
Superscalar Processors:
Branch Prediction

Dynamic Scheduling

Superscalar Processors

Superscalar: A Sequential Architecture

Superscalar processor is a representative ILP
implementation of a sequential architecture

- For every instruction issued by a Superscalar processor, the
hardware must check whether the operands interfere with the
operands of any other instruction that is either

• (1) already in execution, (2) been issued but waiting for
completion of interfering instructions that would have
been executed earlier in a sequential program, and (3)
being issued concurrently but would have been executed
earlier in the sequential execution of the program

- Superscalar proc. issues multiple inst. In cycle

Superscalar Terminology
Basic

Superscalar Able to issue > 1 instruction / cycle
Superpipelined Deep, but not superscalar pipeline.

E.g., MIPS R5000 has 8 stages
Branch prediction Logic to guess whether or not branch will be taken,

and possibly branch target

Advanced
Out-of-order Able to issue instructions out of program order
Speculation Execute instructions beyond branch points,

possibly nullifying later
Register renaming Able to dynamically assign physical registers to

instructions
Retire unit Logic to keep track of instructions as they

complete.

Superscalar Execution Example
Single Order, Data Dependence – In Order

Assumptions
- Single FP adder takes 2

cycles
- Single FP multiplier takes 5

cycles
- Can issue add & multiply

together
- Must issue in-order
- <op> in,in,out

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v
w

x
y

(Single adder, data dependence)

(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =
9 cycles

+

w

z

$f12

z

Adding Advanced Features

Out Of Order Issue
- Can start y as soon as adder available
- Must hold back z until $f10 not busy & adder available

v
w

x

y
z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

Adding Advanced Features

With Register Renaming

v
w

x

y
z

v: addt $f2, $f4, $f10a

w: mult $f10a, $f6, $f10a

x: addt $f10a, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f14

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow

Inorder Pipelines

IF

D1

D2

EX

WB

Intel i486

IF IF

D1 D1

D2 D2

EX EX

WB WB

Intel Pentium

U - Pipe V - Pipe

Inorder pipeline, no WAW no WAR (almost always true)

Out-of-order Pipelining 101

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1 ← F2 x F3
.

Ib: F1 ← F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB
Ib: F1 ← “F4 + F5”

.
Ia: F1 ← “F2 x F3”

In-order Issue into
Diversified Pipelines

• • •

• • •

• • •

• • •

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

RD ← Fn (RS, RT)

Dest.
Reg.

Func
Unit

Source
Registers

Issue stage needs to check:
1. Structural Dependence
2. RAW Hazard
3. WAW Hazard
4. WAR Hazard

Inorder
Inst.

Stream

Icache

Superscalar issue

DF . . .I

Decode / IssueDecode / Issue

Scalar issue

Typical FX-
pipeline layout D/IF . . .

Icache

Instruction
buffer

Instruction
buffer

Contrasting decoding and instruction issue in a
scalar and a 4-way superscalar processor

Superscalar Processors: Tasks

parallel decoding
superscalar instruction issue
parallel instruction execution

- preserving sequential consistency of exception processing
- preserving sequential consistency of exec.

Superscalar Issues to be considered

Parallel decoding – more complex task than in scalar
processors.

- High issue rate can lengthen the decoding cycle therefore use
predecoding.

- partial decoding performed while instructions are loaded into
the instruction cache

Superscalar instruction issue – A higher issue rate gives rise
to higher processor performance, but amplifies the
restrictive effects of control and data dependencies on the
processor performance as well.

- To overcome these problems designers use advanced
techniques such as shelving, register renaming, and
speculative branch processing

Superscalar issues

Parallel instruction execution task – Also called
“preservation of the sequential consistency of
instruction execution”. While instructions are
executed in parallel, instructions are usually
completed out of order in respect to a sequential
operating procedure
Preservation of sequential consistency of
exception processing task

Pre-Decoding

more EUs than the scalar processors, therefore higher number
of instructions in execution

- more dependency check comparisons needed

Predecoding – As I-cache is being loaded, a predecode unit,
performs a partial decoding and appends a number of decode
bits to each instruction. These bits usually indicate:

- the instruction class

- type of resources which are required for the execution

- the fact that branch target addresses have been calculated

- Predecoding used in PowerPC 601, MIPS R8000,SuperSparc

Second-level cache
(or memory)

Predecode
unit

Icache

Typically 128 bits/cycle

When instructions are written into the Icache,
the predecode unit appends 4-7 bits to each
RISC instruction

E.g. 148 bits/cycle 1

In the AMD K5, which is an x86-compatible CISC-processor,
the predecode unit appends 5 bits to each byte

1

The Principle of Predecoding Superscalar Instruction Issues

specify how false data and unresolved control
dependencies are coped with during instruction issue

- the design options are either to avoid them during the
instruction issue by using register renaming and speculative
branch processing, respectively, or not

False data dependencies between register data may
be removed by register renaming

Instruction Issue Unit
- Care must be taken not to issue an instruction if another

instruction upon which it is dependent is not complete
- Requires complex control logic in Superscalar processors
- Virtually trivial control logic in VLIW processors

Hardware Features to Support ILP Parallel Execution

when instructions executed in parallel they will finish
out of program order

- unequal execution times

specific means needed to preserve logical consistency
- preservation of sequential consistency

exceptions during execution
- preservation seq. consistency exception proc.

