

Data/File Organizations -- Speeding Operations over Data

- Three general data organization techniques:
- Indexing
- Sorting
- Hashing
- There is also the notion of a "heap", but that is data disorganization (or storage) rather than organization...
- But, it is easy to maintain in the face of insertions and deletionsdifficult to find things quickly.

Data/File Organizations -- Speeding
Operations over Data
- Three general data organization techniques:
- Indexing
- Sorting
- Hashing
- There is also the notion of a "heap", but that is data
disorganization (or storage) rather than
organization...
- But, it is easy to maintain in the face of insertions and
deletionsdifficult to find things quickly.

File Organization: Recap

- How files are organized impacts performance of queries
- Concept of index records and indexing
- Speeds up search
- Today: How to organize the index records \& how to sort the file (on disk)

Algorithms \& 'Data' Structures for DBMS file organization

- B-trees: multi-level index
- Most commonly used database index structure today
- Hash index
- 'standard' hash table concept
- External sorting algorithms
- Sorting data residing on disk
- Time complexity measured in terms of disk read/write

Recall: Indexing

- An index on a file speeds up selections on the search key attributes for the index (trade space for speed).
- Any subset of the fields of a relation can be the search key for an index on the relation.
- Search key is not the same as key (minimal set of fields that uniquely identify a record in a relation).
- An index contains a collection of data entries, and supports efficient retrieval of all data entries \mathbf{k}^{*} with a given key value \mathbf{k}.
- Index record contains key k and a pointer (disk address) to the data record with that key value

Classes of Indices

- Primary vs. secondary:
- Clustered vs. unclustered: keu used to order records on the file and index key approximately same
- Dense vs. Sparse: dense has index entry per data value; sparse may "skip" some

B-Trees and Indexing

- multi-level indexes can improve search performance.
- One of the challenges in creating multi-level indexes is maintaining the index in the presence of inserts and deletes.
- We look at B-trees which are the most common form of index used in database systems today.

Review of B-tree concepts...

- Search in trees $=O(h)$, h is height of tree
- Binary tree worst case height $=O(n)$
- Tree may get unbalanced
- B-trees - are a class of balanced trees
- Forces all leaves to have same height
- Original motivation was search trees (not databases)

Balancing the tree...

- need to place some constraint that will force the tree to be balanced
- This is accomplished by specifying the minimum and maximum number of entries at each node - the order d of tree
- Alternately, can specify minimum and maximum number of children at each node - called the degree m of tree

B-trees

A B-tree is a search tree where each node has $>=\boldsymbol{n}$ data values and <= 2n, where we chose \mathbf{n} for our particular tree.

- Each key in a node is stored in a sorted array.
- $\operatorname{key}[0]$ is the first key, $\operatorname{key}[I]$ is second key,...,key[2n-I] is the $2 n^{\text {th }}$ key
- $\operatorname{key}[0]$ < $\operatorname{key}[1]<\operatorname{key}[2]<\ldots<\operatorname{key}[2 n-1]$
- There is also an array of pointers to children nodes:
- child[0], child[1], child[2], ..., child[2n]
- Recursive definition: Each subtree pointed to by child $[\mathrm{i}]$ is also a Btree.
- For any key[i]:
- I) key[i] > all entries in subtree pointed to by child[i]
- 2) $\mathrm{key}[\mathrm{i}]$ <= all entries in subtree pointed to by child $[i+1]$
- A node may not contain all key values.
- \# of children = \# of keys +1
- A B-tree is balanced as every leaf has the same depth.

B-tree definition

- Every tree node of B-tree of order d (d >= I) must have:
- (except the root) must have at least d key values (entries) sorted inside the node
- Cannot have more than $2 d$ key values
- Has one more tree pointer than the number of key values; i.e., between $\mathrm{d}+\mathrm{l}$ and $2 \mathrm{~d}+$ l
- Is either a leaf or an internal node

B-tree Alternate definition

- Every tree node of B-tree of degree $m(m>1)$ must have:
- (except the root) must have at least m - $/$ key values (entries) sorted inside the node
- Cannot have more than $2 m$-I key values
- Has one more tree pointer than the number of key values; i.e., between m and $2 m$
- Is either a leaf or an internal node

Check your definitions

- If B tree has maximum of 10 keys per node, then what is the maximum number of children that a node can have?
- If B tree has degree 4 then what is the maximum number of keys it can have at a node ?

Height of B-tree of \mathbf{n} nodes?

- Compute worst case height of B-tree of degree m

Height of B-tree of \mathbf{n} nodes?

