Review: Data Representation and Boolean operators in C

Based on slides © O'Hallaron
Additional material © 2018 Narahari

Next…a little bit of “reality”

- look at how some of the concepts we have studied take shape in ‘real life’
 - C programming and O/S

Byte-Oriented Memory Organization

- Programs Refer to Virtual Addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
 - In Unix and Windows, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

- Compiler + Run-Time System Control Allocation
 - Where different program objects should be stored
 - Multiple mechanisms: static, stack, and heap
 - In any case, all allocation within single virtual address space

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 0₀₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as 0xFA1D37B
 - Or 0xfald37b

Hex	Decimal	Binary
0 | 0 | 0000
1 | 1 | 0001
2 | 2 | 0010
3 | 3 | 0011
4 | 4 | 0100
5 | 5 | 0101
6 | 6 | 0110
7 | 7 | 0111
8 | 8 | 1000
9 | 9 | 1001
A | 10 | 1010
B | 11 | 1011
C | 12 | 1100
D | 13 | 1101
E | 14 | 1110
F | 15 | 1111
Machine Words

- Machine Has “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Some current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - Higher-end systems are 64 bits (8 bytes)
 - Potentially address \(\approx 1.8 \times 10^{19} \) bytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td>Addr = 0008</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td>Addr = 0008</td>
<td>0002</td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td>Addr = 0012</td>
<td>0003</td>
<td>0003</td>
</tr>
<tr>
<td>Addr = 0016</td>
<td>Addr = 0016</td>
<td>0004</td>
<td>0004</td>
</tr>
<tr>
<td>Addr = 0020</td>
<td>Addr = 0020</td>
<td>0005</td>
<td>0005</td>
</tr>
<tr>
<td>Addr = 0024</td>
<td>Addr = 0024</td>
<td>0006</td>
<td>0006</td>
</tr>
<tr>
<td>Addr = 0028</td>
<td>Addr = 0028</td>
<td>0007</td>
<td>0007</td>
</tr>
<tr>
<td>Addr = 0032</td>
<td>Addr = 0032</td>
<td>0008</td>
<td>0008</td>
</tr>
<tr>
<td>Addr = 0036</td>
<td>Addr = 0036</td>
<td>0009</td>
<td>0009</td>
</tr>
<tr>
<td>Addr = 0040</td>
<td>Addr = 0040</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>Addr = 0044</td>
<td>Addr = 0044</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>Addr = 0048</td>
<td>Addr = 0048</td>
<td>0012</td>
<td>0012</td>
</tr>
<tr>
<td>Addr = 0052</td>
<td>Addr = 0052</td>
<td>0013</td>
<td>0013</td>
</tr>
<tr>
<td>Addr = 0056</td>
<td>Addr = 0056</td>
<td>0014</td>
<td>0014</td>
</tr>
<tr>
<td>Addr = 0060</td>
<td>Addr = 0060</td>
<td>0015</td>
<td>0015</td>
</tr>
</tbody>
</table>

Byte Ordering

- How should bytes within multi-byte word be ordered in memory?
- Conventions
 - Sun’s, PowerPC (old Mac’s) are “Big Endian” machines
 - Least significant byte has highest address
 - Big end first
 - Intel x86, Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address
 - Little end first
 - Most network protocols use Big Endian
- The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-century satire Gulliver’s Travels. The subjects of the empire of Blefuscu were divided into two factions: those who ate eggs starting from the big end and those who ate eggs starting from the little end.

Byte Ordering Example

- Big Endian
 - Least significant byte has highest address
- Little Endian
 - Least significant byte has lowest address
- Example
 - Variable \(x \) has 4-byte representation \(0x01234567 \)
 - Address given by \(&x \) is \(0x100 \)

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>Little Endian</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100 0x101 0x102 0x103</td>
<td>0x100 0x101 0x102 0x103</td>
</tr>
<tr>
<td>01 23 45 67</td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>
Representing Integers

- int A = 15213;
- int B = -15213;
- long int C = 15213;

<table>
<thead>
<tr>
<th>Decimal: 15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary: 0011 1011 0110 1101</td>
</tr>
<tr>
<td>Hex: 0003 B 6 D</td>
</tr>
</tbody>
</table>

- Decimal: -15213 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary: 1100 0100 1001 0010</td>
</tr>
<tr>
<td>Hex: FFFF C 4 9 3</td>
</tr>
</tbody>
</table>

- Little endian layout for A:
 - For B
 - For C

- Big endian layout for A:
 - For B
 - For C

Binary Representation: Summary

- Every storage location stores a finite sequence of bits
 - 8-bit, 16-bit, 32-bit etc.
- The same bit string can mean different things depending on how the program wants to look at it.

