CS 211: Computer Architecture

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science
Course URL: www.seas.gwu.edu/~narahari/cs211/

Summary: Architecture Trends ?

e Moore’s law: density doubles every 18-24
months

» smaller processors, faster clocks
> Price drops due to volume and dev. costs what next?
e Interconnect delays could dominate over feature
delay
> Need for simpler architectures
> Distributed logic and control
e More functionality
» communicating processors
» network of embedded processors

e To extract max performance
> Thumb rules: Amdahl’s law, Parallelism, Locality
» Software and compiler support needed!!!

CS 211: Bhagi Narahari,CS, GWU

Next; Review
Computer Organization in an hour!

e Overview of Computer Organization
» Components
» Sample processor design process

Cs 211: Bhagi Narahari,CS, GWU

Review: Computer Organization Basics

e What are the components of a CPU
e What is the microarchitecture level ?

e What is an ISA - Instruction set
architecture ?

e How does a sample processor design
look ?

> A simple processor architecture
e what is the basic concept of pipelining

Cs 211: Bhagi Narahari,CS, GWU

AComputer
&

Output
Device

The computer is composed of input devices, a central processing
unit, a memory unit and output devices.

€S 211: Bhagi Narahari,CS, GWU

Memory Unit

e An ordered sequence of storage cells,

each capable of holding a piece of data.

e Volatile Memory

> RAM — Random Access Memory

e Non-volatile Memory

> ROM — Read Only Memory

CS 211: Bhagi Narahari,CS, GWU

Computer Svstem

interrupts

Processor

Memory-1/O bus

CS 211: Bhagi Narahari,CS, GWU

Memory Hierarchy: The Tradeoff

cache virtual memory
c
a c
CPU | ¢ a
I 168 |2 8B | vemory || _4KB
T
e
register L1-cache L2-cache memory disk memory
reference reference reference reference reference
size: 608 B 128k B 512kB --4MB 128 MB 27GB
speed: 1.4ns 4.2ns 16.8 ns 112 ns 9ms
$/Mbyte: $90/MB $2-6/MB $0.01/MB
block size: 4B 4B 16B 4-8 KB

larger, slower, cheaper

(Numbers are for a 21264 at 700MHz)

CS 211: Bhagi Narahari,CS, GWU

Central Processing Unit (CPU)

e The CPU has two components:
> Arithmetic and Logic Unit (ALU)

» Performs arithmetic operations
~ Performs logical operations

> Control Unit

» Controls the action of the other computer components so that
instructions are executed in the correct sequence

¢ Note: we will get back to Memory design
after covering processor design

€S 211: Bhagi Narahari,CS, GWU

Input/Output (1/0) Devices

e |/O devices are the components of a
computer system that accepts data to be
processed and presents the results of the
processing

e Input Device Examples

» Keyboard
> Mouse

e Output Device Examples
> Video display
> Printer

e We won’t touch on this in this course!

€S 211: Bhagi Narahari,CS, GWU

The Operating System

e The Operating System (OS) is a set of
programs that manages all of the
computer’s resources

e Unix, Linux, Windows 98, Me, NT, 2000,
XP, and MacOS are all examples of
modern operating systems

e Not the focus of this course!

Cs 211: Bhagi Narahari,CS, GWU

Computer Architecture

e The computer architecture encompasses
the user’s view of the computer.

e This includes such things as the
assembly language instruction set, the
number and types of internal registers,
the memory management system and the
model for exception handling.

CS 211: Bhagi Narahari,.CS, GWU

L= Architecture Models: Von Neumann
architecture

g

e Memory holds data, instructions.

e Central processing unit (CPU) fetches
instructions from memory.
» Separate CPU and memory distinguishes

programmable computer.

e CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

€S 211: Bhagi Narahari,CS, GWU

CPU + memory

address

200

memory data

200 ADD r5,r1,r3

CS 211: Bhagi Narahari,CS, GWU

g

g

Harvard architecture
address
data memory data
address

program memory | ata

CS 211: Bhagi Narahari,CS, GWU

von Neumann vs. Harvard

e Harvard can’t use self-modifying code.

e Harvard allows two simultaneous
memory fetches.

e Most DSPs use Harvard architecture for
streaming data:
> greater memory bandwidth;
> more predictable bandwidth.

CS 211: Bhagi Narahari,CS, GWU

Instruction Set Architecture

e The Instruction Set Architecture (ISA)
describes a set of instructions whose
syntactic and semantic characteristics
are defined by the underlying computer
architecture.

