CS 2451
 Database Systems:
 Relational Algebra \& Relational Calculus

http://www.seas.gwu.edu/~bhagiweb/cs2541 Spring 2020
Instructor: Dr. Bhagi Narahar

Based on sides © RamakishnansGerthe, Dr R. Lawrence, UBC

1

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run regardless of instance!
- The schema for the result of a given query is also fixed -Determined by definition of query language constructs.
- Notation: Positional (R[0]) vs. named-field notation (R.name):

Positional notation easier for formal definitions, named-field notation more readable.
We will use named field notation R.name
. Both used in SQL

Codd's Relational Algebra (RA)

- Data is stored as a set of relations
- Relations implemented as tables
- Tuple in a relation is a row in the table
- Attribute (from domain) in relation is column in table
- RA = A set of mathematical operators that compose, modify, and combine tuples within different relations
- Relations are sets
- Mapping: maps elements in one set to another
- Relational algebra operations operate on relations and produce relations ("closure")
f: Relation \rightarrow Relation
f: Relation x Relation \rightarrow Relation

2

Relational Algebra

- query language used to update and retrieve data that is stored in a data model.
- Relational algebra is a set of relational operations for retrieving data.
- Just like algebra with numbers, relational algebra consists of operands (which are relations) and a set of operators.
- Every relational operator takes as input one or more relations and produces a relation as output.
- Closure property - input is relations, output is relations
- Unary operations - operate on one relation
- Binary operations - have two relations as input
- A sequence of relational algebra operators is called a relational algebra expression.

Relational Algebra Operators

- Basic operations:

Selection (σ) Selects a subset of rows from relation.
Projection (π) Deletes unwanted columns from relation.

- Cross-product (X) Allows us to combine two relations.

Set-difference (-) Tuples in relation 1, but not in relation 2.

- Union (U) Tuples in relation. 1 or in relation. 2.
- Note: cross-product, set-difference, union are the set operations you have seen before
- Additional operations:

Intersection, join, assignment, division, renaming: Not essential, bu (very!) useful.

- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

5

RA expressions..contd..

- $\left(E_{1} \cup E_{2}\right)$ is a RA expression
- $\left(E_{1}-E_{2}\right)$ is a RA expression
- $\left(E_{1} \times E_{2}\right)$ is a RA expression
- $\sigma_{P}\left(E_{1}\right)$ is a $R A$ expression

Where P is a predicate (conditional statement)

- $\pi_{s}\left(\mathrm{E}_{1}\right)$ is a RA expression

Where S is subset of the attributes in the schema

- $\rho_{R}\left(E_{1}\right)$ is a RA expression
- Operations Can be composed
- If R1, R2 are relations (sets), then R1 <op> R2 is also a relation (set)
- Closed algebra - how is closure defined ??
- Operations are defined as Set operations
- Input is a set, output is a set

SQL allows duplicated, RA does not

- Above definition can be used to define syntax and construct a parser

Relational Algebra Expression: Syntax

- RA operators operate on relations and produce relations closed algebra
- Defined recursively
- (Basis) basic expression consists of a relation in the schema or a constant relation
-What is a constant relation ?
- (R) Let E_{1} and E_{2} be RA expressions, then

6

Operator Precedence

- Just like mathematical operators, the relational operators have precedence.
- The precedence of operators from highest to lowest is
- unary operators - σ, Π, ρ
- Cartesian product and joins - X, \bowtie, division
- intersection
- union and set difference
- Parentheses can be used to changed the order of operations.
- It is a good idea to always use parentheses around the argument for both unary and binary operators.

9

Projection Operation Formal Definition

- Given a list of column names α and a relation $\mathrm{R}, \pi_{\alpha}(\mathrm{R})$ extracts the columns in α from the relation.
- The projection operation on relation R with output attributes A_{1}, \ldots, A_{m} is denoted by $\Pi_{A_{1}, \ldots, A_{m}}(R)$.

$$
\Pi_{A_{1}, \ldots, A_{m}}(R)=\left\{t\left[A_{1}, \ldots, A_{m}\right] \mid t \in R\right\}
$$

where

- R is a relation, t is a tuple variable
- $\left\{A_{1}, \ldots, A_{m}\right\}$ is a subset of the attributes of R over which the projection will be performed.
- Order of A_{1}, \ldots, A_{m} is significant in the result.
- Cardinality of $\Pi_{A_{1}, \ldots, A_{m}}(R)$ is not necessarily the same as R because of duplicate removal.

