
1

CS 211: Computer ArchitectureCS 211: Computer Architecture

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~narahari/cs211/

CS 211: Bhagi Narahari,CS, GWU

Summary: Architecture Trends ?

• Moore’s law: density doubles every 18-24
months

smaller processors, faster clocks
Price drops due to volume and dev. costs what next?

• Interconnect delays could dominate over feature
delay

Need for simpler architectures
Distributed logic and control

• More functionality
communicating processors
network of embedded processors

• To extract max performance
Thumb rules: Amdahl’s law, Parallelism, Locality
Software and compiler support needed!!!

CS 211: Bhagi Narahari,CS, GWU

Next: Review
Computer Organization in an hour!

• Overview of Computer Organization
Components
Sample processor design process

CS 211: Bhagi Narahari,CS, GWU

Review: Computer Organization Basics

• What are the components of a CPU
• What is the microarchitecture level ?
• What is an ISA - Instruction set

architecture ?
• How does a sample processor design

look ?
A simple processor architecture

• what is the basic concept of pipelining

2

CS 211: Bhagi Narahari,CS, GWU

A Computer

The computer is composed of input devices, a central processing
unit, a memory unit and output devices.

Input
Device

Central
Processing

Unit

Output
Device

Input
Device

Memory

Auxiliary
Storage
Device

CS 211: Bhagi Narahari,CS, GWU

Memory Unit

• An ordered sequence of storage cells,
each capable of holding a piece of data.

• Volatile Memory
RAM – Random Access Memory

• Non-volatile Memory
ROM – Read Only Memory

CS 211: Bhagi Narahari,CS, GWU

Computer System

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller
I/O

controller
I/O

controller
I/O

controller
I/O

controller

DisplayDisplay NetworkNetwork

interrupts

CS 211: Bhagi Narahari,CS, GWU

Memory Hierarchy: The Tradeoff

CPUCPU

regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
block size:

608 B
1.4 ns

4 B

register
reference

L2-cache
reference

memory
reference

disk memory
reference

512kB -- 4MB
16.8 ns
$90/MB
16 B

128 MB
112 ns
$2-6/MB
4-8 KB

27GB
9 ms
$0.01/MB

larger, slower, cheaper

16 B 8 B 4 KB

cache virtual memory

C
a
c
h
e

128k B
4.2 ns

4 B

L1-cache
reference

(Numbers are for a 21264 at 700MHz)

3

CS 211: Bhagi Narahari,CS, GWU

Central Processing Unit (CPU)

• The CPU has two components:
Arithmetic and Logic Unit (ALU)

Performs arithmetic operations
Performs logical operations

Control Unit
Controls the action of the other computer components so that
instructions are executed in the correct sequence

• Note: we will get back to Memory design
after covering processor design

CS 211: Bhagi Narahari,CS, GWU

Input/Output (I/O) Devices

• I/O devices are the components of a
computer system that accepts data to be
processed and presents the results of the
processing

• Input Device Examples
Keyboard
Mouse

• Output Device Examples
Video display
Printer

• We won’t touch on this in this course!

CS 211: Bhagi Narahari,CS, GWU

The Operating System

• The Operating System (OS) is a set of
programs that manages all of the
computer’s resources

• Unix, Linux, Windows 98, Me, NT, 2000,
XP, and MacOS are all examples of
modern operating systems

• Not the focus of this course!

CS 211: Bhagi Narahari,CS, GWU

Computer Architecture

• The computer architecture encompasses
the user’s view of the computer.

• This includes such things as the
assembly language instruction set, the
number and types of internal registers,
the memory management system and the
model for exception handling.

4

CS 211: Bhagi Narahari,CS, GWU

Architecture Models: Von Neumann
architecture

• Memory holds data, instructions.
• Central processing unit (CPU) fetches

instructions from memory.
Separate CPU and memory distinguishes
programmable computer.

• CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

CS 211: Bhagi Narahari,CS, GWU

CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

CS 211: Bhagi Narahari,CS, GWU

Harvard architecture

CPU

PCdata memory

program memory

address

data

address

data

CS 211: Bhagi Narahari,CS, GWU

von Neumann vs. Harvard

• Harvard can’t use self-modifying code.
• Harvard allows two simultaneous

memory fetches.
• Most DSPs use Harvard architecture for

streaming data:
greater memory bandwidth;
more predictable bandwidth.

5

CS 211: Bhagi Narahari,CS, GWU

Instruction Set Architecture

• The Instruction Set Architecture (ISA)
describes a set of instructions whose
syntactic and semantic characteristics
are defined by the underlying computer
architecture.

CS 211: Bhagi Narahari,CS, GWU

Programming model

• Programming model: registers visible to
the programmer.

• Some registers are not visible (IR).

CS 211: Bhagi Narahari,CS, GWU

Multiple implementations

• Successful architectures have several
implementations:

varying clock speeds;
different bus widths;
different cache sizes;
etc.

CS 211: Bhagi Narahari,CS, GWU

Assembly language

• One-to-one with instructions (more or
less).

• Basic features:
One instruction per line.
Labels provide names for addresses (usually
in first column).
Instructions often start in later columns.
Columns run to end of line.

6

CS 211: Bhagi Narahari,CS, GWU

Computer Architecture is ...

Instruction Set Architecture

Organization

Hardware

CS 211: Bhagi Narahari,CS, GWU

Instruction Set Architecture (ISA)

instruction set

software

hardware

CS 211: Bhagi Narahari,CS, GWU

Interface Design

A good interface:
• Lasts through many implementations (portability,

compatability)
• Is used in many differeny ways (generality)
• Provides convenient functionality to higher levels
• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

CS 211: Bhagi Narahari,CS, GWU

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

VLIW/”EPIC”?(IA-64. . .1999)

7

CS 211: Bhagi Narahari,CS, GWU

Evolution of Instruction Sets

• Major advances in computer architecture are
typically associated with landmark instruction
set designs

Ex: Stack vs GPR (System 360)
• Design decisions must take into account:

technology
machine organization
programming languages
compiler technology
operating systems
applications

• And they in turn influence these

CS 211: Bhagi Narahari,CS, GWU

CISC vs. RISC

• Complex instruction set computer
(CISC):

many addressing modes;
many operations.

• Reduced instruction set computer
(RISC):

load/store;
pipelined instructions.

CS 211: Bhagi Narahari,CS, GWU

CISC Processors

• Instruction decoding is performed with
large microcode ROMs

• Some instructions require more than a
single instruction cycle to execute

• Many addressing modes supported
• Register set was designed to support

specific functions

CS 211: Bhagi Narahari,CS, GWU

RISC Processors

• Instruction decoding is performed with
static (hard-wired) logic for a much faster
result

• Instructions are designed to execute in a
single instruction cycle

• Data processing instructions operate
only on registers. Load and store
instructions were designated to access
memory

• Register set is large and general purpose
(in many cases)

8

CS 211: Bhagi Narahari,CS, GWU

IA - 32

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: 57 new “MMX” instructions are added, Pentium II
• 1999: The Pentium III added another 70 instructions (SSE)
• 2001: Another 144 instructions (SSE2)
• 2003: AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
• 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

• “This history illustrates the impact of the “golden handcuffs” of compatibility

-“adding new features as someone might add clothing to a packed bag”

-“an architecture that is difficult to explain and impossible to love”

CS 211: Bhagi Narahari,CS, GWU

IA-32 Overview

• Complexity:
Instructions from 1 to 17 bytes long
one operand must act as both a source and destination
one operand can come from memory
complex addressing modes

e.g., “base or scaled index with 8 or 32 bit
displacement”

• Saving grace:
the most frequently used instructions are not too
difficult to build
compilers avoid the portions of the architecture that
are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

CS 211: Bhagi Narahari,CS, GWU

Quick look at ISA

• Will use MIPS
Simple RISC ISA
Widely used

CS 211: Bhagi Narahari,CS, GWU

Instruction set characteristics

• Fixed vs. variable length.
• Addressing modes.
• Number of operands.
• Types of operands.

