
1

CS 2451
Database Systems:
More SQL…

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari & R. Leontie

Based on slides © Ramakrishnan&Gerhke

This week….

 Today:
• Wrap up basic SQL

Aggregate functions on sets of tuples
Max, sum,….

• Operating on partitions of sets/relations
GROUPBY

• PHP+MySQL – lab exercise
 Next week….

• How to design a good schema ?
• 3-tier application design: Web + PHP + MySQL

Basic SQL and Relational Algebra
 The SELECT statement can be mapped directly to relational

algebra.

 SELECT A1, A2, … , An /* this is projection
 FROM R1, R2, … , Rm /* this is the selection op
 WHERE P /* this is cartesian product

 is equivalent to:

A1, A2, …, An
(P (R1 R2 … Rm))

SQL….review
 Select clause

• Need to specify Join condition
 Concept of ‘aliasing’ to rename relation using AS keyword

• Rename an attribute….in Select clause
 Tuple variables
 Nested queries
 Set operations:

• Union
• Set membership – IN, NOT IN
• Existence of query results – EXISTS, NOT EXISTS
• Compare values with values in set (generated by subquery)

ALL, > ANY, <, >.....
What we’ve seen in SQL so far is
equivalent in power to RA and TRC

2

Some MySQL goodies…
 INTO clause

• Variation on aliasing
• Pipe output of SELECT into another table

 SELECT in FROM clause…..use as derived table later in
query

SELECT name
FROM deposit join

(select name, custid
from customer) dep-cust

ON deposit.custid= dep-cust.custid;

 INNER JOIN
 LEFT (OUTER) JOIN, and RIGHT (OUTER) JOIN

Derived
table

Even more SQL….
 Functions on sets of tuples

• Aggregate functions: Max, sum,….
 Operating on partitions of sets/relations

• GROUPBY
 Update operations

 Security, Views, Transactions….not today
• Maybe later!

SQL– Aggregate Operations

 Thus far SQL (and Relational Algebra/Calculus) only
fetched data stored in database tables

 What if we need some basic ‘statistics’ on the data ?
• Number of rows?
• Maximum value in a field ?

 Aggregate Operators: apply a function to a set of
tuples
• Function defined on one (or more) field
• Number of customers with loans
• Average balance for a customer
• Number of tuples in a relation
• …...

Aggregate Operators
 Compute functions on set of tuples selected by where

clause
• Operate on a single column

 Semantics: if SELECT clause contains aggregate
operations then it can contain only aggregate operations
• Except when groupby construct is used
• Functions on sets of values but result is single value
• Average, minimum, maximum, sum, count(size)

 These functions operate on a single column of a table and
return a single value.

3

Aggregate Operators

 Significant extension of relational
algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

Aggregate Functions
 The five basic aggregate functions are:

• COUNT - returns the # of values in a column
• SUM - returns the sum of the values in a column
• AVG - returns the average of the values in a column
• MIN - returns the smallest value in a column
• MAX - returns the largest value in a column

 Notes:
• 1) COUNT, MAX, and MIN apply to all types of fields, whereas SUM and
AVG apply to only numeric fields.

• 2) Except for COUNT(*) all functions ignore nulls. COUNT(*) returns
the number of rows in the table.

• 3) Use DISTINCT to eliminate duplicates.

Purchase(product, date, price, quantity)

Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

Aggregate operators and computed columns
-arithmetic on column values

Simple Aggregations
Purchase

Product Date Price Quantity

Bagel 10/21 1 20

Banana 10/3 0.5 10

Banana 10/10 1 10

Bagel 10/25 1.50 20

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 20+30)

4

Simple Aggregations
Purchase

Product Date Price Quantity

Bagel 10/21 1 20

Banana 10/3 0.5 10

Banana 10/10 1 10

Bagel 10/25 1.50 20

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 20+30)

Aggregate Function Example
 Return the number of employees and their average salary.

SELECT COUNT(eno) AS numEmp, AVG(salary) AS avgSalary
FROM emp

numEmp avgSalary
8 38750

Result

Just a little bit more SQL…..
 Grouping

• Operating on groups (partitions) of tuples

Motivation for Grouping
 So far, we’ve applied aggregate operators to all

(qualifying) tuples. Sometimes, we want to apply them to
each of several groups of tuples.

 Consider: Find the average balance for each branch in
the bank.
• In general, we don’t know how many branches exist, and what the

balances are!
• Suppose we know that 10 branchnames exists; then we can write

10 queries that look like this (!):

SELECT AVG(balance)
FROM Deposit D
WHERE D.branchname=‘x’

For x = 1, 2, ... , 10:

Oops…no For loops in SQL !!

5

GROUP BY Clause
 Aggregate functions are most useful when combined with

the GROUP BY clause. The GROUP BY clause groups the
tuples based on the values of the attributes specified.

 When used in combination with aggregate functions, the
result is a table where each tuple consists of unique values
for the group by attributes and the result of the aggregate
functions applied to the tuples of that group.

