Logic Design (Part 2)
Combinational Logic Circuits (Chapter 3)

Digital Logic Circuits
- We saw how we can build the simple logic gates using transistors
- Use these gates as building blocks to build more complex combinational circuits
 - Decoder: based on value of n-bit input control signal, select one of \(2^n\) outputs
 - Multiplexer: based on value of N-bit input control signal, select one of \(2^N\) inputs.
 - Adder: add two binary numbers
 - ...any boolean function

Digital Logic Design – Current Summary
- MOS transistors used as switches to implement logic functions.
 - n-type: connect to GND, turn on (with 1) to pull down to 0
 - p-type: connect to +2.9V, turn on (with 0) to pull up to 1
- Basic gates: NOT, NAND
- Logic functions are usually expressed with AND, OR, and NOT
- Review: a little theory behind combinational logic design and some basic combinational devices
 - DeMorgan’s Law
 - Combinational logic devices:
 - Decoder, Multiplexer, Adder, PLA
 - Boolean Algebra – review from CS 1311 (Discrete 1)

Boolean Algebra
- George Boole – Famous Mathematician/Logician
 - Boolean Algebra – branch of Algebra, where variables can only have values of true (1) or false (0)
 - Instead of +, -, \(\times\), \(/\), Boolean operators: AND(x), OR(+), NOT(!)
 - NOT is simply an Inverter
- With Boolean Algebra:
 - We create “functions” using boolean variables and operators
 - Any logical function can be expressed in terms of the three elementary operations: AND, OR and NOT
 - Boolean functions can be rearranged and sometimes simplified by applying algebraic identities
- Big idea – you can write a logical function as a boolean algebraic expression and then use various identities to rewrite that function in an equivalent (usually simpler) form.
Boolean Functions

- A function can be thought of as a mapping from inputs to outputs.
 - Think of a black box with n binary inputs and 1 binary output
- We can express the action of this function in terms of a truth table which says what the output should be for every input pattern.
 - This function implements a binary adder!

Truth table (describes behavior)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Completeness: Very Important Concept

- It can be shown that any truth table (i.e. any binary function of binary variables) can be reduced to combinations of the AND & NOT functions, or of the OR & NOT functions.
 - This result extends also to functions of more than two variables
 - Methodology: Karnaugh Maps
- In fact, it turns out to be convenient to use a basic set of three logic gates:
 - AND, OR & NOT or NAND, NOR & NOT
 - In fact, can implement all logic functions using just NAND!

Boolean Functions

- Function on boolean variables
 - F(x,y)
 - x, y are boolean variables (0 or 1 values)
 - F(x,y) is a boolean output
- If numbers are represented using binary, then all functions are boolean functions

Methodology: Karnaugh Maps

- In fact, it turns out to be convenient to use a basic set of three logic gates:
 - AND, OR & NOT or NAND, NOR & NOT
 - In fact, can implement all logic functions using just NAND!
Representation of Logic Functions

- A logic function can be represented as
 - a truth table
 - a logic expression
 - a logic circuit

Example

\[f = a.(b.c + d) + \overline{a}.c = a.b.c + a.d + \overline{a}.c \]

Truth Table to Boolean Function

- Definition: literal is a boolean variable \(x \) or its complement \(x' \)
 - \(x' \) means \(x=0 \) in truth table
- Definition: minterm is product (AND) of literals where each variable/literal appears once in the term
- Disjunctive normal form (DNF): an OR of minterms
 - DNF gives a two level circuit implementation

Truth Table to DNF:

- Simple boolean function for output \(F \)
 - For each row where \(F=1 \), find minterm
 - Ex: if \(F=1 \) when \(x_1=0, x_2=1, x_3=1 \) then minterm= \((x_1' \times x_2 \times x_3)\)
 - Boolean function in DNF is sum (OR) of all minterms where \(F=1 \)

