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B trees, Sorting, indices

Some slide content courtesy of Zack Ives & Raghu Ramakrishnan

CS 2541: Database Systems
DBMS File Organization

File Organization: Recap

 How files are organized impacts performance of 
queries

 Concept of index records and indexing
 Speeds up search

 Today: How to organize the index records & how to 
sort the file (on disk)
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Data/File Organizations -- Speeding 
Operations over Data

 Three general data organization techniques:
 Indexing
 Sorting
 Hashing

 There is also the notion of a “heap”, but that is data 
disorganization (or storage) rather than 
organization…
 But, it is easy to maintain in the face of insertions and 

deletionsdifficult to find things quickly.

Algorithms & ‘Data’ Structures for 
DBMS file organization

 B-trees: multi-level index
 Most commonly used database index structure today

 Hash index
 ‘standard’ hash table concept

 External sorting algorithms
 Sorting data residing on disk
 Time complexity measured in terms of disk read/write
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Recall: Indexing

 An index on a file speeds up selections on the search
key attributes for the index (trade space for speed).
 Any subset of the fields of a relation can be the search key 

for an index on the relation.
 Search key is not the same as key (minimal set of fields that 

uniquely identify a record in a relation).

 An index contains a collection of data entries, and 
supports efficient retrieval of all data entries k* with 
a given key value k.
 Index record contains key k and a pointer (disk address) 

to the data record with that key value

Classes of Indices

 Primary vs. secondary:  
 Clustered vs. unclustered:  keu used to order records 

on the file and index key approximately same

 Dense vs. Sparse:  dense has index entry per data 
value; sparse may “skip” some
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Secondary indexes Data File
Sequence field
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Two Level Index: 2nd level index points to 1st level index
2nd level is sparse index
1st level is dense index 
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Multilevel Index
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Multilevel Indices and B-trees



4

B-Trees and Indexing

 multi-level indexes can improve search performance.

 One of the challenges in creating multi-level indexes 
is maintaining the index in the presence of inserts 
and deletes.

 We look at B-trees which are the most common 
form of index used in database systems today.
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Review of B-tree concepts…

 Search in trees = O(h), h is height of tree
 Binary tree worst case height = O(n)
 Tree may get unbalanced

 B-trees – are a class of balanced trees
 Forces all leaves to have same height
 Original motivation was search trees (not databases)
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Balancing the tree…

 need to place some constraint that will force the 
tree to be balanced
 This is accomplished by specifying the minimum and 

maximum number of entries at each node – the order d of 
tree

 Alternately, can specify minimum and maximum number 
of children at each node – called the degree m of tree

B-trees

A B-tree is a search tree where each node has >= n data values 
and <= 2n, where we chose n for our particular tree.
 Each key in a node is stored in a sorted array.

 key[0] is the first key, key[1] is second key,…,key[2n-1] is the 2nth key
 key[0] < key[1] < key[2] < … < key[2n-1]

 There is also an array of pointers to children nodes:
 child[0], child[1], child[2], …, child[2n]
 Recursive definition: Each subtree pointed to by child[i] is also a B-

tree.

 For any key[i]:
 1) key[i] > all entries in subtree pointed to by child[i]
 2) key[i] <= all entries in subtree pointed to by child[i+1]

 A node may not contain all key values.
 # of children = # of keys +1 

 A B-tree is balanced as every leaf has the same depth.
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B-tree definition

 Every tree node of B-tree of order d (d >= 1) must 
have:
 (except the root) must have at least d key values (entries) 

sorted inside the node
 Cannot have more than 2d key values
 Has one more tree pointer than the number of key values; 

i.e., between d+1 and 2d+1
 Is either a leaf or an internal node
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B-tree Alternate definition

 Every tree node of B-tree of degree m (m >1) must 
have:
 (except the root) must have at least m-1 key values 

(entries) sorted inside the node
 Cannot have more than 2m-1 key values
 Has one more tree pointer than the number of key values; 

i.e., between m and 2m
 Is either a leaf or an internal node

B-trees Example 

Programming View

16 21 ... 24

15 25 ... 90

81 85 ... 89

1 10 ... 14 91 95 ... 99

26 40 ... 60

Check your definitions

 If B tree has maximum of 10 keys per node, then 
what is the maximum number of children that a 
node can have ?

 If B tree has degree 4 then what is the maximum 
number of keys it can have at a node ?

20
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Searching a B Tree: Example #1
B tree order 2 (1or 2 keys at node)
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Searching a BTree
Example #2
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Height of B-tree of n nodes ?

 Compute worst case height of B-tree of degree m 
(order m-1), with total n nodes and height h
 Root at level 0 has only 1 node
 Level 1 has 2 nodes, each has at least m children
 Level 2 has at least 2m nodes, each has at least m children
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Height of B-tree of n nodes ?