9

CS 211: Bhagi Narahari,CS, GWU

A "Typical" RISC - MIPS

• fixed format instruction (3 formats I,R,J):
32 or 64 bits

• 32 General Purpose Registers (GPR)
(R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
no indirection

• Simple branch conditions (based on register values)

• Delayed branch
see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,

CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CS 211: Bhagi Narahari,CS, GWU

Example: 32 bit MIPS

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

R-type: Register-Register
561011

I-type: Register-Immediate (Load,Store)

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

I-type: Branch

J-type: Jump / Call

CS 211: Bhagi Narahari,CS, GWU

Instruction Types

• When is memory accessed ?

How is address computed ?

• When is control flow affected ?
How is branch outcome computed
How is branch target address computed

CS 211: Bhagi Narahari,CS, GWU

Processor Design. . .

• Let’s glance at processor and inst. Set
design.

This is review material…from a typical course
on Computer Organization (pre-req)

10

CS 211: Bhagi Narahari,CS, GWU

The Big Picture: The Performance Perspective

• Performance of a machine is determined by:
Instruction count
Clock cycle time
Clock cycles per instruction

• Processor design (datapath and control) will
determine:

Clock cycle time
Clock cycles per instruction

CPI

Inst. Count Cycle Time

CS 211: Bhagi Narahari,CS, GWU

Microarchitecture Design: How ?

• Any design must attempt to meet the
requirements

Where do the requirements come from ?
Ex: need to represent numbers in binary;
integers, text, floating point

• How to proceed with design ?

CS 211: Bhagi Narahari,CS, GWU

Some History…

• The Indiana Legislature once introduced
legislation declaring that the value of π
was exactly 3.2

CS 211: Bhagi Narahari,CS, GWU

How to Design a Processor: step-by-step

• 1. Analyze instruction set => datapath requirements
the meaning of each instruction is given by the register transfers
datapath must include storage element for ISA registers

possibly more

datapath must support each register transfer

• 2. Select set of datapath components and establish
clocking methodology

• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

• 5. Assemble the control logic
• Let’s look at a single cycle ISA…

11

CS 211: Bhagi Narahari,CS, GWU

The MIPS Instruction Formats
• All MIPS instructions are 32 bits long. The three instruction

formats:

R-type

I-type

J-type

• The different fields are:
op: operation of the instruction
rs, rt, rd: the source and destination register specifiers
shamt: shift amount
funct: selects the variant of the operation in the “op” field
address / immediate: address offset or immediate value
target address: target address of the jump instruction

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

CS 211: Bhagi Narahari,CS, GWU

Step 1a: The MIPS-Inst Set (eg.)

• ADD and SUB
addU rd, rs, rt
subU rd, rs, rt

• OR Immediate:
ori rt, rs, imm16

• LOAD and STORE Word
lw rt, rs, imm16
sw rt, rs, imm16

• BRANCH:
beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

• Register rs and rt are the source registers.
• If the instruction has three operand register, then rd is the destination register
• If the instruction has two operand register, then rt is the destination register

CS 211: Bhagi Narahari,CS, GWU

Logical Register Transfers
• RTL gives the meaning of the instructions

• All start by fetching the instruction
op | rs | rt | rd | shamt | funct = MEM[PC]

op | rs | rt | Imm16 = MEM[PC]

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt]; PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ORi R[rt] <– R[rs] | zero_ext(Imm16); PC <– PC + 4

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rt]; PC <– PC + 4

BEQ if (R[rs] == R[rt]) then PC <– PC + 4 +
sign_ext(Imm16)] || 00

else PC <– PC + 4

CS 211: Bhagi Narahari,CS, GWU

Step 2: Components of the Datapath

• Combinational Elements
• Storage Elements

Clocking methodology

12

CS 211: Bhagi Narahari,CS, GWU

Combinational Logic Elements (Basic Building Blocks)

