
1

B trees, Sorting, indices

Some slide content courtesy of Zack Ives & Raghu Ramakrishnan

CS 2541: Database Systems
DBMS File Organization

File Organization: Recap

 How files are organized impacts performance of
queries

 Concept of index records and indexing
 Speeds up search

 Today: How to organize the index records & how to
sort the file (on disk)

2

3

Data/File Organizations -- Speeding
Operations over Data

 Three general data organization techniques:
 Indexing
 Sorting
 Hashing

 There is also the notion of a “heap”, but that is data
disorganization (or storage) rather than
organization…
 But, it is easy to maintain in the face of insertions and

deletionsdifficult to find things quickly.

Algorithms & ‘Data’ Structures for
DBMS file organization

 B-trees: multi-level index
 Most commonly used database index structure today

 Hash index
 ‘standard’ hash table concept

 External sorting algorithms
 Sorting data residing on disk
 Time complexity measured in terms of disk read/write

4

2

Recall: Indexing

 An index on a file speeds up selections on the search
key attributes for the index (trade space for speed).
 Any subset of the fields of a relation can be the search key

for an index on the relation.
 Search key is not the same as key (minimal set of fields that

uniquely identify a record in a relation).

 An index contains a collection of data entries, and
supports efficient retrieval of all data entries k* with
a given key value k.
 Index record contains key k and a pointer (disk address)

to the data record with that key value

Classes of Indices

 Primary vs. secondary:
 Clustered vs. unclustered: keu used to order records

on the file and index key approximately same

 Dense vs. Sparse: dense has index entry per data
value; sparse may “skip” some

7

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40
50
60
70
80

90
100
110
120

Dense Index: one entry in index file for each data record
8

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70
90
110
130
150

170
190
210
230

Sparse Index: one entry in index file for each data disk block
when records on disk are ordered by search key

3

9

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70
90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

Two Level Index: 2nd level index points to 1st level index
10

Secondary indexes Data File
Sequence field

50
30

70
20

40
80

10
100

60
90

• Dense level 1 index
10
20
30
40

50
60
70
...

10
50
90
...

Sparse
Level 2
index

Two Level Index: 2nd level index points to 1st level index
2nd level is sparse index
1st level is dense index

11

Multilevel Index

12

Multilevel Indices and B-trees

4

B-Trees and Indexing

 multi-level indexes can improve search performance.

 One of the challenges in creating multi-level indexes
is maintaining the index in the presence of inserts
and deletes.

 We look at B-trees which are the most common
form of index used in database systems today.

14

Review of B-tree concepts…

 Search in trees = O(h), h is height of tree
 Binary tree worst case height = O(n)
 Tree may get unbalanced

 B-trees – are a class of balanced trees
 Forces all leaves to have same height
 Original motivation was search trees (not databases)

15

Balancing the tree…

 need to place some constraint that will force the
tree to be balanced
 This is accomplished by specifying the minimum and

maximum number of entries at each node – the order d of
tree

 Alternately, can specify minimum and maximum number
of children at each node – called the degree m of tree

B-trees

A B-tree is a search tree where each node has >= n data values
and <= 2n, where we chose n for our particular tree.
 Each key in a node is stored in a sorted array.

 key[0] is the first key, key[1] is second key,…,key[2n-1] is the 2nth key
 key[0] < key[1] < key[2] < … < key[2n-1]

 There is also an array of pointers to children nodes:
 child[0], child[1], child[2], …, child[2n]
 Recursive definition: Each subtree pointed to by child[i] is also a B-

tree.

 For any key[i]:
 1) key[i] > all entries in subtree pointed to by child[i]
 2) key[i] <= all entries in subtree pointed to by child[i+1]

 A node may not contain all key values.
 # of children = # of keys +1

 A B-tree is balanced as every leaf has the same depth.

