Data/File Organizations -- Speeding Operations over Data

- Three general data organization techniques:
 - Indexing
 - Sorting
 - Hashing

- There is also the notion of a “heap”, but that is data disorganization (or storage) rather than organization…
 - But, it is easy to maintain in the face of insertions and deletions. Just difficult to find things quickly.

Alternatives for Data Entry k^* in Index

- Three alternatives:
 1. Data record with key value k
 - Clustered → fast lookup
 - Index is large; only 1 can exist
 2. $<k$, rid of data record with search key value k>, OR
 3. $<k$, list of rids of data records with search key k>
 - Can have secondary indices
 - Smaller index may mean faster lookup
 - Often not clustered → more expensive to use

- Choice of alternative for data entries is orthogonal to the indexing technique used to locate data entries with a given key value k.

Algorithms & ‘Data’ Structures for DBMS file organization

- B-trees: multi-level index
 - Most commonly used database index structure today
- Hash index
 - ‘standard’ hash table concept
- External sorting algorithms
 - Sorting data residing on disk
 - Time complexity measured in terms of disk read/write
Recall: Indexing

- An **index** on a file speeds up selections on the **search key attributes** for the index (trade space for speed).
 - Any subset of the fields of a relation can be the search key for an index on the relation.
 - **Search key** is not the same as **key** (minimal set of fields that uniquely identify a record in a relation).
- An index contains a collection of **data entries**, and supports efficient retrieval of all data entries \(k^* \) with a given key value \(k \).
 - Index record contains key \(k \) and a pointer (disk address) to the data record with that key value.

B-Trees and Indexing

- We have seen how multi-level indexes can improve search performance.
- One of the challenges in creating multi-level indexes is maintaining the index in the presence of inserts and deletes.
- We will learn B+-trees which are the most common form of index used in database systems today.

B-tree

- **Class of balanced trees**
- Forces all leaves to have same height
- Original motivation was search trees (not databases)
- Note: need to place some constraint that will force the tree to be balanced
 - This is accomplished by specifying the minimum and maximum number of entries at each node – the **order** \(d \) of tree
 - Alternately, can specify minimum and maximum number of children at each node – called the **degree** \(m \) of tree

B-tree Introduction

A **B-tree** is a search tree where each node has \(\geq n \) data values and \(\leq 2n \), where we chose \(n \) for our particular tree.
- Each key in a node is stored in a sorted array.
 - key\([0]\) is the first key, key\([1]\) is second key, ...key\([2n-1]\) is the 2\(n\)th key
 - key\([0]\) < key\([1]\) < key\([2]\) < ... < key\([2n-1]\)
- There is also an array of pointers to children nodes:
 - child\([0]\), child\([1]\), child\([2]\), ..., child\([2n]\)
- Recursive definition: Each subtree pointed to by child\([i]\) is also a B-tree.
- For any key\([i]\):
 - 1) key\([i]\) > all entries in subtree pointed to by child\([i]\)
 - 2) key\([i]\) < all entries in subtree pointed to by child\([i+1]\)
- A node may not contain all key values.
 - \# of children = \# of keys + 1
- A B-tree is **balanced** as every leaf has the same depth.
B-tree definition

- Every tree node of B-tree of order d ($d > 1$) must have:
 - (except the root) must have at least d key values (entries) sorted inside the node
 - Cannot have more than $2d$ key values
 - Has as many data pointers as key values
 - Has one more tree pointer than the number of key values; i.e., between $d+1$ and $2d+1$
 - Is either a leaf or an internal node

B-tree Alternate definition

- Every tree node of B-tree of degree m ($m > 1$) must have:
 - (except the root) must have at least $m-1$ key values (entries) sorted inside the node
 - Cannot have more than $2m-1$ key values
 - Has as many data pointers as key values
 - Has one more tree pointer than the number of key values; i.e., between m and $2m$
 - Is either a leaf or an internal node

B-trees Example

Searching a B Tree: Example #1
B tree order 2 (1 or 2 keys at node)
Searching a BTree Example #2

Find 82

Height of B-tree of n nodes?