€S 211: Bhagi Narahari,CS, GWU

Programming model

e Programming model: registers visible to
the programmer.

e Some registers are not visible (IR).

CS 211: Bhagi Narahari,CS, GWU

Multiple implementations

e Successful architectures have several
implementations:

> varying clock speeds;
> different bus widths;
> different cache sizes;
> etc.

CS 211: Bhagi Narahari,CS, GWU

Assembly language

e One-to-one with instructions (more or
less).

e Basic features:
> One instruction per line.

» Labels provide names for addresses (usually
in first column).

> Instructions often start in later columns.
> Columns run to end of line.

Cs 211: Bhagi Narahari,CS, GWU

Computer Architectureis...

Instruction Set Architecture (1SA)

A good interface:

¢ Lasts through many implementations (portability,
compatability)

* Is used in many differeny ways (generality)
* Provides convenient functionality to higher levels
* Permits an efficient implementation at lower levels

use time
Interface | ~ -
= N

=

CS 211: Bhagi Narahari,CS, GWU

Complex Instruction Sets

Q
Instruction Set Architecture software /(/ 7
ya! A
— SR S R
Organization /
hardware %
Hardware i \,
=
Interface Design Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)
|

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family

(85000 1963 _~ (1BM360 1964)

General Purpose Register Machines

Load/Store Architecture

(vax, Intel 432 1977-80) (CIDC 6600, Cray 1 1963-76)

RISC
(Mips,Sparc,HP-PA,|IBM RS6000,PowerPC . . .1987)

VLIW/"EPIC” AIA-64. . .1999)

CS 211: Bhagi Narahari,CS, GWU

Evolution of Instruction Sets

e Major advances in computer architecture are
typically associated with landmark instruction
set designs

» Ex: Stack vs GPR (System 360)
o Design decisions must take into account:
» technology
» machine organization
» programming languages
» compiler technology
» operating systems
> applications
e And they in turn influence these

€S 211: Bhagi Narahari,CS, GWU

CISCvs.RISC

e Complex instruction set computer
(CISC):
» many addressing modes;
> many operations.

e Reduced instruction set computer
(RISC):
> load/store;
» pipelined instructions.

CS 211: Bhagi Narahari,CS, GWU

CISC Processors

e Instruction decoding is performed with
large microcode ROMs

e Some instructions require more than a
single instruction cycle to execute

e Many addressing modes supported

¢ Register set was designed to support
specific functions

Cs 211: Bhagi Narahari,CS, GWU

RISC Processors

e Instruction decoding is performed with
static (hard-wired) logic for a much faster
result

e Instructions are designed to execute in a
single instruction cycle

e Data processing instructions operate
only on registers. Load and store
instructions were designated to access
memory

e Register set is large and general purpose
(in many cases)

Cs 211: Bhagi Narahari,CS, GWU

=

IA-32

1978: The Intel 8086 is announced (16 bit architecture)

1980: The 8087 floating point coprocessor is added

1982: The 80286 increases address space to 24 bits, +instructions
1985: The 80386 extends to 32 bits, new addressing modes

1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

1997: 57 new “MMX” instructions are added, Pentium Il
1999: The Pentium Ill added another 70 instructions (SSE)
2001: Another 144 instructions (SSE2)

2003: AMD extends the architecture to increase address space to 64 bits,
widens all registers to 64 bits and other changes (AMD64)

2004:m|gtrgl ncqzé%iigjgteesng?éjngmbraces AMDG64 (calls it EM64T) and adds
“This history illustrates the impact of the “golden handcuffs” of compatibility
-“adding new features as someone might add clothing to a packed bag”

-“an architecture that is difficult to explain and impossible to love”

€S 211: Bhagi Narahari,CS, GWU

IA-32 Overview

o Complexity:
» Instructions from 1 to 17 bytes long
» one operand must act as both a source and destination
» one operand can come from memory
» complex addressing modes
e.g., “base or scaled index with 8 or 32 bit
displacement”
e Saving grace:

» the most frequently used instructions are not too
difficult to build

» compilers avoid the portions of the architecture that
are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

CS 211: Bhagi Narahari,CS, GWU

Quick look at ISA

e Will use MIPS
> Simple RISC ISA
> Widely used

CS 211: Bhagi Narahari,CS, GWU

Instruction set characteristics

e Fixed vs. variable length.
e Addressing modes.

e Number of operands.

e Types of operands.