5

17

B-tree definition

 Every tree node of B-tree of order d (d >= 1) must
have:
 (except the root) must have at least d key values (entries)

sorted inside the node
 Cannot have more than 2d key values
 Has one more tree pointer than the number of key values;

i.e., between d+1 and 2d+1
 Is either a leaf or an internal node

18

B-tree Alternate definition

 Every tree node of B-tree of degree m (m >1) must
have:
 (except the root) must have at least m-1 key values

(entries) sorted inside the node
 Cannot have more than 2m-1 key values
 Has one more tree pointer than the number of key values;

i.e., between m and 2m
 Is either a leaf or an internal node

B-trees Example

Programming View

16 21 ... 24

15 25 ... 90

81 85 ... 89

1 10 ... 14 91 95 ... 99

26 40 ... 60

Check your definitions

 If B tree has maximum of 10 keys per node, then
what is the maximum number of children that a
node can have ?

 If B tree has degree 4 then what is the maximum
number of keys it can have at a node ?

20

6

Searching a B Tree: Example #1
B tree order 2 (1or 2 keys at node)

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 34

37 50

30 35

33 34

Searching a BTree
Example #2

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 82

70 90

80

37 50

23

Height of B-tree of n nodes ?

 Compute worst case height of B-tree of degree m
(order m-1), with total n nodes and height h
 Root at level 0 has only 1 node
 Level 1 has 2 nodes, each has at least m children
 Level 2 has at least 2m nodes, each has at least m children

24

Height of B-tree of n nodes ?

 Compute worst case height of B-tree of degree m (order m-
1), with total n nodes and height h
 Root at level 0 has only 1 node
 Level 1 has 2 nodes, each has at least m children
 Level 2 has at least 2m nodes, each has at least m children
 Level 3 has at least 2m2 nodes, each has at least m children
 ….

 Level h has 2m(h-1) nodes

 Therefore n = 1 + 2 +2m +2m2 +…+2m(h-1)

 n = 1 + 2(mh -1/m-1)

 Therefore, h = O (logm n)

7

B-trees as External Data
Structures

 Now that we have seen how a B-tree works as a
data structure – how can it be used for an index.

 A regular B-tree can be used as an index by:
 Each node in the B-tree stores not only keys, but also a

record pointer for each key to the actual data being
stored.
 Could also potentially store the record in the B-tree node itself.

 To find the data you want, search the B-tree using the
key, and then use the pointer to retrieve the data.
 No additional disk access is required if the record is stored in the

node.

26

B-tree nodes & Index records

 B-tree is collection of blocks/nodes that contain
 Search-key (index) values
 Data pointers to data records
 Tree pointers to next/children node
 Some info local to block

 Each B-tree node resides on one disk block
 When tree is traversed, relevant nodes/blocks are

brought into main memory

 Given this description, how might we calculate the
best B-tree order.
 Depends on disk block and record size.
 We want a node to occupy an entire block.

27

B-tree node

Key
K1

Key
K2

Data
Ptr
Pd1

Tree
Ptr
Pt1

Tree
Ptr
Pt2

Data
Ptr
Pd2

Tree
Ptr
Pt3

B-tree structure

28

(a) Node in B-tree with q-1 keys; (b) B tree with max 2 at node

8

29

Size of B-tree node

 What is the maximum number of bytes needed by a
B-tree node of order d ?
 Tree pointers, data pointers, key fields, byte specific info

 What is the maximum number of bytes you can use
for the node ?
 Size of the disk block !
 One node fits in one disk block

 What is maximum no of entries of B-tree if key
requires 5 bytes, and tree and data pointer need 10
bytes and disk block size=100 bytes ?