<table>
<thead>
<tr>
<th>Address</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Unsigned: +129
2C: -127
2C: 109
ASCII: 'm'

Basic Logic Operations

- Equivalent Notations
 - not A = A’ = A
 - A and B = A.B = A & B = A intersection B
 - A or B = A+B = A ∨ B = A union B
- Other common logic operations:
 - NAND = NOT AND
 - Find AND and then Complement it (invert bit)
 - NOR = NOT OR
 - Find OR and then Complement it
 - XNOR = NOT XOR
Bitwise Logical Operations

- View n-bit field as a collection of n logical values
 - Apply operation to each bit independently

 Bitwise AND: useful for clearing bits
 - AND with zero = 0
 - AND with one = no change
 \[
 \begin{array}{c}
 11000101 \\
 \text{AND} \\
 00001111 \\
 = 00000101
 \end{array}
 \]

 Bitwise OR: useful for setting bits
 - OR with zero = no change
 - OR with one = 1
 \[
 \begin{array}{c}
 11000101 \\
 \text{OR} \\
 00001111 \\
 = 11001111
 \end{array}
 \]

 Computers don’t support individual bits as a data type
 - Just use least significant of n-bit integer
 - Integers are generally more useful

Data Representations

- Sizes of C Objects (in Bytes)
 \[
 \begin{array}{c|c|c|c|c}
 \text{C Data Type} & \text{Compaq Alpha} & \text{Typical 32-bit} & \text{Intel IA32} \\
 \hline
 \text{int} & 4 & 4 & 4 \\
 \text{long int} & 8 & 4 & 4 \\
 \text{char} & 1 & 1 & 1 \\
 \text{short} & 2 & 2 & 2 \\
 \text{float} & 4 & 4 & 4 \\
 \text{double} & 8 & 8 & 8 \\
 \text{long double} & 8 & 8 & 10/12 \\
 \text{char *} & 8 & 4 & 4 \\
 \end{array}
 \]

 – Or any other pointer

Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>–6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>–5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>–4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>–3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–1</td>
</tr>
</tbody>
</table>

- Equivalence
 - Same encodings for nonnegative values

- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

 \[\Rightarrow \text{Can Invert Mappings} \]

 - \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
 - \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two’s comp integer

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix

 \[0U, 4294967259U \]

- Casting – nasty stuff!! Or is it fun ?
 - Explicit casting between signed & unsigned same as U2T and T2U

 \[
 \begin{array}{ll}
 \text{int } tx, ty; \\
 \text{unsigned ux, uy;} \\
 \text{tx = (int) } ux; \\
 \text{uy = (unsigned) ty;} \\
 \end{array}
 \]

 - Implicit casting also occurs via assignments and procedure calls

 \[
 \begin{array}{ll}
 \text{tx = ux;} \\
 \text{uy = ty;} \\
 \end{array}
 \]
Casting Signed to Unsigned

- C Allows Conversions from Signed to Unsigned
  ```
  short int  x = 15213;
  unsigned short int ux = (unsigned short) x;
  short int  y = -15213;
  unsigned short int uy = (unsigned short) y;
  ```

- Resulting Value
 - No change in bit representation – only in interpretation
 - What is value of ux?
 - What is value of uy?

Relation between Signed & Unsigned

- Two’s Complement
- Maintain Same Bit Pattern
- \(w-1 \)
- \(0 \)
- \(-x\)
- \(+2^{w-1} - 2^{w-1} = 2^w \)
- \(\lfloor x \rfloor = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \)

Casting Surprises

- Expression Evaluation
 - If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations \(<, >, ==, <=, >=\)
 - Examples for \(W = 32 \)
- Constant\(_1\) Constant\(_2\) Relation Evaluation
 | \(0 \) | \(0 \) | \(== \) | unsigned |
 | \(-1\) | \(0 \) | \(<\) | signed |
 | \(-1\) | \(0 \) | \(>\) | unsigned |
 | \(2147483647\) | \(-2147483648\) | \(<\) | unsigned |
 | \(2147483647\) | \(-2147483648\) | \(>\) | signed |
 | \(-1\) | \(-2\) | \(>\) | unsigned |
Why Should I Use Unsigned?

- *Don’t Use Just Because Number Nonzero*
 - Easy to make mistakes
    ```c
    for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
    ```
- *Do Use When Performing Modular Arithmetic*
 - Multiprecision arithmetic
 - Other esoteric stuff
- *Do Use When Need Extra Bit’s Worth of Range*
 - Working right up to limit of word size

Logical Operations in C

- C supports both bitwise and boolean logic operations
 - `x & y` bitwise logic operation
 - `x && y` boolean operation: output is boolean value
- What’s going on here?
 - In boolean operation the result has to be TRUE (1) or FALSE (0)
 - Treats any non-zero argument as TRUE and returns only TRUE (1) or FALSE (0)
- In C: logical operators do not evaluate their second argument if result can be obtained from first
 - `a && 5/a` can we get divide by zero error?