- Compute worst case height of B-tree of degree m (order m-1), with total n nodes and height h
 - Root at level 0 has only 1 node
 - Level 1 has 2 nodes, each has at least m children
 - Level 2 has at least 2m nodes, each has at least m children
 - Level 3 has at least 2m^2 nodes, each has at least m children
 - ...
 - Level h has 2m^(h-1) nodes

Therefore \(n = 1 + 2 + 2m + 2m^2 + ... + 2m^{(h-1)} \)

\[n = 1 + \frac{2m^h - 1}{m-1} \]

Therefore, \(h = O(\log_m n) \)

B-trees as External Data Structures

- Now that we understand how a B-tree works as a data structure, we will investigate how it can be used for an index.
- A regular B-tree can be used as an index by:
 - Each node in the B-tree stores not only keys, but also a record pointer for each key so the actual data being stored.
 - Could also potentially store the record in the B-tree node itself.
 - To find the data you want, search the B-tree using the key, and then use the pointer to retrieve the data.
 - No additional disk access is required if the record is stored in the node.
B-tree nodes & Index records

- B-tree is collection of blocks/nodes that contain
 - Search-key (index) values
 - Data pointers to data records
 - Tree pointers to next/children node
 - Some info local to block

- Each B-tree node resides on one disk block
 - When tree is traversed, relevant nodes/blocks are brought into main memory

- Given this description, how might we calculate the best B-tree order.
 - Depends on disk block and record size.
 - We want a node to occupy an entire block.

B-tree node

B-tree nodes

Nodes in B-tree arranged in in-order
 each node has many entries

B-tree structure

(a) Node in B-tree with q-1 keys; (b) B tree with max 2 at node
Size of B-tree node

- What is the maximum number of bytes needed by a B-tree node of order d?
 - Tree pointers, data pointers, key fields, byte specific info
- What is the maximum number of bytes you can use for the node?

Picking the order of a B-tree

- Best "packing": when entire node fits into one disk block with minimum space wasted
- Assume \(P_d \) bytes needed to specify address of data pointer
- Assume \(P_t \) bytes needed for address of tree pointer
- Assume key field requires \(K \) bytes
- Assume disk block size = \(B \) bytes
- Assume \(x \) bytes needed for block-specific information

Order of B-tree

- Degree \(d \) tree has at most \(2d+1 \) tree pointers, \(2d \) data pointers and \(2d \) key values
- \(x + 2d(K + P_d) + (2d+1)P_t \leq B \)

Example

- \(B=512 \) bytes, \(x=2, K=20, P_t = P_d = 4 \)
- \(2 + 2d(20+4) + (2d+1)4 \leq 512 \)
 - \(56d + 6 \leq 512 \)
 - \(d \leq 9 \)
Search in B-tree

Search for key=6

![B-tree diagram](image)

- In-order search

- Time complexity?
 - Height of tree = \(\log(N) \)

Inserting Data into a B Tree

- Find correct leaf \(L \): search \(O(\log N) \)
- Put data entry into \(L \)
- If \(L \) has enough space, done!
- Else, must split \(L \) (into \(L \) and a new node \(L_2 \))
 - Redistribute entries evenly, push up middle key.
 - Insert index entry pointing to \(L_2 \) into parent of \(L \)
 - This can happen recursively

- Splits “grow” tree; root split increases height.
 - Tree growth: gets wider or one level taller at top.

Inserting 8 Example: \(d=2 \)

- Want to insert here; no room, so split & push up:
- Entry to be inserted in parent node.
Multilevel Index

B-tree and Multilevel Index

- Same?
- Different?

B+ Tree: The DB World's Favorite Index

- Insert/delete at log $\log N$ cost
 - $(F = \text{fanout}, N = \# \text{leaf pages})$
 - Keep tree height-balanced
- Minimum 50% occupancy (except for root).
- Each node contains $d <= m <= 2d$ entries. d is called the order of the tree.
- Supports equality and range searches efficiently.