 Compute worst case height of B-tree of degree m (order m-
1), with total n nodes and height h
 Root at level 0 has only 1 node
 Level 1 has 2 nodes, each has at least m children
 Level 2 has at least 2m nodes, each has at least m children
 Level 3 has at least 2m2 nodes, each has at least m children
 ….

 Level h has 2m(h-1) nodes

 Therefore n = 1 + 2 +2m +2m2 +…+2m(h-1)

 n = 1 + 2(mh -1/m-1)

 Therefore, h = O (logm n)
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B-trees as External Data 
Structures

 Now that we have seen how a B-tree works as a 
data structure – how can it be used for an index.

 A regular B-tree can be used as an index by:
 Each node in the B-tree stores not only keys, but also a 

record pointer for each key to the actual data being 
stored. 
 Could also potentially store the record in the B-tree node itself.

 To find the data you want, search the B-tree using the 
key, and then use the pointer to retrieve the data.
 No additional disk access is required if the record is stored in the 

node.
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B-tree nodes & Index records

 B-tree is collection of blocks/nodes that contain
 Search-key (index) values
 Data pointers to data records
 Tree pointers to next/children node
 Some info local to block

 Each B-tree node resides on one disk block
 When tree is traversed, relevant nodes/blocks are 

brought into main memory

 Given this description, how might we calculate the 
best B-tree order.
 Depends on disk block and record size.
 We want a node to occupy an entire block.
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B-tree node

Key 
K1

Key 
K2

Data
Ptr
Pd1

Tree
Ptr
Pt1

Tree
Ptr
Pt2

Data
Ptr
Pd2

Tree
Ptr
Pt3

B-tree structure
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(a) Node in B-tree with q-1 keys; (b) B tree with max 2 at node  
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Size of B-tree node

 What is the maximum number of bytes needed by a 
B-tree node of order d ?
 Tree pointers, data pointers, key fields, byte specific info

 What is the maximum number of bytes you can use 
for the node ?
 Size of the disk block !
 One node fits in one disk block

 What is maximum no of entries of B-tree if key 
requires 5 bytes, and tree and data pointer need 10 
bytes and disk block size=100 bytes ?
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Picking the order of a B-tree

 Best “packing”: when entire node fits into one disk 
block with minimum space wasted

 Assume Pd bytes needed to specify address of data 
pointer

 Assume Pt bytes needed for address of tree pointer
 Assume key field requires K bytes
 Assume disk block size = B bytes
 Assume x bytes needed for block-specific 

information
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Order of B-tree

 Order d tree has at most 2d+1 tree pointers, 2d 
data pointers and 2d key values

 x+ 2d*(K + Pd) + (2d+1)*Pt <= B
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Degree of B-tree

 Degree m tree has at most 2m tree pointers, 2m -1 
data pointers and 2m-1 key values

 x+ (2m -1)*(K + Pd) + (2m)*Pt <= B
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Example: Calculating order of B-
tree

 Disk block size =512 bytes, Key is varchar(20), and 
32 bit (4 byte) addresses

 B=512 bytes, x=2, K=20, Pt = Pd = 4

 2+ 2d(20+4) + (2d+1)4 <= 512
 56d + 6 <= 512
 d <= 9
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Search in B-tree

Search for key=6:
find node with the key=6
follow record pointer to fetch the data record from disk
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Search in B-tree

 In-order search

 Time complexity ?
 Height of tree = log (N)

Inserting Data into a B Tree

 Find correct leaf L : search O(log N)
 Put data entry into L.
 If L has enough space, done!
 Else, must split L (into L and a new node L2)

 Redistribute entries evenly, push up middle key.
 Insert index entry pointing to L2 into parent of L.

 This can happen recursively

 Splits “grow” tree; root split increases height.  
 Tree growth: gets wider or one level taller at top.
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Inserting 8 Example: d=2

Root

17* 24* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 25* 27* 29* 33* 34* 38* 39*

13*

Want to insert here; no room, so split & push up:

2* 3* 7* 8*

5

Entry to be inserted in parent node.8*
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B-tree and Multilevel Index

 Same ? Or  Different ?
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Multilevel Index Key differences

 In multi-level index:
 Data records at level 0 and index records at all other 

levels (contain key value but no data pointer)
 The lowest level index records are ordered

 Leaves form a linked list

 In B tree
 Nodes contain both data pointers and tree (index) 

pointers
 To get a list of sequential records, we have to search 

multiple levels of the tree

40
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B+ Tree:  The DB World’s 
Favorite Index

 Insert/delete at log F N cost 
 (F = fanout, N = # leaf pages)

 Keep tree height-balanced

 Minimum 50% occupancy (except for root).
 Each node contains d <=  m <= 2d entries. 