Speculative Execution
- Little ILP typically found in basic blocks

• a straight-line sequence of operations with no intervening
control flow

- Multiple basic blocks must be executed in parallel
• Execution may continue along multiple paths before it is

known which path will be executed

Hardware Features to Support ILP

Requirements for Speculative Execution
- Terminate unnecessary speculative computation once the

branch has been resolved
- Undo the effects of the speculatively executed operations

that should not have been executed
- Ensure that no exceptions are reported until it is known that

the excepting operation should have been executed
- Preserve enough execution state at each speculative branch

point to enable execution to resume down the correct path if
the speculative execution happened to proceed down the
wrong one.

Hardware Features to Support ILP

Speculative Execution
- Expensive in hardware
- Alternative is to perform speculative code motion at compile

time
• Move operations from subsequent blocks up past branch

operations into proceeding blocks
- Requires less demanding hardware

• A mechanism to ensure that exceptions caused by
speculatively scheduled operations are reported if and
only if flow of control is such that they would have been
executed in the non-speculative version of the code

• Additional registers to hold the speculative execution
state

Hardware Features to Support ILP Next. . . Superscalar Processor Design

How to deal with instruction flow
- Dynamic Branch prediction

How to deal with register/data flow
- Register renaming

Solutions studied:
- Dynamic branch prediction algorithms
- Dynamic scheduling using Tomasulo method

Summary of discussions

ILP processors
- VLIW/EPIC, Superscalar

Superscalar has hardware logic for extracting
parallelism
- Solutions for stalls etc. must be provided in hardware

Stalls play an even greater role in ILP processors
Software solutions, such as code scheduling through
code movement, can lead to improved execution
times
- More sophisticated techniques needed
- Can we provide some H/W support to help the compiler –

leads to EPIC/VLIW

Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Instruction Fetch Bandwidth Solutions

Ability to fetch number of instructions from cache is
crucial to superscalar performance
- Use instruction fetch buffer to prefetch instructions
- Fetch multiple instructions in one cycle to support the s-wide

issue of superscalar processors

Design instruction cache (I-Cache) to support this
- Shall discuss solutions when Memory design is covered

Instruction Decoding Issues

Primary tasks:
- Identify individual instructions
- Determine instruction types
- Detect inter-instruction dependences

Predecoding
- Identify inst classes
- Add more bits to instruction after fetching

Two important factors:
- Instruction set architecture
- Width of parallel pipeline

Second-level cache
(or memory)

Predecode
unit

Icache

Typically 128 bits/cycle

When instructions are written into the Icache,
the predecode unit appends 4-7 bits to each
RISC instruction

E.g. 148 bits/cycle 1

In the AMD K5, which is an x86-compatible CISC-processor,
the predecode unit appends 5 bits to each byte

1

The Principle of Predecoding

Control Dependence and
Branch Prediction

Instruction Flow– Control Flow

Throughput of early stages places bound an upper
bound on per. Of subsequent stages
Program control flow represented by Control Flow
Graph (CFG)
- Nodes represent basic block of code

• Sequence of instructions with no incoming or outgoing
branches

- Edges represent transfer of control flow from one block to
another

IBM’s Experience on Pipelined Processors
[Agerwala and Cocke 1987]

Code Characteristics (dynamic)
- loads - 25%
- stores - 15%
- ALU/RR - 40%
- branches - 20%

• 1/3 unconditional (always taken)
unconditional - 100% schedulable

• 1/3 conditional taken
• 1/3 conditional not taken

conditional - 50% schedulable

Control Flow Graph
Shows possible paths of control flow through basic
blocks

Control Dependence
- Node X is control dependant on Node Y if the computation in

Y determines whether X executes

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Why Branches: CFG and Branches

Basic blocks and their constituent instructions must
be stored in sequential location in memory
- In mapping a CFG to linear consecutive mem location,

additional unconditional branches must be added

Encounter of branches (cond and uncond.) at run-
time induces deviations from implied sequential
control flow and consequent disruptions to sequential
fetching of instructions
- These disruptions cause stalls in Inst.Fetch (IF) stage and

reduce overall IF bandwidth

Mapping CFG to
Linear Instruction Sequence

A A

B

B

A

B
C

D
D

C

C

D

Conditional branches
Unconditional branch

Branch Types and Implementation

Types of Branches
- Conditional or Unconditional?
- Subroutine Call (aka Link), needs to save PC?
- How is the branch target computed?

• Static Target e.g. immediate, PC-relative
• Dynamic targets e.g. register indirect

What’s So Bad About Branches?

Performance Penalties
- Use up execution resources
- Fragmentation of I-Cache lines
- Disruption of sequential control flow

• Need to determine branch direction (conditional
branches)

• Need to determine branch target

Robs instruction fetch bandwidth and ILP

Branch-- actions

When branches occur, disruption to IF occurs
For unconditional branches
- Subsequent instruction cannot be fetched until target

address determined

For conditional branches
- Machine must wait for resolution of branch condition
- And if branch taken then wait till target address computed

Branch inst executed by the branch functional unit
Note: Cost in superscalar/ILP processors = width
(parallelism) X stall cycles
- 3 stall cycles on a 4 wide machine = 12 lost cycles

CPU Performance..