30

Picking the order of a B-tree

 Best “packing”: when entire node fits into one disk
block with minimum space wasted

 Assume Pd bytes needed to specify address of data
pointer

 Assume Pt bytes needed for address of tree pointer
 Assume key field requires K bytes
 Assume disk block size = B bytes
 Assume x bytes needed for block-specific

information

31

Order of B-tree

 Order d tree has at most 2d+1 tree pointers, 2d
data pointers and 2d key values

 x+ 2d*(K + Pd) + (2d+1)*Pt <= B

32

Degree of B-tree

 Degree m tree has at most 2m tree pointers, 2m -1
data pointers and 2m-1 key values

 x+ (2m -1)*(K + Pd) + (2m)*Pt <= B

9

33

Example: Calculating order of B-
tree

 Disk block size =512 bytes, Key is varchar(20), and
32 bit (4 byte) addresses

 B=512 bytes, x=2, K=20, Pt = Pd = 4

 2+ 2d(20+4) + (2d+1)4 <= 512
 56d + 6 <= 512
 d <= 9

34

Search in B-tree

Search for key=6:
find node with the key=6
follow record pointer to fetch the data record from disk

35

Search in B-tree

 In-order search

 Time complexity ?
 Height of tree = log (N)

Inserting Data into a B Tree

 Find correct leaf L : search O(log N)
 Put data entry into L.
 If L has enough space, done!
 Else, must split L (into L and a new node L2)

 Redistribute entries evenly, push up middle key.
 Insert index entry pointing to L2 into parent of L.

 This can happen recursively

 Splits “grow” tree; root split increases height.
 Tree growth: gets wider or one level taller at top.

10

37

Inserting 8 Example: d=2

Root

17* 24* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 25* 27* 29* 33* 34* 38* 39*

13*

Want to insert here; no room, so split & push up:

2* 3* 7* 8*

5

Entry to be inserted in parent node.8*

38

B-tree and Multilevel Index

 Same ? Or Different ?

39

Multilevel Index Key differences

 In multi-level index:
 Data records at level 0 and index records at all other

levels (contain key value but no data pointer)
 The lowest level index records are ordered

 Leaves form a linked list

 In B tree
 Nodes contain both data pointers and tree (index)

pointers
 To get a list of sequential records, we have to search

multiple levels of the tree

40

11

B+ Tree: The DB World’s
Favorite Index

 Insert/delete at log F N cost
 (F = fanout, N = # leaf pages)

 Keep tree height-balanced

 Minimum 50% occupancy (except for root).
 Each node contains d <= m <= 2d entries.

d is called the order of the tree.
 Supports equality and range searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

42

B+ Trees – Definition

 Similar structure to B-tree
 Distinguish between internal nodes and leaf nodes

 Leaf nodes contain all search keys inserted into tree and connected by
linked list in sorted order

 Each leaf node:
 Has no tree pointers
 Has only search keys and data pointers
 Has linked list pointer to next leaf node

 Each internal node
 Has search keys
 Has tree pointers
 Has no data pointers

 Search keys in internal nodes used only for navigation

43

B+ trees

 Search keys in internal nodes are repeated in leaves
 Similar to multilevel index

 Every search key does not occur as internal value

 To get the data record, we have to get to the leaf
level
 All searches will take O(h) where h is height of tree

44

B+ trees: Definition

 B+-tree of order d
 Each internal node or leaf node must contain at least d

keys
 Each internal or leaf node can contain at most 2d keys
 Each internal node can contain at most 2d+1 pointers to

next node in tree
 Each leaf node must contain as many data pointers as

there are keys in the node
 Each leaf node has pointer to next leaf node in linked list

12

Example B+ Tree

 Search begins at root, and key comparisons direct it
to a leaf.

 Search for 5*, 15*, all data entries >= 24* ...

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

46

Picking the order of a B+-tree

 Same logic as for B-tree:
 Best “packing”: when entire node fits into one disk

block with minimum space wasted
 Assume Pt bytes needed to specify address of

data/tree pointer
 Assume key field requires K bytes
 Assume disk block size = B bytes
 Assume x bytes needed for block-specific

information

47

Size of B+-tree node

 What is the maximum number of bytes needed by a
B+-tree node of order d ?
 pointers, key fields, byte specific info

 What is the maximum number of bytes you can use
for the node ?