d is called the order of the tree.
 Supports equality and range searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)
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B+ Trees – Definition 

 Similar structure to B-tree
 Distinguish between internal nodes and leaf nodes

 Leaf nodes contain all search keys inserted into tree and connected by 
linked list in sorted order

 Each leaf node:
 Has no tree pointers
 Has only search keys and data pointers
 Has linked list pointer to next leaf node

 Each internal node
 Has search keys
 Has tree pointers
 Has no data pointers

 Search keys in internal nodes used only for navigation

43

B+ trees

 Search keys in internal nodes are repeated in leaves
 Similar to multilevel index

 Every search key does not occur as internal value

 To get the data record, we have to get to the leaf 
level
 All searches will take O(h) where h is height of tree
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B+ trees: Definition

 B+-tree of order d
 Each internal node or leaf node must contain at least d 

keys
 Each internal or leaf node can contain at most 2d keys
 Each internal node can contain at most 2d+1 pointers to 

next node in tree
 Each leaf node must contain as many data pointers as 

there are keys in the node
 Each leaf node has pointer to next leaf node in linked list
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Example B+ Tree

 Search begins at root, and key comparisons direct it 
to a leaf.

 Search for 5*, 15*, all data entries >= 24* ...

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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Picking the order of a B+-tree

 Same logic as for B-tree:
 Best “packing”: when entire node fits into one disk 

block with minimum space wasted
 Assume Pt bytes needed to specify address of 

data/tree pointer
 Assume key field requires K bytes
 Assume disk block size = B bytes
 Assume x bytes needed for block-specific 

information
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Size of B+-tree node

 What is the maximum number of bytes needed by a 
B+-tree node of order d ?
 pointers, key fields, byte specific info

 What is the maximum number of bytes you can use 
for the node ?
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Order of B-tree

 Order d tree has at most 2d key values and 2d+1 
pointers (data pointers and linked list pointer for 
leaf node, and tree pointers for internal node)

 x+ 2d*(K ) + (2d+1)*Pt <= B
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Example

 B=512 bytes, x=2, K=20, Pt = 4

 2+ 2d(20) + (2d+1)4 <= 512
 48d + 6 <= 512
 d <= 10.54

 Higher than degree of B-tree!

B+ Trees in Practice

 Typical order: 100.  Typical fill-factor: 67%.
 average fanout = 133

 Typical capacities:
 Height 4: 1334 = 312,900,700 records
 Height 3: 1333 =     2,352,637 records

 Can often hold top levels in buffer pool:
 Level 1 =           1 page  =     8 Kbytes
 Level 2 =      133 pages =     1 Mbyte
 Level 3 = 17,689 pages = 133 MBytes       

Inserting Data into a B+ Tree

 Find correct leaf L. 
 Put data entry onto L.

 If L has enough space, done!
 Else, must split L (into L and a new node L2)

 Redistribute entries evenly, copy up middle key.
 Insert index entry pointing to L2 into parent of L.

 This can happen recursively
 To split index node, redistribute entries evenly, but push up middle 

key.  (Contrast with leaf splits.)

 Splits “grow” tree; root split increases height.  
 Tree growth: gets wider or one level taller at top.

B+ tree insertion Algo: Outline

 Input (Key, Pointer to Data) (K,P), B+ tree of order N (max 2N values 
per node)

 Insert (T, K,P)
 Search Tree to find Leaf Li to insert (K,P)

 Insert into Leaf Li

 If number of entries in Li =< 2N then done
 Else Split(Li)

 Find key value of N+1 entry (i.e., median) Zi in leaf

 Split Li into two leaves Li1 and Li2

 Li1 contains all entries less than Zi

 Li2 contains all entries greater than or equal to Zi

 Create pointer from Li1 to Li2

 Create pointer Pi1 pointing to Li1 and Pi2 pointing to Li2

 If Li was root node, then create new root and insert Zi into new root and 
stop.

 Else  Insert (T,Zi) 52
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Inserting 8* into Example B+ Tree

 Observe how minimum occupancy is guaranteed in 
both leaf and index pg splits.

 Recall that all data items are in leaves, and partition 
values for keys are in intermediate nodes
Note difference between copy-up and push-up.

54

Inserting 8* Example: Order 2 B+ tre

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Want to insert here; no room, so split & copy up:
8*

55

Inserting 8* Example: Copy up

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Want to insert here; no room, so split & copy up:

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is copied up and
continues to appear in the leaf.)

8*

Inserting 8* Example: Push up

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5* 7* 8*

5

Need to split node 
& push up

Problem: Root node
is also full…so split root!
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Inserting 8* Example: Push up

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5* 7* 8*

5

Need to split node 
& push up

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with a leaf split.)

Deleting Data from a B+ Tree

 Start at root, find leaf L where entry belongs.
 Remove the entry.