Recall: CPU time = IC*CPI*Clk
- CPI = ideal CPI + stall cycles/inst
- Minimizing CPI implies minimize stall cycles
- Stall cycles from branch instructions

• How to determine the number of stall cycles

Branch penalties/stall cycles

When branch occurs two parts needed:
- Branch target address (BTA) has to be computed
- Branch condition resolution

Addressing modes will affect BTA delay
- For PC relative, BTA can be generated during Fetch stage

for 1 cycle penalty
- For Register indirect, BTA generated after decode stage (to

access register) = 2 cycle penalty
- For register indirect with offset = 3 cycle penalty

For branch condition resolution, depends on methods
- If condition code registers used, then penalty =2
- If ISA permits comparison of 2 registers then output of ALU

=> 3 cycles
Penalty will be max of penalties for condition
resolution and BTA

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Stall=3

Stall=2

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Stall=1Stall=2

Stall=3

What to do with branches

To maximize sustained instruction fetch bandwidth,
number of stall cycles in fetch stage must be
minimized
The primary aim of instruction flow techniques
(branch prediction) is to minimize stall cycles and/or
make use of these cycles to do useful work
- Predict the branch outcome and do work during potential

stall cycles
- Note that there must be a mechanism to validate prediction

and to safely recover from misprediction

Doing away with Branches:
Riseman and Foster’s Study

7 benchmark programs on CDC-3600
Assume infinite machine:
- Infinite memory and instruction stack, register file, fxn units

Consider only true dependency at data-flow limit

If bounded to single basic block, i.e. no bypassing of
branches ⇒ maximum speedup is 1.72
Suppose one can bypass conditional branches and
jumps (i.e. assume the actual branch path is always
known such that branches do not impede instruction
execution)

Br. Bypassed: 0 1 2 8 32 128
Max Speedup: 1.72 2.72 3.62 7.21 24.4 51.2

Determining Branch Direction

Problem: Cannot fetch subsequent instructions until branch
direction is determined

Minimize penalty
- Move the instruction that computes the branch condition

away from branch (ISA&compiler)

Make use of penalty
- Bias for not-taken
- Fill delay slots with useful/safe instructions (ISA&compiler)
- Follow both paths of execution (hardware)
- Predict branch direction (hardware)

Determining Branch Target

Problem: Cannot fetch subsequent instructions until
branch target is determined

Minimize delay
- Generate branch target early in the pipeline

Make use of delay
- Bias for not taken
- Predict branch target

PC-relative vs Register Indirect targets

Keys to Branch Prediction

Target Address Generation
- Access register

• PC, GP register, Link register
- Perform calculation

• +/- offset, auto incrementing/decrementing

⇒ Target Speculation

Condition Resolution
- Access register

• Condition code register, data register, count register
- Perform calculation

• Comparison of data register(s)

⇒ Condition Speculation

History based Branch Target
Speculation – Branch Target Buffer
If you have seen this branch instruction before, can
you figure out the target address faster ?
- Create history table

How to organize the “history table” ?

History based Branch Target
Speculation – Branch Target Buffer
Use branch target buffer (BTB) to store previous
branch target address
BTB is a small fully associative cache
- Accessed during instruction fetch using PC

BTB can have three fields
- Branch instruction address (BIA)
- Branch target address (BTA)
- History bits

When PC matches BIA, an entry is made into BTB
- A hit in BTB Implies inst being fetched is branch inst
- The BTA field can be used to fetch next instruction if

particular branch is predicted to be taken
- Note: branch inst is still fetched and executed for

validation/recovery

A small “cache-like” memory in the instruction fetch stage

Remembers previously executed branches, their addresses,
information to aid prediction, and most recent target
addresses
Instruction fetch stage compares current PC against those
in BTB to “guess” nPC
- If matched then prediction is made else nPC=PC+4
- If predict taken then nPC=target address in BTB else nPC=PC+4

When branch is actually resolved, BTB is updated

Branch Target
(Most Recent)

Branch
History

Branch Inst.
Address (tag)

………….…….

Branch Target Buffer (BTB)

current
PC

Branch Condition Speculation
Biased For Not Taken
- Does not affect the instruction set architecture
- Not effective in loops

Software Prediction
- Encode an extra bit in the branch instruction

• Predict not taken: set bit to 0
• Predict taken: set bit to 1

- Bit set by compiler or user; can use profiling
- Static prediction, same behavior every time

Prediction Based on Branch Offsets
- Positive offset: predict not taken
- Negative offset: predict taken

Prediction Based on History

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

nPC to Icache

nPC(seq.) = PC+4
PCBranch

Predictor
(using a BTB)

specu. target

BTB
update

prediction

(target addr.
and history)

specu. cond.

FA-mux

nPC=BP(PC)

Branch Prediction Function

Based on opcode only (%)
IBM1 IBM2 IBM3 IBM4 DEC CDC
66 69 71 55 80 78

Based on history of branch
- Branch prediction function F (X1, X2,)
- Use up to 5 previous branches for history (%)

IBM1 IBM2 IBM3 IBM4 DEC CDC
0 64.1 64.4 70.4 54.0 73.8 77.8
1 91.9 95.2 86.6 79.7 96.5 82.3
2 93.3 96.5 90.8 83.4 97.5 90.6
3 93.7 96.7 91.2 83.5 97.7 93.5
4 94.5 97.0 92.0 83.7 98.1 95.3
5 94.7 97.1 92.2 83.9 98.2 95.7

History based prediction

Make prediction based on previous observation
- historical info on direction taken by branch in previous

execution can hints on direction taken in future

How much history ? What prediction ?
- History means how many branches and for each branch how

much ?