Projection Operator

- We want to query the database and fetch only some column/atribute from the relation
- Example: We want student name only from students table

$$
\Pi_{\text {name }} \text { (Student) }
$$

10

12

Recap- Projection, Π_{α}

- Given a list of column names α and a relation R, π_{α} (R) extracts the columns in α from the relation Output is relation...so removes duplicates!
- Example: find sid and grade from enrollment table Takes

$$
\Pi_{\text {sid, exp-grade }} \text { (Takes) }
$$

sid	exp-grade	cid
1	A	$550-0103$
1	A	$700-1003$
3	A	$700-1003$
3	C	$500-0103$
4	C	$500-0103$

sid	exp-grade
1	A
3	A
3	C
4	C

Note: duplicate elimination. In contrast, SQL returns by default a multiset and duplicates must be explicitly removed.

13

Select Operation σ

- Notation: $\sigma_{\text {predicate }}$ (Relation)
- Relation: can be table or result of another query
- Predicate:

1. Simple predicate

- Attribute $1=$ attribute 2
- Attribute = constant (also >, <, >=, <=, <>)

2. Complex predicate

- Predicate AND predicate
- Predicate OR predicate
- NOT predicate
- Idea: select rows from a Relation based on a predicate

Selection Operation

- We want to query table and fetch only the rows that satisfy come condition
- Example: Students whose grade $=\mathrm{B}$
- The selection operation σ (sigma) is a unary operation that takes in a relation as input and returns a new relation as output that contains a subset of the tuples of the input relation.
- output relation has the same number of columns as the input relation, but may have less rows.
- To determine which tuples are in the output, the selection operation has a specified condition, called a predicate, that tuples must satisfy to be in the output.
- The predicate is similar to a condition in an if statement.
- Selection $\sigma_{\theta} \mathrm{R}$ takes a relation R and extracts those rows from it that satisfy the condition θ

14

Select Operation σ

- The selection operation on relation R with predicate F is denoted by $\sigma_{F}(R)$.

$$
\sigma_{F}(R)=\{t \mid t \in R \text { and } F(t) \text { is true }\}
$$

where

- R is a relation, t is a tuple variable
- F is a formula (predicate) consisting of operands that are constants or attributes comparison operators: $<,>,=, \neq, \leq, \geq$
logical operators:AND, OR, NOT
- Similarity between formal definition of operators in RA and the syntax of Relational Calculus

Complex Predicate Conditions

- Conditions are built up from boolean-valued operations on the field names.
- exp-grade <> "A", name = "Jill", STUDENT.sid=Takes.sid
- RA allows comparison predicate on attributes - =, not=, >, <, >=, <=
- Larger predicates can be formed using logical connectives - or (V) and and (\wedge) and not (1)
- Selection predicate can include comparison between attributes
- We don't lose any expressive power if we don't have complex predicates in the language, but they are convenient and useful in practice.

17

Union $\cup \quad$ (same as set union operation)

- If two relations have the same structure (Database terminology: are union-compatible. Programming language terminology: have the same type) we can perform set operations.
- All persons who are students or faculty

19

Selection Example

Logic operators: \wedge AND, $\vee \mathrm{OR}, \neg$ NOT

18

20

Type Matching for Set operations

- Same number of attributes
- Same type of attributes
- Each position must match domain

Real systems sometimes allow sub-types: $\operatorname{CHAR}(2)$ and $\operatorname{CHAR}(20)$

21

Set Difference

- Set difference is a binary operation that takes two relations R and S as input and produces an output relation that contains all the tuples of R that are not in S.
- General form:
- $\quad R-S=\left\{t \mid t \in R\right.$ and $\left.t_{\notin} S\right\}$
- where R and S are relations, t is a tuple variable.
- Note that:
- $R-S \neq S-R$
- R and S must be union compatible.

22

Intersection??

- People who are both Students and Faculty ??
- Do we need an Intersection operator?