CS 211: Bhagi Narahari,CS, GWU

A"Typical" RISC - MIPS

o fixed format instruction (3 formats I,R,J):
» 32 or 64 bits

e 32 General Purpose Registers (GPR)
» (RO contains zero, DP take pair)

o 3-address, reg-reg arithmetic instruction

e Single address mode for load/store:
base + displacement
» no indirection

e Simple branch conditions (based on register values)

Example: 32 bit MIPS

R-type: Register-Register

31 26 25 2120 16 15 1110 65 0

| Op I Rsl I Rs2 I Rd | Opx |
I-type: Register-immediate (Load,Store)

31 26 25 2120 16 15 0

| op I Rsl I Rd | immediate |
I-type: Branch

31 26 25 2120 16 15 0

| op I Rsl ksZ/OpxI immediate |

J-type: Jump / Call

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC, |31 26| 25 — T
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3 arge
o Delayed 5taneH Y v Y Op
(5 211 BhagiNarahari 5, GWU (s 211; Bhagi Narahari s, GWU
Instruction Types Processor Design...

e When is memory accessed ?
> How is address computed ?

e When is control flow affected ?
» How is branch outcome computed
» How is branch target address computed

Cs 211: Bhagi Narahari,CS, GWU

e Let’s glance at processor and inst. Set
design.

> This is review material...from a typical course
on Computer Organization (pre-req)

Cs 211: Bhagi Narahari,CS, GWU

'c$he Big Picture: The Performance Perspective

CPI

Inst. Count Cycle Time

e Performance of a machine is determined by:
» Instruction count
» Clock cycle time
» Clock cycles per instruction

e Processor design (datapath and control) will
determine:
» Clock cycle time
» Clock cycles per instruction

€S 211: Bhagi Narahari,CS, GWU

Microarchitecture Design: How ?

e Any design must attempt to meet the
requirements
» Where do the requirements come from ?

> Ex: need to represent numbers in binary;
integers, text, floating point

e How to proceed with design ?

CS 211: Bhagi Narahari,CS, GWU

Some History...

e The Indiana Legislature once introduced
legislation declaring that the value of n
was exactly 3.2

CS 211: Bhagi Narahari,CS, GWU

‘How to Design a Processor: step-by-step

e 1. Analyze nstruction set => datapatn requirements

» the meaning of each instruction is given by the register transfers

» datapath must include storage element for ISA registers
» possibly more
» datapath must support each register transfer

e 2. Select set of datapath components and establish
clocking methodology
o 3. Assemble datapath meeting the requirements

e 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

e 5. Assemble the control logic
e Let's look at a single cycle ISA...

Cs 211: Bhagi Narahari,CS, GWU

10

“““The MIPS Instruction Formats
. AT e T e T
21 16

formats: 31 26 11 6 0
| op H rs | rt H rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
> R-type 3
[op T v T rt] immediate]
- 6 bits 5 bits 5 bits 16 bits
s ype g 26 0
op H target address |
» J-type 6 bits 26 bits

e The different fields are:
» op: operation of the instruction
> rs, rt, rd: the source and destination register specifiers
» shamt: shift amount
» funct: selects the variant of the operation in the “op” field
» address /immediate: address offset or immediate value
cs 2z eritarget eddress: target address of the jump instruction

e
~Step la: The MIPS-Inst Set (eg.)

31 26 21 16 11 6 0
e ADD and SUB | op H s | rt | rd H shamt | funct |
> addUrd, rs, rt 6bits 5bits 5bits 5bits 5bits 6 bits
> subUrd, rs, rt 5 2% 21 16 0
e ORImmediate: oo T rs [rt] immediate]
. . 6bits Shits 5 bits 16 bits
> ori rt,rs,imm36 2 21 16 0
o LOAD and STOREWoegl = [rt | immediate |
- 6bits 5bits 5 bits 16 bits
> lw rt, rs, imm16
> swrt, rs, immii % 2 16 0
-I op H rs | re | immediate
o BRANCH: 6bits Sbits 5 bits 16 bits

» beqrs, rt,imm16
* Register rs and rt are the source registers
« If the instruction has three operand register, then rd is the destination register
« If the instruction has two operand register, then rt is the destination register

CS 211: Bhagi Narahari,CS, GWU

“Logical Register Transfers

e RTL gives the meaning of the instructions

e All start by fetching the instruction
op|rs|rt|rd]|shamt|funct=MEM[PC]

op|rs|rt| Immil6 =MEM[PC]

inst Register Transfers

ADDU R[rd] <- R[rs] + R[rt]; PC<-PC+4
susu R[rd] <= R[rs] - RIrt]; PC<-PC+4
ORI R[rt] <- R[rs] | zero_ext(Imm16); PC<-PC+4
LOAD R[rt] <- MEM[R[rs] + sign_ext(Imm16)]; PC<-PC+4
STORE MEM[R[rs] + sign_ext(Imm16)] <- R[rt]; PC<-PC+4