 If L is at least half-full, done! 
 If L has only d-1 entries,

 Try to re-distribute, borrowing from sibling (adjacent node with same 
parent as L).

 If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L or sibling) 
from parent of L.

 Merge could propagate to root, decreasing height.
 …details in notes

B+ Tree Summary

B+ tree and other indices ideal for range searches, good for 
equality searches.
 Inserts/deletes leave tree height-balanced; logF N cost.
 High fanout (F) means depth rarely more than 3 or 4.
 Almost always better than maintaining a sorted file.
 Typically, 67% occupancy on average.
 Note: Order (d) concept replaced by physical space criterion in 

practice (“at least half-full”).
 Records may be variable sized

 Index pages typically hold more entries than leaves
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Sorting Algorithms

 Quicksort, Heapsort

 Complexity ?

 Use the same algorithm to sort our data files?
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External Sorting

 Data to be sorted = data file stored on disk
 Sorted file must be stored back on disk

 External sorting problem:
 Data file too large to fit in memory
 Data must be sorted in pieces
 Data usually heap size 
 Desired result: sorted file (sorted on some key field) 

Why Sorting ?

 A classic problem in computer science!
 Data requested in sorted order 

 e.g., find students in increasing gpa order

 Sort-merge join algorithm involves sorting.
 Internal sorting
 Quicksort, heapsort, etc.

 Sorting Problem considered here: sort data much larger 
than main memory
 Example: sort 1Gb of data with 1Mb of RAM.

 Cannot hold all data in main memory – cannot use internal sort
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Mergesort: Recall

 Merge two sorted lists
 (2,5,10,19)
 (4,6,7,20)

 If we have two sorted files of length n/2 then binary 
merge gives sorted file of length n

64

External Mergesort

 File is set of pages/blocks

 Read one block at a time from disk into main 
memory
 Assume 2 pages to hold a page from each input file and 1 

page for output sorted block
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External Mergesort

66

External Mergesort

67 68
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69

Finally…

70

Observations 

 How many disk I/Os ? (how many read and write 
operations)

 Length of sorted file vs length of input file(s) ?
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External Sorting: Key ideas

 Individual blocks/pages can be easily sorted 
 Read them into memory and use internal sort algorithm

 Create runs
 A run is  a group/set of sorted blocks (i.e., sorted piece of 

a file)
 Runs can be created by merging data from several blocks

 Merge shorter runs into longer runs
 Merge runs to get sorted file
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External Mergesort

 What is unsorted input ?
 Unsorted file of n blocks is n/2 groups of 2 blocks each

 Each group has two blocks to be sorted
 Sorting each group gives n/2 groups of runs, each run is 2 blocks

 What if we merge n/2 groups, each group of 2 sorted blocks?
 n/4 groups, each of run 4 sorted blocks
 How many disk IOs ?

 What is we merge n/4 groups, each group is run of size 4 (i.e., 4 sorted blocks
 n/8 groups, each of size 8 blocks
 How many disk IOs?

 …..
 What if we merge 2 groups, each group is run of size n/2

 We get sorted file of n blocks
 How many disk IOs ?
 How many phases to get to this last step ?
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External  Sorting

 Pass 1: Read a page, sort it, write it.
 only one buffer page is used

 Pass 2, 3, …, etc.:
 three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

 Each pass we read, write 
each page in file.

 N pages in the file => the 
number of passes

 Total cost is:

 Idea:  Divide and conquer: 
sort subfiles and merge

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

General External Merge Sort

 To sort a file with N pages using B buffer pages:
 Pass 0: use B buffer pages. Produce              sorted runs of B

pages each.
 Pass 2, …,  etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

. . . . . .. . .

 How can we utilize more than 3 buffer pages?
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77

M-way External Mergesort

78

M-way Mergesort

 Divide file into groups of M blocks each
 Merge each group into a sorted run: N/M runs
 Create groups of N/M runs, merge each group into single run
 Example: N=400 block file, M=4 input buffers

 Phase 1: create groups of 4 blocks
 100 groups of 4 blocks each = 100 runs of 4 blocks each

 Phase 2: create groups of 4 runs; 100/4=25 groups
 25 groups of 16 blocks each = 25 runs of 16 blocks each

 Phase 3: create groups of 32 runs; 25/4= 7 groups
 7 groups of upto 32 blocks each = 7 runs of 32 blocks

 Phase 4: groups of 64 runs; 7/4= 2 groups
 2 groups, upto 64 blocks = 2 groups of 64 blocks

 Phase 5: group of 128 runs; 2/4=1 group
 1 group, upto 128 blocks; 4-way merge gives 400 blocks

Cost of External Merge Sort

 Number of passes:
 Cost = 2N * (# of passes)

  NMlog1