25

Operators that 'combine' relations

- Thus far, only operated on a single relation
- How to connect two relations ?
- To find name of students taking a specific course with cid, we need to look at both students and Takes (enrolled) tables
- Operator(s) that produce a relation (set of tuples) after combining two different relations
- Set theory provides us with the cartesian product operator (between two sets; but can be applied to product of any number of sets - to get a k-tuple)

27

Deriving Intersection using Union and Difference
Intersection: as with set operations, derivable from difference

26

Product X

- "Join" is a generic term for a variety of operations that connect two relations. The basic operation is the cartesian product, $\mathrm{R} \times \mathrm{S}$, which concatenates every tuple in R with every tuple in S. Example:

28

29

Types of Joins

- The θ-Join is a general join in that it allows any expression in the condition F. However, there are more specialized joins that are frequently used.
- A equijoin is theta-join that only contains the equality operator (=) in formula F.
- e.g. WorksOn \bowtie Workson.pno = Proi.pno Proj
- A natural join over two relations R and S denoted by $R \bowtie$ S is the equijoin of R and S over a set of attributes common to both R and S.
- It removes the "extra copies" of the join attributes.
- The attributes must have the same name in both relations.

Product/Join

- Tuple in $\mathrm{R}_{1} \times \mathrm{R}_{2}$ constructed by associating a tuple from R_{1} with every tuple in R_{2}
- If R_{1} has n_{1} tuples and R_{2} has n_{2} tuples how many does R_{1} $\times \mathrm{R}_{2}$ have ?
- 'Same' attribute can appear in both tables ?
- This is the "link" between the two tables
- Rather than write Product followed by Selection predicate, some RA versions give us join operators that perform multiple operations
- Theta join: product followed by selection operator Equijoin when selection is an equality predicate
- Natural Join...in addition, apply projection operator
- Outer join, etc. etc.

30

(Theta) Join, \bowtie_{θ} : A Combination of Product and Selection

- Example: Find students (id and name) and courses they took with grades and cid
$\sigma_{\text {STUDENT.sid }=\text { Takes.sid }}($ STUDENT \times Takes $)=$
(STUDENT $\bowtie_{\text {student.sid=Takes.sid }}$ Takes)

sid:1	name	sid:2	exp-grade	cid
1	Jill	1	A	$550-0103$
1	Jill	1	A	$700-1003$
3	Alex	3	A	$700-1003$
3	Alex	3	C	$500-0103$
4	Maury	4	C	$500-0103$

32

33
"Natural" Join, 凶

- A common join to do is an equality join of two relations on commonly named fields, and to leave one copy of those fields in the resulting relation. Example:
STUDENT \bowtie Takes =
($\Pi_{\text {sid:1,name, exp-grade, cid }}$
(STUDENT $\bowtie_{\text {student.sid=Takes.sid }}$ Takes))

sid	name	exp-grade	cid
1	Jill	A	$550-0103$
1	Jill	A	$700-1003$
3	Nick	A	$700-1003$
3	Nick	C	$500-0103$
4	Sina	F	$500-0103$

What if all the field names are the same in the two relations?

Natural Joins

- Example: Find students (id and name) and courses they took with grades and cid
$\sigma_{\text {STUDENT.sid=Takes.sid }}($ STUDENT \times Takes $)=$
(STUDENT $\bowtie_{\text {student.sid=Takes.sid }}$ Takes)
sid:1 and sid:2 are duplicate information....
Do we need two columns?
Why not project only one of them ?

sid:1	name	sid:2	exp-grade	cid
1	Jill	1	A	$550-0103$
1	Jill	1	A	$700-1003$
3	Alex	3	A	$700-1003$
3	Alex	3	C	$500-0103$
4	Maury	4	C	$500-0103$

34

36

37

Referencing same relation twice..

- We want to find the student IDs of students who have the same name
- Ambiguity in the statement
- Student.name = student.name ??
- easiest approach is to create a copy of Student with a different name

Combining Operations....assignment operator

- Relational algebra operations can be combined in one expression by nesting them:

$$
\Pi_{\text {eno,pno,dur }}\left(\sigma_{\text {ename }}=\text { '. Doe' }(E m p) \bowtie \sigma_{\text {dur }>16}(\text { WorksOn })\right)
$$