- Compute worst case height of B-tree of degree m (order mI), with total n nodes and height h
- Root at level 0 has only I node
- Level I has 2 nodes, each has at least m children
- Level 2 has at least 2 m nodes, each has at least m children
- Level 3 has at least $2 m^{2}$ nodes, each has at least m children
- Level h has $2 m^{(h-1)}$ nodes
- Therefore $n=1+2+2 m+2 m^{2}+\ldots+2 m^{(h-1)}$
- $n=1+2\left(m^{h}-1 / m-1\right)$
- Therefore, $h=O\left(\log _{m} n\right)$

B-trees as External Data Structures

- Now that we have seen how a B-tree works as a data structure - how can it be used for an index.
- A regular B-tree can be used as an index by:
- Each node in the B-tree stores not only keys, but also a record pointer for each key to the actual data being stored.
- Could also potentially store the record in the B-tree node itself.
- To find the data you want, search the B-tree using the key, and then use the pointer to retrieve the data.
- No additional disk access is required if the record is stored in the node.

B-tree nodes \& Index records

- B-tree is collection of blocks/nodes that contain
- Search-key (index) values
- Data pointers to data records
- Tree pointers to next/children node
- Some info local to block
- Each B-tree node resides on one disk block
- When tree is traversed, relevant nodes/blocks are brought into main memory
- Given this description, how might we calculate the best B-tree order.
- Depends on disk block and record size.
- We want a node to occupy an entire block.

B-tree node

B-tree structure

(a) Node in B-tree with q-1 keys; (b) B tree with max 2 at node

Size of B-tree node

- What is the maximum number of bytes needed by a B-tree node of order d?
- Tree pointers, data pointers, key fields, byte specific info
- What is the maximum number of bytes you can use for the node?
- Size of the disk block !
- One node fits in one disk block
- What is maximum no of entries of B-tree if key requires 5 bytes, and tree and data pointer need 10 bytes and disk block size=100 bytes ?

Picking the order of a B-tree

- Best "packing": when entire node fits into one disk block with minimum space wasted
- Assume P_{d} bytes needed to specify address of data pointer
- Assume P_{t} bytes needed for address of tree pointer
- Assume key field requires K bytes
- Assume disk block size = B bytes
- Assume x bytes needed for block-specific information

Order of B-tree

- Order d tree has at most 2d+I tree pointers, 2d data pointers and 2 d key values
- $\mathrm{x}+2 \mathrm{~d} *\left(\mathrm{~K}+\mathrm{P}_{\mathrm{d}}\right)+(2 \mathrm{~d}+\mathrm{I}) * \mathrm{P}_{\mathrm{t}}<=\mathrm{B}$

Degree of B-tree

- Degree m tree has at most $2 m$ tree pointers, $2 m$-I data pointers and $2 \mathrm{~m}-\mathrm{I}$ key values
- $\mathrm{x}+(2 \mathrm{~m}-\mathrm{I}) *\left(\mathrm{~K}+\mathrm{P}_{\mathrm{d}}\right)+(2 \mathrm{~m}) * \mathrm{P}_{\mathrm{t}}<=\mathrm{B}$

Example: Calculating order of Btree

- Disk block size =5I2 bytes, Key is varchar(20), and 32 bit (4 byte) addresses
- $B=512$ bytes, $x=2, K=20, P_{t}=P_{d}=4$
- $2+2 \mathrm{~d}(20+4)+(2 \mathrm{~d}+\mathrm{I}) 4<=512$
- $56 d+6<=512$
- d <= 9

Search in B-tree

Search for key=6:
find node with the key=6
follow record pointer to fetch the data record from disk

$\|$ |l|l| $\| 1 \cdot \mid$

Search in B-tree

- In-order search
- Time complexity ?
- Height of tree $=\log (\mathrm{N})$

Inserting Data into a B Tree

- Find correct leaf L : search $O(\log N)$
- Put data entry into L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
- Redistribute entries evenly, push up middle key.
- Insert index entry pointing to L2 into parent of L.
- This can happen recursively
- Splits "grow" tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

B-tree and Multilevel Index
- Same ? Or Different?

Key differences

- In multi-level index:
- Data records at level 0 and index records at all other levels (contain key value but no data pointer)
- The lowest level index records are ordered
- Leaves form a linked list
- In B tree
- Nodes contain both data pointers and tree (index) pointers
- To get a list of sequential records, we have to search multiple levels of the tree

B+ Tree: The DB World's Favorite Index

- Insert/delete at $\log _{F} \mathrm{~N}$ cost
- ($F=$ fanout, $N=\#$ leaf pages)
- Keep tree height-balanced
- Minimum 50\% occupancy (except for root).
- Each node contains $\mathbf{d}<=\underline{m}<=2 \mathbf{d}$ entries. d is called the order of the tree.
- Supports equality and range searches efficiently.