48

Order of B-tree

 Order d tree has at most 2d key values and 2d+1
pointers (data pointers and linked list pointer for
leaf node, and tree pointers for internal node)

 x+ 2d*(K) + (2d+1)*Pt <= B

13

49

Example

 B=512 bytes, x=2, K=20, Pt = 4

 2+ 2d(20) + (2d+1)4 <= 512
 48d + 6 <= 512
 d <= 10.54

 Higher than degree of B-tree!

B+ Trees in Practice

 Typical order: 100. Typical fill-factor: 67%.
 average fanout = 133

 Typical capacities:
 Height 4: 1334 = 312,900,700 records
 Height 3: 1333 = 2,352,637 records

 Can often hold top levels in buffer pool:
 Level 1 = 1 page = 8 Kbytes
 Level 2 = 133 pages = 1 Mbyte
 Level 3 = 17,689 pages = 133 MBytes

Inserting Data into a B+ Tree

 Find correct leaf L.
 Put data entry onto L.

 If L has enough space, done!
 Else, must split L (into L and a new node L2)

 Redistribute entries evenly, copy up middle key.
 Insert index entry pointing to L2 into parent of L.

 This can happen recursively
 To split index node, redistribute entries evenly, but push up middle

key. (Contrast with leaf splits.)

 Splits “grow” tree; root split increases height.
 Tree growth: gets wider or one level taller at top.

B+ tree insertion Algo: Outline

 Input (Key, Pointer to Data) (K,P), B+ tree of order N (max 2N values
per node)

 Insert (T, K,P)
 Search Tree to find Leaf Li to insert (K,P)

 Insert into Leaf Li

 If number of entries in Li =< 2N then done
 Else Split(Li)

 Find key value of N+1 entry (i.e., median) Zi in leaf

 Split Li into two leaves Li1 and Li2

 Li1 contains all entries less than Zi

 Li2 contains all entries greater than or equal to Zi

 Create pointer from Li1 to Li2

 Create pointer Pi1 pointing to Li1 and Pi2 pointing to Li2

 If Li was root node, then create new root and insert Zi into new root and
stop.

 Else Insert (T,Zi) 52

14

Inserting 8* into Example B+ Tree

 Observe how minimum occupancy is guaranteed in
both leaf and index pg splits.

 Recall that all data items are in leaves, and partition
values for keys are in intermediate nodes
Note difference between copy-up and push-up.

54

Inserting 8* Example: Order 2 B+ tre

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Want to insert here; no room, so split & copy up:
8*

55

Inserting 8* Example: Copy up

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Want to insert here; no room, so split & copy up:

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is copied up and
continues to appear in the leaf.)

8*

Inserting 8* Example: Push up

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5* 7* 8*

5

Need to split node
& push up

Problem: Root node
is also full…so split root!

15

57

Inserting 8* Example: Push up

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5* 7* 8*

5

Need to split node
& push up

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with a leaf split.)

Deleting Data from a B+ Tree

 Start at root, find leaf L where entry belongs.
 Remove the entry.

 If L is at least half-full, done!
 If L has only d-1 entries,

 Try to re-distribute, borrowing from sibling (adjacent node with same
parent as L).

 If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L or sibling)
from parent of L.

 Merge could propagate to root, decreasing height.
 …details in notes

B+ Tree Summary

B+ tree and other indices ideal for range searches, good for
equality searches.
 Inserts/deletes leave tree height-balanced; logF N cost.
 High fanout (F) means depth rarely more than 3 or 4.
 Almost always better than maintaining a sorted file.
 Typically, 67% occupancy on average.
 Note: Order (d) concept replaced by physical space criterion in

practice (“at least half-full”).
 Records may be variable sized

 Index pages typically hold more entries than leaves

60

Sorting Algorithms

 Quicksort, Heapsort

 Complexity ?