B+ Trees – Definition

- Similar structure to B-tree
- Distinguish between internal nodes and leaf nodes
 - Leaf nodes contain all search keys inserted into tree and connected by linked list in sorted order
 - Each leaf node:
 - Has no tree pointers
 - Has only search keys and data pointers
 - Has linked list pointer to next leaf node
 - Each internal node
 - Has search keys
 - Has tree pointers
 - Has no data pointers
 - Search keys in internal nodes used only for navigation
B+ trees

- Search keys in internal nodes are repeated in leaves
 - Similar to multilevel index
- Every search key does not occur as internal value
- To get the data record, we have to get to the leaf level
 - All searches will take $O(h)$ where h is height of tree

B+ trees: Definition

- B+-tree of order d
 - Each internal node or leaf node must contain at least d keys
 - Each internal or leaf node can contain at most $2d$ keys
 - Each internal node can contain at most $2d+1$ pointers to next node in tree
 - Each leaf node must contain as many data pointers as there are keys in the node
 - Each leaf node has pointer to next leaf node in linked list

Example B+ Tree

- Search begins at root, and key comparisons direct it to a leaf.
- Search for 5*, 15*, all data entries $\geq 24^*$...

Root

13 17 24 30
2* 7 8 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34
35 36 37 38 39

➢ Based on the search for 15*, we know it is not in the tree!

Picking the order of a B+-tree

- Same logic as for B-tree:
- Best “packing”: when entire node fits into one disk block with minimum space wasted
- Assume P, bytes needed to specify address of data/tree pointer
- Assume key field requires K bytes
- Assume disk block size = B bytes
- Assume x bytes needed for block-specific information
Size of B+-tree node

- What is the maximum number of bytes needed by a B+-tree node of order d?
 - Pointers, key fields, byte specific info
- What is the maximum number of bytes you can use for the node?

Order of B-tree

- Order d tree has at most $2d$ key values and $2d+1$ pointers (data pointers and linked list pointer for leaf node, and tree pointers for internal node)

\[x + 2d^2(K) + (2d+1)^2P_t \leq B \]

Example

- $B = 512$ bytes, $x = 2$, $K = 20$, $P_t = 4$
- $2 + 2d(20) + (2d+1)4 \leq 512$
 - $48d + 6 \leq 512$
 - $d \leq 10.54$
- Higher than degree of B-tree!

B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 67%.
 - Average fanout = 133
- Typical capacities:
 - Height 4: $133^4 = 312,900,700$ records
 - Height 3: $133^3 = 2,352,637$ records
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 Mbytes
B+ trees

- Insertion
- Deletion

Inserting Data into a B+ Tree

- Find correct leaf L.
- Put data entry onto L.
 - If L has enough space, done!
 - Else, must split L (into L_1 and a new node L_2)
 - Redistribute entries evenly, copy up middle key.
 - Middle key is in new node and smallest value in new node, middle key points to L_2
 - Insert index entry pointing to L_2 into parent of L.
- This can happen recursively
 - To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)
 - Splits "grow" tree; root split increases height.
 - Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

- Observe how minimum occupancy is guaranteed in both leaf and index pg splits.
- Recall that all data items are in leaves, and partition values for keys are in intermediate nodes
 - Note difference between copy-up and push-up.

Inserting 8* Example: Copy up

- Want to insert here; no room, so split & copy up:
Inserting 8^th Example: Push up

Need to split node & push up

B+ Tree Summary

B+ tree and other indices ideal for range searches, good for equality searches.

- Inserts/deletes leave tree height-balanced: $\log N$ cost.
- High fanout (F) means depth rarely more than 3 or 4.
- Almost always better than maintaining a sorted file.
- Typically, 67% occupancy on average.
- Note: Order (d) concept replaced by physical space criterion in practice ("at least half-full").
- Records may be variable sized
- Index pages typically hold more entries than leaves

Deleting Data from a B+ Tree

- Start at root, find leaf L where entry belongs.
- Remove the entry.
 - If L is at least half-full, done!
 - If L has only $d-1$ entries,
 - Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
 - If re-distribution fails, merge L and sibling.
 - If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
 - Merge could propagate to root, decreasing height.