B+ trees

- Search keys in internal nodes are repeated in leaves
- Similar to multilevel index
- Every search key does not occur as internal value
- To get the data record, we have to get to the leaf level
- All searches will take $O(h)$ where h is height of tree

B+ Trees - Definition

- Similar structure to B-tree
- Distinguish between internal nodes and leaf nodes
- Leaf nodes contain all search keys inserted into tree and connected by linked list in sorted order
- Each leaf node:
- Has no tree pointers
- Has only search keys and data pointers
- Has linked list pointer to next leaf node
- Each internal node
- Has search keys
- Has tree pointers
- Has no data pointers
- Search keys in internal nodes used only for navigation

B+ trees: Definition

- B+-tree of order d
- Each internal node or leaf node must contain at least d keys
- Each internal or leaf node can contain at most 2d keys
- Each internal node can contain at most $2 \mathrm{~d}+\mathrm{I}$ pointers to next node in tree
- Each leaf node must contain as many data pointers as there are keys in the node
- Each leaf node has pointer to next leaf node in linked list

Example B+ Tree

- Search begins at root, and key comparisons direct it to a leaf.
- Search for 5^{*}, 15^{*}, all data entries $>=24^{*}$...

$>$ Based on the search for 15*, we know it is not in the tree!

Picking the order of a B+-tree

- Same logic as for B-tree:
- Best "packing": when entire node fits into one disk block with minimum space wasted
- Assume P_{t} bytes needed to specify address of data/tree pointer
- Assume key field requires K bytes
- Assume disk block size = B bytes
- Assume x bytes needed for block-specific information

Size of B+-tree node

- What is the maximum number of bytes needed by a B+-tree node of order d ?
- pointers, key fields, byte specific info
- What is the maximum number of bytes you can use for the node?

Order of B-tree

- Order d tree has at most 2d key values and 2d+1 pointers (data pointers and linked list pointer for leaf node, and tree pointers for internal node)
- $\mathrm{x}+2 \mathrm{~d} *(\mathrm{~K})+(2 \mathrm{~d}+\mathrm{I}) * \mathrm{P}_{\mathrm{t}}<=\mathrm{B}$

Example
- $\mathrm{B}=5 \mathrm{I} 2$ bytes, $\mathrm{x}=2, \mathrm{~K}=20, \mathrm{P}_{\mathrm{t}}=4$
- $2+2 \mathrm{~d}(20)+(2 \mathrm{~d}+\mathrm{I}) 4<=512$
- $48 \mathrm{~d}+6<=512$
- $\mathrm{d}<=10.54$
- Higher than degree of B -tree!

B+ Trees in Practice

- Typical order: I00. Typical fill-factor: 67\%.
- average fanout = 133
- Typical capacities:
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records
- Can often hold top levels in buffer pool:
- Level I = \quad page $=8$ Kbytes
- Level $2=133$ pages $=1$ Mbyte
- Level $3=17,689$ pages $=133$ MBytes

Inserting Data into a B+ Tree

B+ tree insertion Algo: Outline

- Find correct leaf L.
- Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
- Redistribute entries evenly, copy up middle key.
- Insert index entry pointing to L 2 into parent of L .
- This can happen recursively
- To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
- Tree growth: gets wider or one level taller at top.
- Input (Key, Pointer to Data) (K,P), B+ tree of order N (max 2 N values per node)
- Insert (T, K, P)
- Search Tree to find Leaf L_{i} to insert (K, P)
- Insert into Leaf $\mathrm{L}_{\text {, }}$
- If number of entries in $L_{i}=<2 N$ then done
- Else Split $\left(\mathrm{L}_{\mathrm{i}}\right)$
- Find key value of $\mathrm{N}+\mathrm{I}$ entry (i.e., median) Z_{i} in leaf
- Split L_{i} into two leaves L_{11} and $L_{L_{2}}$
- L_{11} contains all entries less than Z_{i}
- L_{12} contains all entries greater than or equal to Z_{1}

Create pointer from $L_{i 1}$ to L_{i}

- Create pointer $P_{i 1}$ pointing to $L_{i 1}$ and $P_{i 2}$ pointing to $L_{i 2}$
- If L_{i} was root node, then create new root and insert Z_{i} into new root and
stop.
- Else Insert (T,Z,

Inserting 8* into Example B+ Tree

- Observe how minimum occupancy is guaranteed in both leaf and index pg splits.
- Recall that all data items are in leaves, and partition values for keys are in intermediate nodes
Note difference between copy-up and push-up.