Where to store the history ?

Finite State Machine based predictors

FSMs
- capture history
- Easy and fast to design and implement
- Transition from one state to another on input

FSM branch prediction algorithm
- N state variables encode direction taken by last n exec of

branch
• Each state represents particular history pattern in terms

of taken/not-taken (T/NT)
• Output logic generates prediction based on history

- When predicted branch is finally executed, use actual
outcome to transition to next state

- Next state logic – chain state variables into shift Reg.

N-bit predictors

Store outcome of last N occurences of branche
- 1-bit predictor implies store history of last branch only

The values of the N bits is the “state” of the branch
predictor
Use history of last N to predict next
- Use the value of the N-bit ‘state’ to predict the branch – this

is the prediction algorithm
- Implement the ‘algorithm’ using some logic gates
- How much time does algorithm have to compute outcome ??

Larger the size of N, the more hardware you need to
implement the N bit predictor
How many branch instructions ?
- Size of/entries in the Branch history table, BTB – 1024,

2048,etc.

2-bit predictors

Use 2 history bits to track outcome of 2 previous
executions of branch
- 2 bits are status of FSM
- NN, NT, TN, TT

Each FSM represents a prediction algorithm
To support history based prediction, the BTB includes
history field for each branch
- Retrieve target address plus history bits
- Feed history bits to logic that generates next state and

prediction

Prediction accuracy approaches maximum with as
few as 2 preceding branch occurrences used as
history

Results (%)
IBM1 IBM2 IBM3 IBM4 DEC CDC
93.3 96.5 90.8 83.4 97.5 90.6

Example Prediction Algorithm

TTT

N

T

NT
T

TNT
TN
T

NN
N

N

T

T

N

T
N

TT
T

last two branches

next prediction

How does prediction algo work?

While (i > 0) do /* Branch 1 */
{
If (x>y) then /* Branch 2 */

{then part} /* no changes to x,y in this code */
else {else part}

i= i-1;
}

Two branches in this code: B1, B2
How many times is each executed ?

Example Prediction Algorithm

TTT

N

T

NT
T

TNT
TN
N

NN
N

N

T

T

N

T
N

TT
T

last two branches

next prediction

Assume history bits = TN for B1, TT for B2

How does prediction algo work?

i=100; x=30; y=50;
While (i > 0) do /* Branch 1 */
{
If (x>y) then /* Branch 2 */

{then part} /* no changes to x,y in this code */
else {else part}

i= i-1;
}
Using the same 2-bit predictor for all branches–
Prediction for B1: ?
Prediction for B2: ?

N

T
N

N

T

TN
Tn?

T

t
T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

nn

T N

Other Prediction Algorithms

Combining prediction accuracy with BTB hit rate
(86.5% for 128 sets of 4 entries each), branch
prediction can provide the net prediction accuracy of
approximately 80%. This implies a 5-20%
performance enhancement.

Saturation
Counter

Hysteresis
Counter

IBM RS/6000 Study [Nair, 1992]

Five different branch types
- b: unconditional branch
- bl: branch and link (subroutine calls)
- bc: conditional branch
- bcr: conditional branch using link register (subroutine

returns)
- bcc: conditional branch using count register (system calls)

Separate branch function unit to overlap of branch
instructions with other instructions

Two causes for branch stalls
- Unresolved conditions
- Branches downstream too close to unresolved branches

Number of Counter Bits Needed

Branch history table size: Direct-mapped array of 2k entries
Programs, like gcc, can have over 7000 conditional branches
In collisions, multiple branches share the same predictor
Variation of branch penalty with branch history table size level out
at 1024

62.4 (0.142)82.5 (0.063)86.8 (0.048)88.3 (0.042)li

78.4 (0.049)82.9 (0.046)87.2 (0.033)89.3 (0.028)eqntott

58.5 (0.176)87.2 (0.054)89.1 (0.047)89.5 (0.045)espresso

50.0 (0.128)86.0 (0.033)89.1 (0.026)89.7 (0.025)gcc

69.2 (0.022)90.2 (0.004)94.3 (0.003)94.2 (0.003)doduc

76.6 (0.031)96.2 (0.013)97.0 (0.009)97.0 (0.009)spice2g6

0-bit1-bit2-bit3-bit

Prediction Accuracy (Overall CPI Overhead)Benchmark

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

Advanced Branch Prediction:
Multi-level Branch Prediction

So far, the prediction of each static branch instruction
- is based solely on its own past behavior and not the behaviors of

other neighboring static branch instructions
- Does not take into account dynamic context within which branch is

being executed
• E.g.: does not use any info on the particular control flow path

taken in arriving at that branch
- Same algorithm used for prediction regardless of dynamic context

Experimental observations reveal behavior of some
branches strongly correlated to other branches
- More accurate prediction can be achieved by taking into account

branch history of other related branches and adapt algo to the
dynamic branching context