- Return the eno, pno, and duration for employee 'J. Doe' when he has worked on a project for more than 16 months.
- Operations also can be combined by using temporary relation variables to hold intermediate results.
- We will use the assignment operator \leftarrow for indicating that the result of an operation is assigned to a temporary relation.
empdoe $\leftarrow \sigma_{\text {ename }}{ }^{\prime} J$. Doe' (Emp)
wodur $\leftarrow \sigma_{d u r>16}$ (WorksOn)
empwo \leftarrow empdoe \bowtie wodur
result $\leftarrow \Pi_{\text {eno,pno,dur }}$ (empwo)
38

and lastly....
 Rename Operator , $\rho_{\alpha}(R)$

- The rename operator can be expressed several ways.
- One definition:
$\rho_{\alpha}(\mathbf{x}) \quad$ Takes the relation x and returns a copy of the relation with the name α General Def: can rename attribute list with new names β
- Rename isn't all that useful, except if you join a relation with itself
- $\boldsymbol{\rho}_{\text {Person }}($ STUDENT $)=$ copy of STUDENT with table name Person
- Find pairs of student IDs who have the same name:
$\Pi_{\text {StUDENT.sid, Person.sid }}$
(STUDENT $\bowtie_{\text {STUDENT.name=Person.name }}\left(\rho_{\text {Person }}\right.$ (STUDENT))

Rename Operator

- General definition allows renaming specific attributes
- $\rho_{X(C, D)}(R(A, B))$

Relation R renamed to X
Fields A, B in R are now renamed to C, D in X

- $\boldsymbol{\rho}_{\text {Person(idnum, who) }}$ (STUDENT (sid, name))
- Find pairs of student IDs who have the same name: ?
- $\Pi_{\text {student.sid, Person.idnum }}$
(Student $\bowtie_{\text {Student.name=Person.who (}} \rho_{\text {Person(idnum,who) }}$ (Student))
- Note: not necessary to rename the attributes ...below will also work:
- $\Pi_{\text {Student.sid, Person.sid }}$
(Student $\bowtie_{\text {Student.name=Person.sid }}$ ($\rho_{\text {Person }}$ (Student))
41

Completeness of Relational Algebra Operators

- It has been shown that the relational operators $\{\sigma, \Pi, \times, \cup,-\}$ form a complete set of operators.
- That is, any of the other operators can be derived from a combination of these 5 basic operators.
- Examples:
- Intersection $-R \cap S \equiv R \cup S-((R-S) \cup(S-R))$
- We have also seen how a join is a combination of a Cartesian product followed by a selection.

Rename Operation

- Renaming can be applied when assigning a result:
result(EmployeeNum, ProjectNum, Duration) $\leftarrow \Pi_{\text {eno,pno,dur }}($ empwo $)$
- Or by using the rename operator ρ (rho):
$\rho_{\text {result(EmployeeName, ProjectNum, Duration) }}$ (empwo)

42

Other Relational Algebra Operators

- There are other relational algebra operators that we will not discuss. Most notably, we often need aggregate operations that compute functions on the data.
- For example, given the current operators, we cannot answer the query:
- What is the total number of students enrolled in a course
-What are the total number of employees in department 5 ?
- We will see how to answer these queries when we study SQL.

How to write a RA query ?

- Find out which tables you need to access
- Compute \times of these tables
- What are the conditions/predicates you need to apply ?
- Determines what select σ operators you need to apply
- What attributes/columns are needed in result
- Determines what project π operators you need

Project (Select (Product))

45

Schema of Bank DB

- Customer (CustID, Name, street,city,zip)
- Customer ID, Name, and Address info: street, city, zip
- Deposit (CustID, Acct-num, balance,Branch-name)
- Customer ID, Account number, Balance in account, name of branch where account is held
- Loan (CustID, Loan-num, Amount, Branch-name)
- Customer ID, loan number, amount of loan..
- Branch (Branch-name, assets, Branch-city)

Modifying the Database

- Need to insert, delete, update tuples in the database
- What is insert?
- Add a new tuple to existing set = Union
- What is delete ?
- Remove a tuple from existing set = Set difference
- How to update attribute to new value ?
- Need new operator: δ

46

Modifying Database

- Delete all accounts of Customer with CustID=3333
- Deposit \leftarrow Deposit - (tuples of CustID 3333)
- Insert tuple (4444, Downtown, 1000,1234)
- Deposit \leftarrow Deposit $\cup(4444$, Downtown,1000,1234)
- Update: $\delta_{A \leftarrow E}(\mathrm{R})$
- Update attribute A to E for tuples in relation R
- $\delta_{\text {balance }-1.05^{\text {tbalance }}}$ (Deposit) : updates balances
- Can also specify selection condition on Deposit Update balances only for customers with CustID=1234