B+ Tree Summary

B+ tree and other indices ideal for range searches, good for equality searches.

- Inserts/deletes leave tree height-balanced; $\log _{\mathrm{F}} \mathrm{N}$ cost.
- High fanout (F) means depth rarely more than 3 or 4.
- Almost always better than maintaining a sorted file.
- Typically, 67% occupancy on average.
- Note: Order (d) concept replaced by physical space criterion in practice ("at least half-full").
- Records may be variable sized
- Index pages typically hold more entries than leaves

Deleting Data from a B+ Tree

- Start at root, find leaf L where entry belongs.
- Remove the entry.
- If L is at least half-full, done!
- If L has only $d-I$ entries,
- Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
- If re-distribution fails, merge L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- Merge could propagate to root, decreasing height.
- ...details in notes

Sorting Algorithms

- Quicksort, Heapsort
- Complexity ?
- Use the same algorithm to sort our data files?

External Sorting

- Data to be sorted = data file stored on disk
- Sorted file must be stored back on disk
- External sorting problem:
- Data file too large to fit in memory
- Data must be sorted in pieces
- Data usually heap size
- Desired result: sorted file (sorted on some key field)

Why Sorting?

- A classic problem in computer science!
- Data requested in sorted order - e.g., find students in increasing gpa order
- Sort-merge join algorithm involves sorting.
- Internal sorting
- Quicksort, heapsort, etc.
- Sorting Problem considered here: sort data much larger than main memory
- Example: sort IGb of data with IMb of RAM.
- Cannot hold all data in main memory - cannot use internal sort

Mergesort: Recall

External Mergesort

- File is set of pages/blocks
- $(2,5,10,19)$
- $(4,6,7,20)$
- If we have two sorted files of length $n / 2$ then binary memory
- Assume 2 pages to hold a page from each input file and I page for output sorted block
merge gives sorted file of length n

Finally...

External Sorting: Key ideas

- Individual blocks/pages can be easily sorted
- Read them into memory and use internal sort algorithm
- Create runs
- A run is a group/set of sorted blocks (i.e., sorted piece of a file)
- Runs can be created by merging data from several blocks
- Merge shorter runs into longer runs
- Merge runs to get sorted file

Observations

- How many disk I/Os ? (how many read and write operations)
- Length of sorted file vs length of input file(s) ?
\qquad

External Mergesort

- What is unsorted input ?
- Unsorted file of n blocks is $n / 2$ groups of 2 blocks each - Each group has two blocks to be sorted
- Sorting each group gives $n / 2$ groups of runs, each run is 2 blocks
hat if we merge $\mathrm{n} / 2$ groups, each group of 2 sorted blocks?
- n/4 groups, each of run 4 sorted blocks
- What is we merge $\mathrm{n} / 4$ groups, each group is run of size 4 (i.e., 4 sorted blocks - n/8 groups, each of size 8 blocks
- How many disk IOs?
.
- What if we merge 2 groups, each group is run of size $n / 2$
- We get sorted file of n blocks

How many disk IOs?

- How many phases to get to this last step ?

External Sorting

- Pass I: Read a page, sort it, write it.
- only one buffer page is used
- Pass 2, 3, ..., etc.
- three buffer pages used.

Two-Way External Merge Sort

General External Merge Sort

> How can we utilize more than 3 buffer pages?

- To sort a file with N pages using B buffer pages:
- Pass 0: use B buffer pages. Produce $\lceil N / B\rceil$ sorted runs of B pages each.
- Pass $2, \ldots$, etc.: merge $B-I$ runs.

M-way Mergesort

- Divide file into groups of M blocks each
- Merge each group into a sorted run: N/M runs
- Create groups of N / M runs, merge each group into single run
- Example: $N=400$ block file, $M=4$ input buffers
- Phase I: create groups of 4 blocks
- 100 groups of 4 blocks each $=100$ runs of 4 blocks each
- Phase 2: create groups of 4 runs; 100/4=25 groups
- 25 groups of 16 blocks each $=25$ runs of 16 blocks each
- Phase 3: create groups of 32 runs; $25 / 4=7$ groups
- 7 groups of upto 32 blocks each $=7$ runs of 32 blocks
- Phase 4: groups of 64 runs; 7/4= 2 groups
- 2 groups, upto 64 blocks $=2$ groups of 64 blocks
- Phase 5: group of 128 runs; 2/4=1 group
- I group, upto 128 blocks; 4 -way merge gives 400 blocks

Cost of External Merge Sort

- Number of passes: $1+\left\lceil\log _{M}\lceil N\rceil\right.$
- Cost $=2 \mathrm{~N}$ * (\# of passes)