How to design combinational circuit

- Analyze the problem
 - Determine inputs and outputs (they must be binary)
- Determine boolean variables
 - inputs \(x_1, x_2, \ldots \)
 - Outputs \(y_1, y_2, \ldots \)
- Derive truth table
 - Value of each \(y_i \) for each combination of inputs \(x_1, x_2, \ldots \)
- For simple circuit, find DNF from truth table
- To find ‘optimal’ (minimum size) 2-level circuit, derive Karnaugh map and find terms

Combinational and Sequential Circuits

- A circuit is a collection of devices that are physically connected by wires
 - Combinational circuit
 - Sequential circuit
- In Combinational circuit the input determines output
- In sequential circuit, the input and the previous ‘state’ (previous values) determine output and next ‘state’
 - Need circuit to implement concept of storage
Combinational Devices

- Use basic gates to build more complex combinational logic functions
- Adder: add two binary numbers
- Decoder: enable one of many outputs
- Multiplexer: select one of many inputs

Problem

- No one will buy your new computer design unless it can do at least some math, say, like adding!
- How to build hardware for adding 2 binary numbers using what we have learnt so far?
- First look at the function performed by addition – we saw this last week
 - Bit by bit addition, right to left, propagate carry
 - Inputs: A, B and Carry-in
 - Output: sum bit and carry-out (to next bit position)

Binary Arithmetic: Half Adder

- Logical Function: \(\text{Half Adder} \), implement Carry Out:

Position	A	B	Sum	C\text{out}
 0 | 0 | 0 | 0 | 0 |
 0 | 1 | 1 | 0 | 0 |
 1 | 0 | 1 | 0 | 0 |
 1 | 1 | 0 | 1 | 1 |

 \[\text{Half Adder’s Logic Function:} \]
 \[\text{SUM} = (A' \text{ AND } B) \text{ OR } (A \text{ AND } B') \]
 \[C\text{out} = (A' \text{ AND } B') \text{ OR } (A \text{ AND } B) \text{ OR } (A \text{ AND } B')' \]

 \(A \) \(B \) \(\text{Sum} \) \(C\text{out} \)

 \[A \rightarrow \text{HA} \rightarrow \text{Sum} \rightarrow \text{C\text{out}} \]

 8-bit incrementer (just adds 1)

Chaining Basic Components Together:

- Let’s create an incrementer
 - Input: A
 - Output: \(S = A+1 \)
 - Why? Recall how to create 2C number?
 - We “flip bits” then add 1

- Approach #1 (impractical)
 - Use PLA-like techniques to implement circuit
 - Problem: \(2^8 \) or 256 rows, 8 output columns
 - In theory, possible; in practice, intractable
 - Imagine a 16-bit incrementer!

- Approach #2 (pragmatic)
 - Create a 1-bit incrementer circuit
 - Replicate it 16 times
 - We already have! A half adder can be used to just add 1
One-bit Incrementer

- Implement a single-column of an incrementer using a half adder

\[
\begin{array}{c}
00001011 \\
+00000000 \\
\hline
00001100
\end{array}
\]

This is the same operation as a half adder

We can call it a half adder or a 1-bit incrementer

N-bit Incrementer

- Chain N 1-bit incrementers together

\[
\begin{array}{c}
A_0 \\
\hline
S_0 \\
C_{in} \\
S_0 \\
C_{out}
\end{array}
\]

...but how do we start off the least-significant bit?

N-bit Incrementer, continued

- How do we handle the least-significant bit?

\[
\begin{array}{c}
\text{C}_{in} = 1 \\
\hline
\end{array}
\]

We “carry in” a 1

Addition: Full Adders

- There is a limit with the half adder
 - It can’t implement multiple-bit addition

\[
\begin{array}{c}
A \\
\hline
\text{Sum} \\
\text{C}_{out}
\end{array}
\]

- It works for “least significant bit,” but won’t work for the next

\[
\begin{array}{c}
A \\
\hline
\text{Sum} \\
\text{C}_{out}
\end{array}
\]

- We need an adder that has 3 inputs and 2 outputs
Truth Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Carry In</th>
<th>Out</th>
<th>Carry Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Truth Table for Binary Addition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Carry In</th>
<th>Out</th>
<th>Carry Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Full Adder

Carry OUT

SUM-OUT

1-bit Full Adder

✿ Add two bits and carry-in, produce one-bit sum and carry-out.
N-bit Adder

- Use the building block of the full-adder to build N-bit adder
 - Need to connect carry-out to carry-in of next significant bit

Four-bit Adder

Truth Table
How about a “subtracter”?