Other Kinds of Indices

- Multidimensional indices
 - R-trees, kD-trees, …
- Text indices
- Inverted indices
- Structural indices
 - Object indices: access support relations, path indices
 - XML and graph indices: dataguides, 1-indices, d(k) indices
 - Describe parent-child, path relationships
Speeding Operations over Data

- Three general data organization techniques:
 - Indexing
 - Sorting
 - Hashing

Why Sorting?

- A classic problem in computer science!
- Data requested in sorted order
 - e.g., find students in increasing GPA order
- Sort-merge join algorithm involves sorting.
- **Internal sorting**
 - Quicksort, heapsort, etc.
- Sorting Problem considered here: sort data much larger than main memory
 - Example: sort 1Gb of data with 1Mb of RAM.
 - Cannot hold all data in main memory – cannot use internal sort

Sorting Algorithms

- Quicksort, Heapsort
- Complexity?
- Use the same algorithm to sort our data files?

External Sorting

- Data to be sorted = data file stored on disk
- Sorted file must be stored back on disk

- External sorting problem:
 - Data file too large to fit in memory
 - Data must be sorted in pieces
 - Data usually heap size
 - Desired result: sorted file (sorted on some key field)
Mergesort: Recall
- Merge two sorted lists
 - (2, 5, 10, 19)
 - (4, 6, 7, 20)
- If we have two sorted files of length n/2 then binary merge gives sorted file of length n

External Mergesort
- File is set of pages/blocks
- Read one block at a time from disk into main memory
 - Assume 2 pages to hold a page from each input file and 1 page for output sorted block
Finally…

Observations

- How many disk I/Os? (how many read and write operations)
- Length of sorted file vs length of input file(s)?
External Sorting: Key ideas

- Individual blocks/pages can be easily sorted
 - Read them into memory and use internal sort algorithm
- Create runs
 - A run is a group/set of sorted blocks (i.e., sorted piece of a file)
 - Runs can be created by merging data from several blocks
- Merge shorter runs into longer runs
 - Merge runs to get sorted file

External Mergesort

- What is unsorted input?
 - Unsorted file of n blocks is n/2 groups of 2 blocks each
 - Each group has two blocks to be sorted
 - Sorting each group gives n/2 groups of runs, each run is 2 blocks
- What if we merge n/2 groups, each group of 2 sorted blocks?
 - n/2 groups, each of run 4 sorted blocks
 - How many disk I/Os?
- What if we merge n/4 groups, each group is run of size 4 (i.e., 4 sorted blocks)
 - n/4 groups, each of size 8 blocks
 - How many disk I/Os?
- What if we merge n/8 groups, each group is run of size n/2?
 - We get sorted file of n blocks
 - How many disk I/Os?
 - How many phases to get to this last step?

External Sorting

- Pass 1: Read a page, sort it, write it.
 - only one buffer page is used
- Pass 2, 3, …, etc.:
 - three buffer pages (disk block pages in main memory) used.

Two-Way External Merge Sort

- Input file
 - 1-page runs
 - 2-page runs
 - 4-page runs
- PASS 1
- PASS 2
- PASS 3
- PASS 4
Two-Way External Merge Sort

- Each pass we read, write each page in file.
- N pages in the file \Rightarrow the number of passes $= \lceil \log_2 N \rceil + 1$
- Total cost is: $2N(\lceil \log_2 N \rceil + 1)$

Idea: Divide and conquer: sort subfiles and merge

General External Merge Sort

- How can we utilize more than 3 buffer pages?
- To sort a file with N pages using B buffer (main memory) pages:
 - Pass 0: use B buffer pages. Produce $\lceil N / B \rceil$ sorted runs of B pages each.
 - Pass 2, . . . , etc.: merge B-1 runs.