• Adder

• MUX

• ALU

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X
A

L
U

CarryIn

CS 211: Bhagi Narahari,CS, GWU

Storage Element: Register (Basic Building Block)

• Register
Similar to the D Flip Flop
except

N-bit input and output
Write Enable input

Write Enable:
negated (0): Data Out will not change
asserted (1): Data Out will become Data
In

Clk

Data In

Write Enable

N N
Data Out

CS 211: Bhagi Narahari,CS, GWU

Storage Element: Register File

• Register File consists of 32 registers:
Two 32-bit output busses:
busA and busB
One 32-bit input bus: busW

• Register is selected by:
RA (number) selects the register to put on busA (data)
RB (number) selects the register to put on busB (data)
RW (number) selects the register to be written
via busW (data) when Write Enable is 1

• Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, behaves as a combinational logic
block:

RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

CS 211: Bhagi Narahari,CS, GWU

Storage Element: Idealized Memory

• Memory (idealized)
One input bus: Data In
One output bus: Data Out

• Memory word is selected by:
Address selects the word to put on Data Out
Write Enable = 1: address selects the memory
word to be written via the Data In bus

• Clock input (CLK)
The CLK input is a factor ONLY during write
operation
During read operation, behaves as a
combinational logic block:

Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address

13

CS 211: Bhagi Narahari,CS, GWU

Clocking Methodology

• Clocks needed in sequential logic to decide when an element
that contains state should be updated.

• A clock is a free-running circuit with a fixed cycle time or clock
period. The clock frequency is the inverse of the cycle time.

• The clock cycle time or clock period is divided into two
portions: when the clock is high and when the clock is low.

• Edge-triggered clocking: all state changes occur on a clock
edge.

Clk

Don’t Care
Setup HoldSetup Hold

Clock Period

Falling EdgeRising Edge

CS 211: Bhagi Narahari,CS, GWU

Step 3: Assemble DataPath meeting our requirements

• Register Transfer Requirements
⇒ Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation

The common RTL operations for all instructions are:
(a) Fetch the instruction using the Program Counter (PC) at the beginning of an

instruction’s execution (PC -> Instruction Memory -> Instruction Word).
(b) Then at the end of the instruction’s execution, you need to update the

Program Counter (PC -> Next Address Logic -> PC).
More specifically, you need to increment the PC by 4 if you are executing sequential code.
For Branch and Jump instructions, you need to update the program counter to “something
else” other than plus 4.
The Next Address Logic block:

• Add 4 (number of bytes in an instruction) or
• Branch and Jump instructions

CS 211: Bhagi Narahari,CS, GWU

3a: Overview of the Instruction Fetch Unit

• The common RTL operations
Fetch the Instruction: mem[PC]
Update the program counter:

Sequential Code: PC <- PC + 4
Branch and Jump: PC <- “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic

CS 211: Bhagi Narahari,CS, GWU

3b: Add & Subtract
• R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt

Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
ALUctr and RegWr: control logic after decoding the
instruction

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs RtRd

A
L

U

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

14

CS 211: Bhagi Narahari,CS, GWU

Putting it All Together: A Single Cycle Datapath

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

CS 211: Bhagi Narahari,CS, GWU

An Abstract View of the Critical Path
• Register file and ideal memory:

The CLK input is a factor ONLY during write operation
During read operation, behave as combinational logic:

Address valid => Output valid after “access time.”

