
1

CS 2451
Database Systems:
Intro to SQL … Part 2

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2020
Instructor: Dr. Bhagi Narahari & R. Leontie

Based on slides © Ramakrishnan&Gerhke, R. Lawrence

Basic SQL Query

• relation-list A list of relation names (possibly with a range-
variable, i.e., tuple variable, after each name).

• attribute-list A list of attributes of relations in relation-list
• Qualification/predicate Comparisons (Attr op const or Attr1 op

Attr2, where op is one of) combined using
AND, OR and NOT.

• DISTINCT is an optional keyword indicating that the answer
should not contain duplicates. Default is that duplicates are
not eliminated!

• To select all attributes in result, we use *

SELECT [DISTINCT] attribute-list
FROM relation-list
WHERE qualification/predicate :

 , , , , ,

SQL and Relational Algebra
 The SELECT statement can be mapped directly to relational

algebra.

SELECT A1, A2, … , An this is projection π
FROM R1, R2, … , Rm this is Cartesian product ×
WHERE P this is the selection op σ

 is equivalent to:

A1, A2, …, An
(P (R1 R2 … Rm))

 If we don’t want to project, then SELECT *

Cross products and Joins in SQL
 Multiple tables can be queried in a single SQL statement by

listing them in the FROM clause.
• Note that if you do not specify any join condition to relate them in the
WHERE clause, you get a cross product of the tables.

2

Joins
Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all products under $200 manufactured in
Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

Join
between Product

and Company

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’

AND Price <= 200

Find all products under $200 manufactured in
Japan; return their names and prices.

Renaming and Aliasing
 Does the job of rename operator ρ in relational algebra
 Often it is useful to be able to rename an attribute in the final

result (especially when using calculated fields). Renaming
is accomplished using the keyword AS:

SELECT lname, salary AS pay
FROM employee
WHERE dno=5;

Note: AS keyword is optional.

Result
lname pay
Lee 100000.00
Smith 60000.50
Lee 90000.00

Aliasing to remove ambiguity…The easy case:

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company /*named field notation
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y /* aliasing
WHERE x.worksfor = y.cname

3

Renaming…Using Tuple/Range variables
 Concept of tuple/range variables borrowed from relational

calculus
• Tuple t of type R: t ∈ R
• What about x ∈ R, y ∈ R

 It performs the job of the rename operator from relational
algebra
• One variable with name x and one with name y, BOTH of type R

 Need to worry about scope of tuple variables when we have
nested queries

Tuple Variables

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT P.pname,C.address
FROM Person P, Company C
WHERE P.worksfor = C.cname;

x is a copy of Person, y is a copy of Company
P is a variable of ‘type’ Person C is a variable of ‘type’ Company

Renaming: Joining table with itself
 Aliases/Tuple variables must be used when relation has to

be ‘joined’ with itself – i.e., two or more copies of the same
table are needed. Using aliases allows you to uniquely
identify what table you are talking about.

 E is a variable of type Employee, and denotes an employee
 M is a variable of type Employee, and denotes (will bind to)

values of supervisor

Example: Return last names of employees and their managers.

SELECT E.lname, M.lname
FROM employee E, employee M
WHERE E.superssn = M.ssn;

Meaning (Semantics) of SQL Queries with tuple
variables

SELECT a1, a2, …, ak
FROM R1 x1, R2 x2, …, Rn xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer {(a1,…,ak)}
return Answer

4

Tuple variables
 Find students who are taking the same course as student

with sid=1234.
 Need to access Takes table twice

• Once to extract courses (with course id CID=X) taken by student
with ID=1234

• Second time to find students who are taking these X courses
 Define two “variables” A,B of ‘type’ Takes

• B is variable that corresponds ID 1234 and its cid field is equal to “X”
• A is a variable whose CID is equal to “X”

 SELECT A.sid
 FROM Takes A, Takes B
 WHERE A.cid = B.cid AND B.sid= 1234;

Outer Joins and Inner Joins..
 INNER JOIN

• ‘standard’ join
 OUTER JOIN

• Include tuples that don’t match
To Keep track of tuples that don’t match

Inner Join Operation
Explicit joins in SQL = “inner joins”:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName;