M-way External Mergesort

- Divide file into groups of M blocks each
- Merge each group into a sorted run: N/M runs
- Create groups of N/M runs, merge each group into single run

Example: N=400 block file, M=4 input buffers
 - Phase 1: create groups of 4 blocks
 - 100 groups of 4 blocks each \Rightarrow 100 runs of 4 blocks each
 - Phase 2: create groups of 4 runs; 100/4=25 groups
 - 25 groups of 16 blocks each \Rightarrow 25 runs of 16 blocks each
 - Phase 3: create groups of 32 runs; 25/4=7 groups
 - 7 groups of up to 32 blocks each \Rightarrow 7 runs of 32 blocks
 - Phase 4: groups of 64 runs; 7+4=2 groups
 - 2 groups, up to 64 blocks = 2 groups of 64 blocks
 - Phase 5: group of 128 runs; 2=1 group
 - 1 group, up to 128 blocks; 4-way merge gives 400 blocks
Cost of External Merge Sort

- Number of passes: \(1 + \lceil \log_w N \rceil\)
- Cost = \(2N \times (\# \text{ of passes})\)

Speeding Operations over Data

- Three general data organization techniques:
 - Indexing
 - Sorting
 - Hashing

Technique 3: Hashing

- A familiar idea:
 - Requires “good” hash function (may depend on data)
 - Distribute data across buckets
 - Often multiple items in same bucket (buckets might overflow)
- Types of hash tables:
 - Static
 - Extendible (requires directory to buckets; can split)
 - Linear (two levels, rotate through + split; bad with skew)

Hash Files

- Basic idea: while domain is large, actual range of values is much smaller
 - If last name is 12 characters long, then domain is \(12^{26}\) but actual number of names is much smaller
- In hashed file, records are distributed among a number of \(B\) buckets
- Hash function \(h\), takes value as input and maps to one of \(B\) buckets
 - \(h(k) = x, \ x \in \{0, \ldots, B-1\}\)
Hashing as indexing technique

- Key idea: partition records among B buckets

Hashing

- Hashing function h applied to each record
- Select “key” field (name, SSN, etc.) to hash
- Each integer associated with a bucket number
 - \(h(x) = 20 \) means \(x \) is in bucket 20
- Initially a disk block to each bucket
- As bucket gets large, add more blocks to bucket
- Chain the blocks in each bucket
- Hash table itself is stored on disk block(s)

Hashing: Buckets

Hash Functions

- Ideally, distribute the records evenly across buckets
- As buckets get long, there are long overflow chains and it resembles heap
- Dynamic hashing methods handle non-uniformity among buckets
- Preserving order in hash function extremely difficult
 - If \(x < y \), then \(h(x) < h(y) \) --- not possible
Operations on Hash files

- **Insert:** record with key field value x
 - Compute $h(x)$ to find bucket, and insert into bucket
 - If no space, then get new block
- **Delete:**
 - Compute $h(x)$ to find bucket, search for record, and delete
- **Search**
 - Compute $h(x)$ to find bucket, and search in the bucket (all blocks)

Time analysis of Hash files

- Assume B buckets, n records
- Assume uniform distribution across buckets
- n/B records in each bucket
- Number of blocks in each bucket $= (n/Bp)$
 - p is blocking factor – no. of records per block
- Search/Lookup: compute $h(x)$ and search in bucket
 - Bucket is a Heap file of size (n/Bp)
 - Average time $\frac{1}{2} (n/Bp)$; worst case (n/Bp)
- Insert: compute $h(x)$ and insert into bucket in one disk access
 - 1 disk access
- Delete: search and delete

Example:

- 1 million records
- 1000 buckets, $B=1000$
- $n/B = 1000$ records per bucket
- Blocking factor $p = 20$ (record size 200, block size 4096)
- Bucket size = $(1000/20) = 50$ blocks
- Lookup time:
 - Average time $= 25$
 - Worst case $= 50$
- Insert time: 1
- Delete time: same as lookup time

Hashing and Sorting

- Sorted files:
 - Search on sorted field is fast
 - Insertion slow
 - Periodic reorganization needed
- Hashing:
 - Fast equality search
 - Bad for range search
 - Quick insert time
 - Challenge of finding a good hash function
 - Performance depends on how well records are divided amongst buckets