Logical Operators in the C Language

- Bitwise operators
 - What if variables are n bits long
- Logical operators
 - Conditional statements

Bitwise Review

- Can only be applied to integral operands
 - *that is, char, short, int and long*
- *(signed or unsigned)*
 - `&` Bitwise AND
 - `|` Bitwise OR
 - `^` Bitwise XOR
 - `<<` Shift Left
 - `>>` Shift Right
 - `~` 1’s Complement (Inversion)
Bitwise Logical Operators
- View \(n \)-bit number as a collection of \(n \) logical values
 - operation applied to each bit independently
- Number operated on is an \(n \)-bit number
- Operation being performed is logical operation on each bit

Bitwise AND
\[
0101 \text{ AND } 0111 \quad \text{in C:}(5 \ & \ 6)
\]
\[
\begin{array}{c}
0101 \\
0110
\end{array}
\]

Why use bitwise operators?
- Masking operations
 - If we are only interested in last 8 bits of a 16 bit number \(X \), how to extract this?
 - \(X \ & \ x00FF \)
 - Zero out the most significant 8 bits; value of least significant 8 bits is same as the value of these in \(X \)
 - \(x27A4 \ & \ x00FF = x00A4 \)

Bitwise OR
\[
0101 \ OR \ 0111 \quad \text{in C:}(5 \ | \ 6)
\]
\[
\begin{array}{c}
0101 \\
0110
\end{array}
\]
Bitwise NOT (Complement)

\[
\text{NOT 0101 } \quad \text{in C: } \sim 5
\]

\[
0101
\]

Bitwise XOR

\[
0101 \text{ XOR } 0111 \quad \text{in C: } 5^6
\]

\[
0101
\quad 0110
\]

Bitwise NAND

\[
0101 \text{ NAND } 0111 \quad \text{No C Operator}
\quad \sim (5 \& 6)
\]

\[
0101
\quad 0110
\]

Bitwise NOR

\[
0101 \text{ NOR } 0111 \quad \text{No C Operator}
\quad \sim (5 \mid 6)
\]

\[
0101
\quad 0110
\]
Shift Operations
- \(x >> y \)
 - \(x \) right shifted \(y \) bit positions, sign extended/arithmetic shift
 o Sign bit shifted into positions vacated by shifted bits
 - \(x = 011000 \)
 - \(y = 2 \)
 - \(x >> y \)?
 - \(z = 101000 \)
 - \(y = 2 \)
 - \(z >> y \)?
- \(x << y \)
 - \(x \) left shifted \(y \) bit positions, zero placed in positions vacated by shifted bits
 - \(x = ? \)
 - \(y = ? \)

Boolean Relational Operators?
- What is the semantics of:
 - If \(x = 0 \) then ……
 - How many outcomes for \(x = 0 \)?
- Concept of boolean operators
 - Apply logic operators, but treat input and output as boolean variables
 o Only 1 or 0 (True or False) values for entire variable
 - But input strings can be n-bits long?
 o Treat entire string as ONE boolean variable
 o How?

Logical Operations in C
- \(!= \) Logical NOT
 - \(!x \)
 o \(!x = 0 \) if \(x \) is non-zero, \(!x = 1 \) if value of \(x \) is zero
- \(&& \) Logical AND
 - \(x && y \)
 o \(x && y = 1 \) if value of \(x \) is not zero and value of \(y \) is not zero
 o \(x && y = 0 \) if both \(x \) and \(y \) are zero
- \(|| \) logical OR
 - \(x || y \)
 o \(x || y = 1 \) if at least one of \(x,y \) are not zero
 o \(x || y = 0 \) if both \(x,y \) are zero

Examples
- 8 bit numbers, \(f=7, g=8 \)
 - \(f = 00000111 \)
 - \(g = 00001000 \)
 - \(h = f \& g \) (bitwise AND)…
 - \(h = ? \)
 - \(h = (f && g) \) (logical AND)…
 - \(h = ? \)
 - \(h = (f || g) \) (logical OR)…
 - \(h = ? \)
 - \(h = (!f && !g) \)…
 - \(h = ? \)
Why this discussion of Bit manipulation operations in C.....Project 2!

- Project 2: Given a set of functions, each of which does not use conditional statements and implements some bit manipulation function, determine the function being implemented.
 - Rewrite the code to provide an equivalent more readable code using any C operators including conditional statements.