Critical Path (Load Operation) =
PC’s Clk-to-Q +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Setup Time for Register File Write +
Clock Skew

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

CS 211: Bhagi Narahari,CS, GWU

An Abstract View of the Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232

A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

CS 211: Bhagi Narahari,CS, GWU

Step 4: Given Datapath: RTL -> Control

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr Equal

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

nPC_sel

Adr

Inst
Memory

DATA PATH

Control

Op

<21:25>

Fun

RegWr

15

CS 211: Bhagi Narahari,CS, GWU

Control Signals
inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4”

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4”

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”,
MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4”

BEQ if (R[rs] == R[rt]) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

nPC_sel = EQUAL, ALUctr = “sub”

CS 211: Bhagi Narahari,CS, GWU

Step 5: Logic for each control signal

• nPC_sel <= if (OP == BEQ) then EQUAL else 0
• ALUsrc <= if (OP == “000000”) then “regB” else

“immed”
• ALUctr <= if (OP == “000000”) then funct

elseif (OP == ORi) then “OR”
elseif (OP == BEQ) then “sub”

else “add”
• ExtOp <= if (OP == ORi) then “zero” else “sign”
• MemWr <= (OP == Store)
• MemtoReg <= (OP == Load)
• RegWr: <= if ((OP == Store) || (OP == BEQ)) then 0

else 1
• RegDst: <= if ((OP == Load) || (OP == ORi)) then 0

else 1

CS 211: Bhagi Narahari,CS, GWU

Example: Load Instruction

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

im
m

16

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel
PC

 E
xt

Adr

Inst
Memory

sign ext

addrt+4

CS 211: Bhagi Narahari,CS, GWU

An Abstract View of the Implementation

• Logical vs. Physical Structure

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232

A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

16

CS 211: Bhagi Narahari,CS, GWU

Summary

• 5 steps to design a processor
1. Analyze instruction set => datapath requirements
2. Select set of datapath components & establish clock
methodology
3. Assemble datapath meeting the requirements
4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.
5. Assemble the control logic

• MIPS makes it easier
Instructions same size
Source registers always in same place
Immediates same size, location
Operations always on registers/immediates

• Single cycle datapath => CPI=1, CCT => long
CS 211: Bhagi Narahari,CS, GWU

Systematic Generation of Control

• In a single-cycle processor, each instruction is
realized by exactly one control command or
“microinstruction”

in general, the controller is a finite state machine
microinstruction can also control sequencing (see later)

Control Logic / Store
(PLA, ROM)

OPcode

Datapath

In
st

ru
ct

io
n

Decode

C
on

di
tio

ns

Control
Points

microinstruction

CS 211: Bhagi Narahari,CS, GWU

What’s wrong with our CPI=1 processor?

• Long Cycle Time
• All instructions take as much time as the slowest
• Real memory is not as nice as our idealized memory

cannot always get the job done in one (short) cycle

PC Inst Memory mux ALU Data Mem mux

PC Reg FileInst Memory mux ALU mux

PC Inst Memory mux ALU Data Mem

PC Inst Memory cmp mux

Reg File

Reg File

Reg File

Arithmetic & Logical

Load

Store

Branch

Critical Path

setup

setup

CS 211: Bhagi Narahari,CS, GWU

Partitioning the CPI=1 Datapath
• Add registers between smallest steps

PC

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

emIn
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

A
LU

ct
r

R
eg

D
st

A
LU

Sr
c

Ex
tO

p

M
em

W
r

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

Eq
ua

l

17

CS 211: Bhagi Narahari,CS, GWU

Example Multicycle Datapath

• Critical Path ?

PC

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h

In
st

ru
ct

io
n

Fe
tc

h

nP
C

_s
el

IR

Reg
File Ex

t
AL

U

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

R
es

ul
t S

to
re

R
eg

D
st

R
eg

W
r

M
em

W
r

M
em

R
d

S

M

M
em

To
R

eg

Eq
ua

l

A
LU

ct
r

A
LU

Sr
c

Ex
tO

p

A

B

E

CS 211: Bhagi Narahari,CS, GWU

Controller Design

• The state digrams that arise define the controller for an instruction
set processor are highly structured

• Use this structure to construct a simple “microsequencer”
• Control reduces to programming this very simple device

⇒ microprogramming

sequencer
control

datapath control

micro-PC
sequencer

microinstruction

CS 211: Bhagi Narahari,CS, GWU

Microprogramming

• Microprogramming is a convenient method for
implementing structured control state diagrams:

Random logic replaced by microPC sequencer and ROM
Each line of ROM called a μinstruction:
contains sequencer control + values for control points

limited state transitions:
branch to zero, next sequential,
branch to μinstruction address from displatch ROM

• Horizontal μCode: one control bit in μInstruction
for every control line in datapath

• Vertical μCode: groups of control-lines coded
together in μInstruction (e.g. possible ALU dest)

• Control design reduces to Microprogramming
Part of the design process is to develop a “language”
that describes control and is easy for humans to
understand

CS 211: Bhagi Narahari,CS, GWU

Microprogramming

• Microprogramming is a fundamental concept
implement an instruction set by building a very simple
processor and interpreting the instructions
essential for very complex instructions and when few
register transfers are possible
overkill when ISA matches datapath 1-1

sequencer
control

datapath control

micro-PC μ-sequencer:
fetch,dispatch,
sequential

microinstruction (μ)

Dispatch
ROMOpcode

μ-Code ROM

DecodeDecode

To DataPath

Decoders
implement our μ-
code language:
For instance:

rt-ALU
rd-ALU
mem-ALU

18

CS 211: Bhagi Narahari,CS, GWU

Microprogramming one inspiration for RISC

• If simple instruction could execute at very
high clock rate…

you could even write compilers to produce
microinstructions…

• If most programs use simple instructions
and addressing modes…

• If microcode is kept in RAM instead of ROM
so as to fix bugs …

• Then why not skip instruction interpretation
by a microprogram and simply compile
directly into lowest language of machine?
(microprogramming is overkill when ISA
matches datapath 1-1)

CS 211: Bhagi Narahari,CS, GWU

How to improve performance?

• Recall performance is function of
CPI: cycles per instruction
Clock cycle
Instruction count

• Reducing any of the 3 factors will lead to
improved performance

CS 211: Bhagi Narahari,CS, GWU

How to improve performance?

• First step is to apply concept of
pipelining to the instruction execution
process

Overlap computations
• What does this do?

Decrease clock cycle
Decrease effective CPI compared to original
clock cycle

CS 211: Bhagi Narahari,CS, GWU

Pipelining: Its Natural!

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of
clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

19

CS 211: Bhagi Narahari,CS, GWU

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

CS 211: Bhagi Narahari,CS, GWU

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

CS 211: Bhagi Narahari,CS, GWU

Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline
and time to “drain” it
reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

CS 211: Bhagi Narahari,CS, GWU

Instruction Pipeline

• Instruction execution process lends itself
naturally to pipelining

overlap the subtasks of instruction fetch,
decode and execute

20

CS 211: Bhagi Narahari,CS, GWU

How to improve performance?

• Recall performance is function of
CPI: cycles per instruction
Clock cycle
Instruction count

• Reducing any of the 3 factors will lead to
improved performance

CS 211: Bhagi Narahari,CS, GWU

How to improve performance?

• First step is to apply concept of
pipelining to the instruction execution
process

Overlap computations
• What does this do?

Decrease clock cycle
Decrease effective CPU time compared to
original clock cycle

CS 211: Bhagi Narahari,CS, GWU

Pipeline Approach to Improve System
Performance

• Analogous to fluid flow in pipelines and
assembly line in factories

• Divide process into “stages” and send
tasks into a pipeline

Overlap computations of different tasks by
operating on them concurrently in different
stages

CS 211: Bhagi Narahari,CS, GWU

Instruction Level Parallel Processors
(ILP)

• early ILP - one of two orthogonal
concepts:

pipelining - vertical approach
multiple (non-pipelined) units - horizontal
approach

• progression to multiple pipelined units
• instruction issue became bottleneck, led

to
superscalar ILP processors
Very Large Instruction Word (VLIW)

• Note: key performance metric in all ILP
processor classes is IPC (instructions per
cycle)

this is the degree of parallelism achieved

21

CS 211: Bhagi Narahari,CS, GWU

Instruction Pipeline

• Instruction execution process lends itself
naturally to pipelining

overlap the subtasks of instruction fetch,
decode and execute