Grouping and Aggregation

Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and
aggregates.

1&2. FROM-WHERE-GROUPBY

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

Group1

Group 2

6

3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

Product TotalSales

Bagel 50

Banana 15

GROUP BY Example
 For each employee title, return the number of employees

with that title, and the minimum, maximum, and average
salary.
SELECT title, COUNT(eno) AS numEmp,

MIN(salary) as minSal,
MAX(salary) as maxSal, AVG(salary) AS avgSal

FROM emp
GROUP BY title

title numEmp minSal maxSal avgSal
EE 2 30000 30000 30000
SA 3 50000 50000 50000
ME 2 40000 40000 40000
PR 1 20000 20000 20000

Result

GROUP BY Clause Rules
 There are a few rules for using the GROUP BY clause:

• 1) A column name cannot appear in the SELECT part of the query
unless it is part of an aggregate function or in the list of group by
attributes.

Note that the reverse is allowed: a column can be in the GROUP BY
without being in the SELECT part.

• 2) Any WHERE conditions are applied before the GROUP BY and
aggregate functions are calculated.

Condition on the Groups
 What if we are only in interested in groups that satisfy a

condition ?

7

HAVING Clause
 The HAVING clause is applied AFTER the GROUP BY

clause and aggregate functions are calculated.

 It is used to filter out entire groups that do not match certain
criteria.

 The HAVING clause can contain any condition that
references aggregate functions and the group by attributes
themselves.
• However, any conditions on the GROUP BY attributes should be

specified in the WHERE clause if possible due to performance reasons.

Grouping and Aggregation: Evaluation Steps

Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.

Grouping and Aggregation

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

Product TotalSales

Bagel 50

Banana 15

What if we are only interested in products that sold quantity >30?

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING Sum(quantity) > 30

Find total sales after 10/1/2005 per product,
except that we consider only products that had
at least 30 buyers.

HAVING clause contains conditions on aggregates.

Purchase(product, date, price, quantity)

8

General form of Grouping and Aggregation
SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregate function but NO
OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

Why ?

General form of Grouping and Aggregation

Evaluation steps:
1. Evaluate FROM-WHERE, apply condition C1
2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Generalized SELECT:Queries With
GROUP BY and HAVING

 The attribute-list contains (i) attribute names (ii) terms with
aggregate operations (e.g., MIN (balance)).
• The attribute list must be a subset of grouping-list. Intuitively, each

answer tuple corresponds to a group, and these attributes must have a
single value per group. (A group is a set of tuples that have the same
value for all attributes in grouping-list.)

SELECT [DISTINCT] attribute-list
FROM relation-list
WHERE qualification/predicate
GROUP BY grouping-list
HAVING group-qualification/predicate

Conceptual Evaluation

 The cross-product of relation-list is computed, tuples that fail
qualification in WHERE clause are discarded, `unnecessary’
fields are deleted, and the remaining tuples are partitioned into
groups by the value of attributes in grouping-list.

 The group-qualification specified in the HAVING clause is then
applied to eliminate some groups. Expressions in HAVING
clause must have a single value per group!
• In effect, an attribute in group-qualification that is not an argument of an

aggregate op also appears in grouping-list. (SQL does not exploit
primary key semantics here!)

 One answer tuple is generated per qualifying group.
 Any aggregate function can be applied to a group

• Final SELECT can have function over each selected group

9

A quick Note:
Group-by v.s. Nested Query

 Find authors who wrote 10 documents:
 Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

Group-by v.s. Nested Query
 Find all authors who wrote at least 10 documents:
 Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by

an expert

No need for DISTINCT: automatically from GROUP BY

….more SQL
 Finally, updates/modifications to database
 INSERT, DELETE and UPDATE can be result of queries!

INSERT
 Give all customers with a Loan at Downtown branch a $200

savings account with same account number as Loan
number

INSERT INTO Deposit
SELECT CustID, Loan-number, Branch-name, 200
FROM Loan
WHERE branch-name = ‘Downtown’;

10

DELETE r
WHERE P
Predicate in P can be as complex as any select clause
Delete all accounts located in New York
DELETE Deposit
WHERE branchname in (SELECT branchname

FROM Branch
WHERE branchcity=‘New York’);

How about this query ?
DELETE Deposit
WHERE balance < (SELECT avg(balance)

FROM Deposit);

Delete anomalies
 If delete/update request contains embedded select (sub-

query) that references relation where deletions/update take
place

 SQL standard disallows such requests
• Alternate implementation: mark tuples in first round, and actual delete

in second round

 INSERT
• Can insert tuple with specified values
• Can insert set of tuples resulting from query

 UPDATE
• Change a value in tuple without changing all values in the tuple
• Can update set of tuples by using query to select the set

11

Now, we are done…..kind of!

 More components to SQL:
 Views
 Constraints, Triggers
 …will get to these!

 Next....building 3-tier (full stack) application: PHP+MySQL