 Use the same algorithm to sort our data files?

16

61

External Sorting

 Data to be sorted = data file stored on disk
 Sorted file must be stored back on disk

 External sorting problem:
 Data file too large to fit in memory
 Data must be sorted in pieces
 Data usually heap size
 Desired result: sorted file (sorted on some key field)

Why Sorting ?

 A classic problem in computer science!
 Data requested in sorted order

 e.g., find students in increasing gpa order

 Sort-merge join algorithm involves sorting.
 Internal sorting
 Quicksort, heapsort, etc.

 Sorting Problem considered here: sort data much larger
than main memory
 Example: sort 1Gb of data with 1Mb of RAM.

 Cannot hold all data in main memory – cannot use internal sort

63

Mergesort: Recall

 Merge two sorted lists
 (2,5,10,19)
 (4,6,7,20)

 If we have two sorted files of length n/2 then binary
merge gives sorted file of length n

64

External Mergesort

 File is set of pages/blocks

 Read one block at a time from disk into main
memory
 Assume 2 pages to hold a page from each input file and 1

page for output sorted block

17

65

External Mergesort

66

External Mergesort

67 68

18

69

Finally…

70

Observations

 How many disk I/Os ? (how many read and write
operations)

 Length of sorted file vs length of input file(s) ?

71

External Sorting: Key ideas

 Individual blocks/pages can be easily sorted
 Read them into memory and use internal sort algorithm

 Create runs
 A run is a group/set of sorted blocks (i.e., sorted piece of

a file)
 Runs can be created by merging data from several blocks

 Merge shorter runs into longer runs
 Merge runs to get sorted file

72

External Mergesort

 What is unsorted input ?
 Unsorted file of n blocks is n/2 groups of 2 blocks each

 Each group has two blocks to be sorted
 Sorting each group gives n/2 groups of runs, each run is 2 blocks

 What if we merge n/2 groups, each group of 2 sorted blocks?
 n/4 groups, each of run 4 sorted blocks
 How many disk IOs ?

 What is we merge n/4 groups, each group is run of size 4 (i.e., 4 sorted blocks
 n/8 groups, each of size 8 blocks
 How many disk IOs?

 …..
 What if we merge 2 groups, each group is run of size n/2

 We get sorted file of n blocks
 How many disk IOs ?
 How many phases to get to this last step ?

19

External Sorting

 Pass 1: Read a page, sort it, write it.
 only one buffer page is used

 Pass 2, 3, …, etc.:
 three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

 Each pass we read, write
each page in file.

 N pages in the file => the
number of passes

 Total cost is:

 Idea: Divide and conquer:
sort subfiles and merge

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

General External Merge Sort

 To sort a file with N pages using B buffer pages:
 Pass 0: use B buffer pages. Produce sorted runs of B

pages each.
 Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

 How can we utilize more than 3 buffer pages?

20

77

M-way External Mergesort

78

M-way Mergesort

 Divide file into groups of M blocks each
 Merge each group into a sorted run: N/M runs
 Create groups of N/M runs, merge each group into single run
 Example: N=400 block file, M=4 input buffers

 Phase 1: create groups of 4 blocks
 100 groups of 4 blocks each = 100 runs of 4 blocks each

 Phase 2: create groups of 4 runs; 100/4=25 groups
 25 groups of 16 blocks each = 25 runs of 16 blocks each

 Phase 3: create groups of 32 runs; 25/4= 7 groups
 7 groups of upto 32 blocks each = 7 runs of 32 blocks

 Phase 4: groups of 64 runs; 7/4= 2 groups
 2 groups, upto 64 blocks = 2 groups of 64 blocks

 Phase 5: group of 128 runs; 2/4=1 group
 1 group, upto 128 blocks; 4-way merge gives 400 blocks

Cost of External Merge Sort

 Number of passes:
 Cost = 2N * (# of passes)

  NMlog1

