5 disk reads and find the index
block to retrieve from Level 1

• Fetch the level 1 index block
• Find the data pointer and fetch the data: 1 disk access
• Total: 7 disk reads

59

With secondary indexes:

 Lowest level is dense
 Other levels are sparse

Also: Pointers are record pointers

(not block pointers)

Index Maintenance
 As the data file changes, the index must be updated as well.
 The two operations are insert and delete.

 Maintenance of an index is similar to maintenance of an
ordered file. The only difference is the index file is smaller.

 Techniques for managing the data file include:
• 1) Using overflow blocks
• 2) Re-organizing blocks by shifting records
• 3) Adding or deleting new blocks in the file

 These same techniques may be applied to both sparse and
dense indexes.

16

Multi level Index Files
 If index file is large, then create a second level

index to this file
 If second level index is also large, then create a

third level index to the second level index
 If third level index is also large, then create a 4th

level…
 If fourth
 When do you stop ?
 When the final index is ONE disk block/page !!

Multilevel Index

Key Ptr
10567
11589
15973
29579
34569
75623
84920
96256

dense index

Multi-level Index on an Ordered File

St. ID Name Mjr Yr
10567 J. Doe CS 3
11589 T. Allen BA 2
15973 M. Smith CS 3

29579 B. Zimmer BS 1
34596 T. Atkins ME 4
75623 J. Wong BA 3

84920 S. Allen CS 4
96256 P. Wright ME 2

ordered data file

Key Ptr
10567
29579
84920

sparse index

Multi-level Index
 A multi-level index has more than one index level for the

same data file.
• Each level of the multi-level index is smaller, so that it can be

processed more efficiently.
• The first level of a multi-level index may be either sparse or dense, but

all higher levels must be sparse. Why?

 Having multiple levels of index increases the level of
indirection, but is often quicker because the upper levels of
the index may be stored entirely in memory.
• However, index maintenance time increases with each level.

17

Multilevel Index for the Dense index
 Level 1 had 5000 disk blocks to store the index records

• For 1,000,000 data records and 1,000,000 index records
 Level 2 had 250 disk blocks to store the index records to

Level 1
• To store 5000 index records pointing to the 5000 disk blocks of Level

1 index
 Level 3 we need 250 index records, and therefore 2 disk

blocks
 Level 4 we need 2 index records and therefore one disk

block – the root node !
 Time: Read once from each level and then from data file

• 5 reads

Implementing Index structures:
Tree Structures and Multilevel Index
 Natural correspondence between the two
 What if we use “standard” binary search trees ?
 Need concept of “balanced” tree

• B+ trees : variation of B-trees tailored for DBMS operations
 Have you looked at the following during discussion of data

structures:
• 2-3 trees or search trees
• Hash tables