Will cover some advanced branch prediction schemes
later – after dataflow and scheduling

BTB for Superscalar Fetch

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

SFX SFX CFX FPU LSBRN

Buffer

icachePC

Branch
History
Table

Branch
Target

Address
Cache

+16

feedback

BTB input: current cache line
address

BTB output: what is the next
cache line address and
how many words of the
current line is useful

Branch Mis-prediction Recovery

Branch speculation involves predicting direction of
branch and then proceeding to fetch along that path
- Fetching on that path may encounter more branch inst

Must provide validation and recovery mechanisms
To identify speculated instructions, tagging is used
- Tagged instruction indicates a speculative inst
- Tag value for each basic block (branch)

Validation occurs when branch is executed and
outcome known; correction of prediction known
- prediction correct = de-allocate spec. tag
- Incorrect prediction = terminate incorrect path and fetch from

correct path

Control Flow Speculation

Leading Speculation
- Tag speculative instructions
- Advance branch and following instructions
- Buffer addresses of speculated branch instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3

Mis-speculation Recovery

Eliminate Incorrect Path
- Must ensure that the mis-speculated instructions produce no

side effects

Start New Correct Path
- Must have remembered the alternate (non-predicted) path

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2

Mis-speculation Recovery

Eliminate Incorrect Path
- Use branch tag(s) to deallocate completion buffer entries

occupied by speculative instructions (now determined to be
mis-speculated).

- Invalidate all instructions in the decode and dispatch buffers, as
well as those in reservation stations

How expensive is a misprediction?

Start New Correct Path
- Update PC with computed branch target (if it was predicted NT)
- Update PC with sequential instruction address (if it was

predicted T)
- Can begin speculation once again when encounter a new

branch
How soon can you restart?

Trailing Confirmation

Trailing Confirmation
- When branch is resolved, remove/deallocate speculation tag
- Permit completion of branch and following instructions

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3tag3 tag3

tag2

Impediments to Parallel/Wide Fetching

Average Basic Block Size
- integer code: 4-6 instructions
- floating-point code: 6-10 instructions

Branch Prediction Mechanisms
- must make multiple branch predictions per cycle
- potentially multiple predicted taken branches

Conventional I-Cache Organization – discuss later
- must fetch from multiple predicted taken targets per

cycle
- must align and collapse multiple fetch groups per cycle

…Trace Caching!!

Recap..

CPU time = IC * CPI * Clk
- CPI = ideal CPI + stall cycles/instruction
- Stall cycles due to (1) control hazards and (2) data hazards

What did branch prediction do ?
- Tries to reduce number of stall cycles from control hazards

What about stall cycles from data hazards
- Next..

Recap..

CPU time = IC * CPI * Clk
- CPI = ideal CPI + stall cycles/instruction
- Stall cycles due to (1) control hazards and (2) data hazards

What did branch prediction do ?
- Tries to reduce number of stall cycles from control hazards

What about stall cycles from data hazards
- Next..

Next- Register Dataflow and Dynamic
Scheduling

Branch prediction provides a solution to handling the
control flow problem and increase instruction flow
bandwidth
- Stalls due to control flow change can decrease performance

Next step is flow in the execute stage – register data
flow
- Parallel execution of instructions
- Keep dependencies in mind

• Remove false dependencies, honor true dependencies
• “infinite” register set can remove false dependencies

- Go back and look at the nature of true dependencies using
the data flow diagram of a computation

Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow

HW Schemes: Instruction Parallelism
Why in HW at run time?

- Works when can’t know real dependence at compile time
- Compiler simpler
- Code for one machine runs well on another

Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

- Enables out-of-order execution => out-of-order completion
- ID stage checked both for structuralScoreboard dates to CDC

6600 in 1963

Superscalar Execution Example
Single Order, Data Dependence – In Order

Assumptions
- Single FP adder takes 2

cycles
- Single FP multiplier takes 5

cycles
- Can issue add & multiply

together
- Must issue in-order
- <op> in,in,out

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v
w

x
y

(Single adder, data dependence)

(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =
9 cycles

+

w

z

$f12

z

Adding Advanced Features

Out Of Order Issue
- Can start y as soon as adder available
- Must hold back z until $f10 not busy & adder available

With Register Renaming

v
w

x

y
z

v
w

x

y
z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v: addt $f2, $f4, $f10a

w: mult $f10a, $f6, $f10a

x: addt $f10a, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f14

Where do false dependencies come
from – i.e., who messed up?

ALU ops are R_d ← Fi(Rj,Rk)
- If functional unit is not available then structural hazard
- If source operand not available then data hazard due to true

dependency
- If destination register R_d not available then hazard due to

anti and output dependencies, i.e., false dependencies
Recycling/reuse of destination register leads to
dependency
- Static recycling due to Register allocation in compilation

process
• Code generation into Infinite set of symbolic registers
• Register allocation maps this into finite set of architected

registers, i.e., register recycling/reuse
- Dynamic form of register recycling occurs during execution

of loops

Register Renaming

Dynamically assign different names to the multiple
definitions of the same register thereby remove false
dependencies
Use a separate rename register file (RRF) in addition
to architected register file (ARF)
- One way, duplicated ARF and use RRF as a shadow version

Not an efficient way to use RRF
Where to place RRF
- Implement stand-alone structure similar to ARF
- Incorporate RRF as part of reorder buffer

• Can be inefficient since you need rename for every
instruction in flight even if not every inst defines a register

- Use a busy bit to indicate if renaming has occurred for an
ARF, and if so the a map to indicate the name

Register Renaming

What does it involve
- Source read – at decode/dispatch stage

• Access source register, check if operand ready, which
actual register should be accessed if renamed.