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName;

Same as:

MySQL: Also allows specifying
common attribute for join by
specifying a “using” keyword

SELECT Student.name
FROM Student JOIN Takes
USING (sid);

Why provide Inner Join ?
 The semantics of the basic SQL query has cross product of

the tables
• Could be a very large intermediate result and impacts performance
• Code optimizer (query processor) has to determine the join condition

from the where clause
 Specifying join condition explicitly makes it easier for query

optimizer to interpret
• Creates the join instead of cross product
• Smaller intermediate result, so better performance

5

Outer Joins

 Sometimes we may want to keep tuples that do not join with
the other table

 Left outer join:
• Include the left tuple even if there’s no match

 Right outer join:
• Include the right tuple even if there’s no match

 Full outer join:
• Include the both left and right tuples even if there’s no match

Example of why outer joins…

Explicit joins in SQL = “inner joins”:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

But Products that never sold will be lost !

Find sales of all products, including those that with no sales

Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Find sales of all products, including those that with no sales
Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

The result reveals
that OneClick had
no sales

6

Next: InClass exercises Test your querying
skills!

 Step 1: 5 minutes
• Do NOT code…
• Work at your table to discuss solutions/queries – do not write down

code

 Step 2: 15 minutes - Work individually and Code your
queries
• And submit query/output screenshot on github

Bank Database Schema

Branch_Name Assets Branch_City

Branch

CustID LoanNo Amount Branch_Name

Loan

CustID AccNo Balance Branch_Name

Deposit

CustID Name Street City Zip

Customer

Connecting to mySQL on gwupyterhub

 Use your GW netID to connect to the
gwupyterhub.seas.gwu.edu server

 Login into MySQL

 Reset your password

NOTE: use your GW NetID,
WITH the password

CSCI2541_sp20

ssh ‐Y GWnetID@gwupyterhub.seas.gwu.edu

mysql –u GWnetID ‐p

SET PASSWORD FOR 'GWNetID'@'localhost'='NEWPASSWORD';

MySQL Database
 An existing database is available for your use

 To use your database:

show databases;

use database_name;

NOTE: use your GW NetID
for database name

7

More SQL stuff …
 IN operator
 NULLs
 Nested Queries
 Set operations

• Membership
• Union
• Comparison

IN Operator

 To specify that an attribute value should be in a given set of
values, the IN keyword is used.
• Example: Return all employees who are in any one of the departments

{'D1', 'D2', 'D3'}.

 Note that this is equivalent to using OR:

 more practical uses of IN and NOT IN when we study
nested subqueries.

SELECT ename
FROM emp
WHERE dno IN ('D1','D2','D3')

SELECT ename
FROM emp
WHERE dno = 'D1' OR dno = 'D2' OR dno = 'D3'

Set Operations
 The set operations of union, intersection, and difference are

used to combine the results of two SQL queries.
• UNION , INTERSECT, EXCEPT
• Note: UNION ALL returns all rows

 Example: Return the sid of students who are either taking
course with cid=123 or course with cid=345.

(SELECT sid
FROM students
WHERE cid=‘123’)
UNION
(SELECT sid
FROM students
WHERE cid = ‘345’);

Set Operations
 MINUS (EXCEPT) – set difference
 INTERSECT
 CONTAINS (or NOT CONTAINS) - subset

 MySQL does NOT support any of these
• Have to implement using other operators

8

NULLS in SQL

 Whenever we don’t have a value, we can put a NULL
 Can mean many things:

• Value does not exist
• Value exists but is unknown
• Value not applicable
• Etc.

 The schema specifies for each attribute if it can be
null (nullable attribute) or not
• NOT NULL after declaring attribute domain

 How does SQL cope with tables that have NULLs ?