- Build a subtracter from our multi-bit adder
 - Calculate \(A - B = A + -B \)
 - Negate \(B \)
 - Recall \(-B = \text{NOT}(B) + 1 \)

Approach #1

```
+1
A 16
B 16
```

Now, let’s create an adder/subtracter

Approach #2

```
A 16
B 16
```

Can we put this together?

- In a CPU, we’d like to do BOTH addition and subtraction
 - Can we give the CPU the ability to choose between two pieces of hardware?
 - Yes!
 - We need another small piece of logic to do it: MUX

The Multiplexer (MUX) – “The selector”

- Selector/Chooser of signals – Imagine Switching Railroad Tracks
 - Multi-way switch
 - 2-to-1 Mux
 - 4-to-1 Mux

Problem: Selecting one of many

- You have \(m \) input signals and you want to use the logical value on one of them determined by a set control signals/wires – \(n \) control signals
 - Each student sends a signal (0 or 1)
 - I want to select Tim’s signal – so I can process his answer
 - Need to give Tim’s code of 10 to select his answer
In general, a MUX has 2^n data inputs, n select (or control) lines, and 1 output. It behaves like a channel selector.

The Multiplexer (MUX)

- In general
 - N select bits chooses from 2^N inputs
 - An incredibly useful building block

- Multi-bit muxes
 - Can switch an entire “bus” or group of signals
 - Switch n-bits with n muxes with the same select bits

Adder/Subtractor - Approach #1

Adder/Subtractor - Approach #2
Another useful device – the Decoder

✧ You have an \(n \) bit binary number assigned as unique ID to each student. How do we select & physically connect to a specific student with ID \(y \)?
✧ In S/W, a “case”/switch statement:
 • One of the cases will be evaluated depending on value of ‘input’
✧ Scenario: 4 light bulbs, switch one of them ON depending on 2 bit input

Boolean function for decoder

✧ Need to select one of four:
 • 2 bits needed to encode the four outcomes
 • \(a_1a_0 \)
✧ 4 outputs – 1 associated with each signal
 • \(x_3x_2x_1x_0 \)
✧ What is the boolean function?
✧ When is each \(x_i \) set to 1:
 • \(x_0 = a_1',a_0' \) (NOT \(a_1 \) AND NOT \(a_0 \))
 • \(x_1 = a_1',a_0 \)
 • \(x_2 = a_1,a_0' \)
 • \(x_3 = a_1,a_0 \)

Truth table

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_0)</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Decoder

An \(n \) input decoder has \(2^n \) outputs.

Output is 1 iff the binary value of the \(n \)-bit input is \(i \).

At any time, exactly one output is 1, all others are 0.

2-bit decoder
(4 input decoder)
Combinational vs. Sequential

Combinational Circuit
- always gives the same output for a given set of inputs
 - ex: adder always generates sum and carry, regardless of previous inputs

Sequential Circuit
- stores information
- output depends on stored information (state) plus input
 - so a given input might produce different outputs, depending on the stored information
- example: vending machine
 - Current total increases when you insert coins
 - output depends on previous state
- useful for building "memory" elements and "state machines"

Next . . Sequential Circuits

First we need to build a device that can store a bit
- Building memory follows

How to model sequential circuits/machines
- Finite state machine

How to build a sequential circuit?
- Limitations of sequential machines...more in Foundations course

Can we use a sequential circuit to "control" how computations take place in a processor?