- Destination allocate – at decode/dispatch stage
• Destination register used to index into ARF, and now the

dest reg has pending write; set the mapping to specify
which RRF is used (i.e., the renaming mapping)

- Register update
• Involves updating the RRF when instruction completes

and then copy from RRF into ARF

Do we really need separate ARF and RRF
- Can be pooled together and save data transfer interconnect

but more complex to do context switching

Back to register dataflow problem..

Register renaming can eliminate false dependencies
False dependencies can introduce stalls into the
superscalar
Register dataflow problem:
- Issue instructions in parallel if there are no true

dependencies
How much parallelism is there in the code ?
- Data flow limit to program execution is the critical path in the

program
- Data flow execution model stipulates that every instruction

begin execution immediately in the cycle following when all
its operands are ready

• All register data flow techniques attempt to approach this
limit

• What are the obstacles to this execution model ?

What will we study…

Today: Cover the basic dynamic scheduling method
- Register renaming
- Tomasulo Method – V1.0!

Next week – “Modify” the basic scheduler to handle
speculation, out of order, etc.

Register dataflow- Key concepts

Simulating the data flow graph will eliminate false
dependencies and allow maximum parallelism
- Subject to resource constraints

How can we have ‘infinite’ registers ??
- Remove reference to registers and replace with the data flow

graph information
• Note that we should not actually construct the data flow

graph

Work with non-speculative instructions to provide a
solution
- Add the branch prediction speculation support to modify the

solution and get a speculative out of order execution unit!

Example

A: R4 ← R0 + R8 latencies:
B: R2 ← R0 * R4 add= 2
C: R4 ← R4 + R8 mult=3
D: R8 ← R4 * R2

What is the (true) data flow ?
How does execution work ?

HW Schemes: Instruction Parallelism

Out-of-order execution divides ID stage:
1. Issue—decode instructions, check for structural hazards
2. Read operands—wait until no data hazards, then read operands

Two major schemes:
- Scoreboard
- Reservation station (Tomasulo algo)

They allow instruction to execute whenever 1 & 2 hold,
not waiting for prior instructions
In order issue, out of order execution, out of order
commit (also called completion)

Advantages of
Dynamic Scheduling

Handles cases when dependences unknown at
compile time
- (e.g., because they may involve a memory reference)

It simplifies the compiler
Allows code that compiled for one pipeline to run
efficiently on a different pipeline
Hardware speculation, a technique with significant
performance advantages, that builds on dynamic
scheduling

A Dynamic Algorithm:
Tomasulo’s Algorithm

For IBM 360/91 (before caches!)
Goal: High Performance without special compilers
Small number of floating point registers (4 in 360) prevented
interesting compiler scheduling of operations
- This led Tomasulo to try to figure out how to get more effective

registers — renaming in hardware!

Why Study 1966 Computer?
The descendants of this have flourished!
- Alpha 21264, HP 8000, MIPS 10000, Pentium III, PowerPC 604, …

Tomasulo Method:Approach

Tracks when operands for instructions are available
- Minimizes RAW hazards

Register renaming
- Minimize WAR and WAW hazards

Many variations in use today but key remains
- Tracking instruction dependencies to allow execution as

soon as operands available, and rename registers to avoid
WAR and WAW

- Basically, it tries to follow the data-flow execution

Diversified Pipelined
Inorder Issue, Out-of-order Complete

Multiple functional units (FU’s)
- Floating-point add
- Floating-point multiply/divide

Three register files (pseudo reg-reg machine in FP unit)
- (4) floating-point registers (FLR)
- (6) floating-point buffers (FLB)
- (3) store data buffers (SDB)

Out of order instruction execution:
- After decode the instruction unit passes all floating point

instructions (in order) to the floating-point operation stack (FLOS).
- In the floating point unit, instructions are then further decoded and

issued from the FLOS to the two FU’s
Variable operation latencies (not pipelined):
- Floating-point add: 2 cycles
- Floating-point multiply: 3 cycles
- Floating-point divide: 12 cycles

Tomasulo Algorithm
Control & buffers distributed with Function Units (FU)

- FU buffers called “reservation stations”; have pending operands
• IF FU busy, then instead of stalling, issue to reservation station which is a

set of buffers for the FU..i.e., a virtual Functional unit
Registers in instructions replaced by values or pointers to reservation
stations(RS); called register renaming ;

- avoids WAR, WAW hazards
- More reservation stations than registers, so can do optimizations

compilers can’t
Results to FU from RS, not through registers, over Common Data Bus
that broadcasts results to all FUs

- CDB connects outputs of FUs to reservation stations and Store buffer
Load and Stores treated as FUs with RSs as well
Int inst can go past branches, allowing ops beyond basic block

Reservation Station

Buffers where instructions can wait for RAW hazard
resolution and execution
Associate more than one set of buffering registers
(control, source, sink) with each FU ⇒ virtual FU’s.
- Add unit: three reservation stations
- Multiply/divide unit: two reservation stations

Pending (not yet executing) instructions can have
either value operands or pseudo operands (aka. tags).