Null Values
 If x= NULL then 4*(3-x)/7 is still NULL

 If x= NULL then x=“Joe” is UNKNOWN
 In SQL there are three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values

 C1 AND C2 = min(C1, C2)
 C1 OR C2 = max(C1, C2)
 NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

E.g.
age=20

height=NULL
weight=200

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

9

Null Values

Can test for NULL explicitly:
 x IS NULL
 x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

Subqueries
 SQL allows a single query to have multiple subqueries

nested inside of it. This allows for more complex queries to
be written.

 When queries are nested, the outer statement determines
the contents of the final result, while the inner SELECT
statements are used by the outer statement (often to lookup
values for WHERE clauses).

 Need to be careful about scope of tuple variables
Scoping rules: local definition and then global
In subquery – legal to use only tuple variables defined in subquery
itself or in any query that contains the subquery

Nested Queries: Semantics and set operators

 Evaluate subquery at each reference
• Construct cross product of tables in FROM clause
• For each row when testing predicate conditions in WHERE clause

Recompute subquery
– Is this really necessary?

 Set membership operators provided to test results of
subquery
• IN, EXISTS, CONTAINS (subset), op ALL, op SOME ….(op is >, <, =)

Subqueries Returning Relations and
Set Membership operators

SELECT Company.city
FROM Company
WHERE Company.name IN

(Set of Companies that manufacture
products bought by Joe Blow);

/* write a SELECT query to obtain this set */

Return cities of companies that manufacture
products bought by Joe Plumber

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

10

Subqueries Returning Relations

SELECT Company.city
FROM Company
WHERE Company.name IN

(SELECT Product.maker
FROM Purchase , Product
WHERE Product.pname=Purchase.product

AND Purchase .buyer = ‘Joe Blow‘);

Return cities of companies that manufacture
products bought by Joe Plumber

Company(name, city)
Product(pname, maker)

Purchase(id, product, buyer)

Set Membership Operations: (a)
 Can check for set membership using IN and NOTIN
 x IN A or x NOTIN A

Implements Relational Calculus operators
 IN connective tests for membership in the set A

Set A may be produced by a SELECT
 NOTIN tests for absence of tuples
 Can test using multiple attribute element

 Set existence using EXISTS
 Returns true if the argument subquery is nonempty (the converse for

the NOT EXISTS) thus checking for empty relations

Set Membership: Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy !

Set Membership: Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies such that all of their products have price < 100
Recall equivalence: Forall x P(x) = Not Exists x (Not P(x))

Universal: hard !

Find all companies that make only products with price < 100

same as:

11

Set Membership: Quantifiers

1. Find the other companies: i.e. s.t. some product >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

Set Membership: Quantifiers

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

Solving the query using EXISTS operator

For a company C, the set of tuples with price >=100
is the empty set – i.e., NOT EXISTS
SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.price >= 100
AND P.company=C.cname) ;

Product (pname, price, company)
Company(cname, city)

Find companies that only make products with price <100

More Set Membership Operations
 Previous operators allowed checking for existence
 SQL provides operators to test elements of one set A with

elements on another set B
 SOME: op SOME

Also called as ANY in some versions
 ALL: op ALL
 op can be >=, >, <, <=, =, not=

 Test single value against members of an entire set
 X > ALL (R)

12

Comparing value with values in a set
Product (pname, price, company)
Company(cname, city)

Find products (names) which do not have the lowest price

SELECT product name where price is not the minimum of all prices
All prices given by subquery:

(SELECT PRICE
FROM Product P) ;

Comparing value with values in a set
Product (pname, price, company)
Company(cname, city)

Find products (names) which do not have the lowest price
= Price is greater than price of some other product!

SELECT pname
FROM Product
WHERE price > ANY

(SELECT PRICE
FROM Product P) ;

Other Set Operations….
 INTERSECTION
 MINUS (set difference)
 SUBSET Check if one set (query result) contains another

set (query result)
 Is A subset of B?
 Is A not a subset of B ?
Contains and not contains operators

 Too bad MySQL does not support these

Next: more InClass exercises Test your querying
skills!

 Step 1: 7 minutes
• Do NOT code…
• Work at your table to discuss solutions/queries – do not write down

code

 Step 2: Work individually and Code your queries
• And submit query/output screenshot on github