Mult

RS2
RS1

⇒
Mult

RS1

Mult

RS2

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands
- Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)
- Note: Qj,Qk=0 => ready
- Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will
write each register, if one exists. Blank when no pending
instructions that will write that register.

Rename Tags
Register names are normally bound to FLR registers
When an FLR register is stale, the register “name” is
bound to the pending-update instruction
Tags are names to refer to these pending-update
instructions
In Tomasulo, A “tag” is statically bound to the buffer where
a pending-update instruction waits.
Instructions can be dispatched to RSs with either value
operands or just tags.
- Tag operand ⇒ unfulfilled RAW dependence
- the instruction in the RS corresponding to the Tag will produce the

actual value eventually

Common Data Bus (CDB)
CDB is driven by all units that can update FLR
- When an instruction finishes, it broadcasts both its “tag” and its

result on the CDB.
- Facilitates forwarding results directly from producer to consumer
- Why don’t we need the destination register name?

Sources of CDB:
- Floating-point buffers (FLB)
- Two FU’s (add unit and the multiply/divide unit)

The CDB is monitored by all units that was left holding a tag
instead of a value operand
- Listens for tag broadcast on the CDB
- If a tag matches, grab the value

Destinations of CDB:
- Reservation stations
- Store data buffers (SDB)

• Holds data to be written into memory due to a store operation
- Floating-point registers (FLR)

Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Output Dependences (WAW)

Superscalar Execution Check List

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR)

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
wakeup inst if all ready bits are set;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

Normal data bus: data + destination (“go to” bus)
Common data bus: data + source (“come from” bus)

- 64 bits of data + 4 bits of Functional Unit source address
- Write if matches expected Functional Unit (produces result)
- Does the broadcast

Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

Dependence Resolution

Structural dependence: virtual FU’s
- Can send more than num of FU’s

True dependence: Tags + CDB
- If an operand is available in FLR, it is copied to RS
- If an operand is not available then a tag is copied

to the RS instead. This tag identifies the source
(RS/instruction) of the pending write

• RAW does not block subsequent inst or FU
Anti-dependence: Operand Copying
- If an operand is available in FLR, it is copied to RS

with the issuing instruction
Output dependence: “register renaming” + result
forwarding

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1?

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2

Tomasulo Drawbacks

Complexity
- delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!
Many associative stores (CDB) at high speed
Performance limited by Common Data Bus

- Each CDB must go to multiple functional units
⇒high capacitance, high wiring density

- Number of functional units that can complete per cycle
limited to one!

• Multiple CDBs ⇒ more FU logic for parallel assoc
stores

Non-precise interrupts!

Why can Tomasulo overlap iterations
of loops?

Register renaming
- Multiple iterations use different physical destinations for registers

(dynamic loop unrolling).

Reservation stations
- Permit instruction issue to advance past integer control flow operations
- Also buffer old values of registers - totally avoiding the WAR stall that we

saw in the scoreboard.

Other perspective: Tomasulo building data flow dependency graph
on the fly.

Tomasulo’s scheme offers 2 major
advantages

(1) the distribution of the hazard detection logic
- distributed reservation stations and the CDB
- If multiple instructions waiting on single result, & each

instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

- If a centralized register file were used, the units would have
to read their results from the registers when register buses
are available.

(2) the elimination of stalls for WAW and WAR
hazards

Relationship between precise
interrupts and speculation:

Speculation is a form of guessing.
Important for branch prediction:
- Need to “take our best shot” at predicting branch direction.

If we speculate and are wrong, need to back up and
restart execution to point at which we predicted
incorrectly:
- This is exactly same as precise exceptions!

Technique for both precise interrupts/exceptions and
speculation: in-order completion or commit

Multiple Issue ILP Processors

In statically scheduled superscalar instructions issue
in order, and all pipeline hazards checked at issue
time
- Inst causing hazard will force subsequent inst to be stalled

In statically scheduled VLIW, compiler generates
multiple issue packets of instructions
During instruction fetch, pipeline receives number of
inst from IF stage – issue packet
- Examine each inst in packet: if no hazard then issue else

wait
- Issue unit examines all inst in packet

• Complexity implies further splitting of issue stage

Multiple Issue

To issue multiple instructions per clock, key is
assigning reservation station and updating pipeline
control tables
Two approaches
- Run this step in half a clock cycle; two inst can be processed

in one clock cycle
- Build logic needed to handle two instructions at once

Dynamic Scheduling – Dynamic
Execution core

Current superscalar processors provide “out of order”
- Architecture is an out of order core sandwiched between in-

order front-end and in-order back-end
- In-order front end

• Fetches and dispatches instructions in program order
- In-order back-end

• Completes and retires inst in program order
- Dynamic execution core

• Refinement of Tomasulo method
• Has three parts

− Instruction dispatch: rename reg, alloc. Res.stations
− Inst execution: exec., forward results
− Instruction completion:

Extending Tomasulo

Have to allow for speculative instructions
- Separate bypassing of results among instructions from the

actual completion of instruction

Tag instructions as speculative until they are
validated – and then commit the instruction
Key idea: allow instructions to execute out of order
but commit in order
- Requires reorder buffer (ROB) to hold and pass results

among speculated instructions
- ROB is a source of operands
- Register file is not updated until instruction commits

• Therefore ROB supplies operands in interval between
completion of inst and commit of inst

Reorder Buffer (ROB)

Reorder buffer contains all instructions in flight, i.e.,
all inst dispatched but not completed
- Inst waiting in reservation stations
- Executing in functional units
- Finished execution but waiting to be completed in program

order

Status of each instruction can be tracked using
several bits in each entry in ROB
- Additional bit to indicate if instruction is speculative
- Only finished and non-speculative can be committed
- Instruction marked invalid is not architecturally completed

when exiting the reorder buffer

HW support
Need HW buffer for results of
uncommitted instructions:
reorder buffer

- 3 fields: instr, destination, value
- Use reorder buffer number instead

of reservation station when
execution completes

- Supplies operands between
execution complete & commit

- (Reorder buffer can be operand
source => more registers like RS)

- Instructions commit
- Once instruction commits,

result is put into register
- As a result, easy to undo

speculated instructions
on mispredicted branches
or exceptions

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

What are the hardware complexities with
reorder buffer (ROB)?

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Com
par

network

How do you find the latest version of a register?
- (As specified by Smith paper) need associative comparison network
- Could use future file or just use the register result status buffer to track

which specific reorder buffer has received the value
Need as many ports on ROB as register file

Reorder Table

D
es

t
Re

g

Re
su

lt

Ex
ce

pt
io
ns

?

Va
lid

Pr
og

ra
m
 C

ou
nt

er

Four Steps of Speculative
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination (this stage sometimes
called “dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB
for result; when both in reservation station, execute; checks RAW
(sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

Summary
Reservations stations: implicit register renaming to larger
set of registers + buffering source operands

- Prevents registers as bottleneck
- Avoids WAR, WAW hazards of Scoreboard
- Allows loop unrolling in HW

Not limited to basic blocks
(integer units gets ahead, beyond branches)
Lasting Contributions

- Dynamic scheduling
- Register renaming
- Load/store disambiguation

360/91 descendants are Pentium III; PowerPC 604; MIPS
R10000; HP-PA 8000; Alpha 21264

More branch prediction Inter-relating Branches

So far, not considered inter-dependent branches
- Branches whose outcome depends on other branches

If (a<=0) then { s1}; /* branch b1 */
If (a>0) then {s2}; /* branch b2 */

Relation between b1 and b2 ?

2-level predictors

Relate branches
- Globally (G)
- Individual (P) (also known as per-branch)

Global: single BHSR of k bits tracks branch directions
of last k dynamic branches
Individual: employ set of k-bit BHSR, one of which is
selected for a branch
- Global shared by all branches, whereas individual has

BHSR dedicated to each branch (or subset)

PHT has options: global (g), individual (p), shared(s)
- Global has single table for all static
- Individual has PHT for each static branch
- Or subset of PHT shared by each branch

Advanced Branch Prediction:
Global Branch Prediction

00...00
00...01
00...10

11...10
11...11

1 1 1 1 0

Branch History Register
(shift left when update)

Pattern History Table (PHT)

PHT
Bits

Prediction

Branch
Resolution

index

FSM
Logic

old

new

2-Level Adaptive Prediction [Yeh & Patt]

Two-level adaptive branch prediction
- 1st level: History of last k (dynamic) branches encountered
- 2nd level: branch behavior of the last s occurrences of the

specific pattern of these k branches
- Use a Branch History Register (BHR) in conjunction with a

Pattern History Table (PHT)

Example: (k=8, s=6)
- Last k branches with the behavior (11100101)
- s-bit History at the entry (11100101) is [101010]
- Using history, branch prediction algorithm predicts direction

of the branch

Effectiveness:
- Average 97% accuracy for SPEC
- Used in the Intel P6 and AMD K6

Global BHSR Scheme (GAs)

P
re

di
ct

io
n

Branch Address

Branch History
Shift Register (BHSR)

j bits

k bits

BHT of 2 x 2 j+k

Per-Branch BHSR Scheme (PAs)

P
re

di
ct

io
n

Branch Address

Branch History
Shift Register (BHSR)

BHT of 2 x 2 j+k

j bits

k bits

i bits

k x 2 i

Standard BHT

Other Schemes

Function Return Stack
- Register indirect targets are hard to predict from branch history
- Register indirect branches are mostly used for function returns
⇒ 1. Push the return address onto a stack on each function call

2. On a reg. indirect branch, pop and return the top address
as prediction

Combining Branch Predictors
- Each type of branch prediction scheme tries to capture a

particular program behavior
- May want to include multiple prediction schemes in hardware
- Use another history-based prediction scheme to “predict” which

predictor should be used for a particular branch
You get the best of all worlds. This works quite well

Next . . . VLIW/EPIC

Static ILP Processors: Very Long Instruction
Word(VLIW) – Explicit Parallel Instruction Computing
(EPIC)
- Compiler determines dependencies and resolves hazards
- Hardware support needed for this ?

Do ‘standard’ compiler techniques work or do we
need new compiler optimization methods to extract
more ILP
- Overview of compiler optimization