BEQ if (R[rs] == R[rt]) then PC <-PC +4 +
sign_ext(Imm16)] || 00
else PC<-PC +4

CS 211: Bhagi Narahari,CS, GWU

"?QStep 2: Components of the Datapath

e Combinational Elements

e Storage Elements
» Clocking methodology

Cs 211: Bhagi Narahari,CS, GWU

11

1 Carryln
e AdderA5r0Y
23 Sum
B 3 Carry
Select
o MUX 1
aE g Y
x| 3
B3

OP
« ALU a4

3 o
7Q-ﬁvaesult
B 3

€S 211: Bhagi Narahari,CS, GWU

(ﬁ%’]binational Logic Elements (Basic Building Blocks)

Storage Element: Register (Basic Building Block)

° Register Write Enaple
» Similar to the D Flip Floppatain Data Out
except

N
» N-bit input and output

»Write Enable input
> Write Enable:

»negated (0): Data Out will not change

»asserted (1): Data Out will become Data
In

Cl

CS 211: Bhagi Narahari,CS, GWU

~Storage Element; Register File

Write Enabl Ry
rite Ena |85+ 5/{/ 5/*,

. busA
* Register File consists of 32 registers: 7«—.
» Two 32-bit output busses: bu;W 3';2 3_2'tb't 3
egisters | pusB
busA anq pusB Clk T
> One 32-bit input bus: buswW

Register is selected by:

> RA (number) selects the register to put on busA (data)
» RB (number) selects the register to put on busB (data)

> RW (number) selects the register to be written
via busW (data) when Write Enable is 1
e Clock input (CLK)

» The CLK input is a factor ONLY during write operation

> During read operation, behaves as a combinational logic
block:

» RA or RB valid => busA or busB valid after “access time.”
CS 211: Bhagi Narahari,CS, GWU

'{%torage Element: Idealized Memory
o Memory (idealized) i

> One input bus: Data In Data In DataOyt
3 32
» One output bus: Data Out CIk |
e Memory word is selected by:
> Address selects the word to put on Data Out

> Write Enable = 1: address selects the memory
word to be written via the Data In bus

e Clock input (CLK)

» The CLK input is a factor ONLY during write
operation

» During read operation, behaves as a
combinational logic block:

» Address valid => Data Out valid after “access time.”
CS 211: Bhagi Narahari,CS, GWU

12

=
~Clocking Methodology

'§%p 3: Assemble DataPath meeting our requirements

Clk T } :
S E—— R e Ul ements
= Datapath Assembl
Rising Edge Falling Edge e Instruction Fetch
— b f e Read Operands and Execute Operation
Clock Period The common RTL operations for all instructions are:
. " . . (a) Fetch the instruction using the Program Counter (PC) at the beginning of an

° C;:OCKS "eeded n Seﬂuerlglﬁl IOg'(;: toge(:lde when an element instruction’s execution (PC -> Instruction Memory -> Instruction Word).

that contains state should be updated. (b) Then at the end of the instruction’s execution, you need to update the
e Aclock is afree-running circuit with a fixed cycle time or clock

Program Counter (PC -> Next Address Logic -> PC).

period. The clock frequency is the inverse of the cycle time. More specifically, you need to increment the PC by 4 if you are executing sequential code.

e The clock cycle time or clock period is divided into two

For Branch and Jump instructions, you need to update the program counter to “something
portions: when the clock is high and when the clock is low. else” other than plus 4.
. . The Next Address Logic block:
e Edge-triggered clocking: all state changes occur on a clock
edge.

* Add 4 (number of bytes in an instruction) or

« Branch and Jump instructions
S 211: Bhagi Narahari CS, GWU

CS 211: Bhagi Narahari,CS, GWU

{%a: Overview of the Instruction Fetch Unit ~'3b: Add & Subtract

° The common RTL Operations o R[MAT==RISTOTRITI EXampe. autU 1o, TS, Tt

» Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
> Fetch the Instruction: mem[PC] » ALUctr and RegWr: control logic after decoding the

. instryction
> Update the program counter: 30N 21 16 11 6 0
» Sequential Code: PC <- PC + 4 [[rs [nt [rd T shamt | funct |
» Branch and Jump: PC <- “something else” 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Rd Rs Rt
Clk :I bC I ALUctr

o o
A
—] NexLAd ress Fw—— Rb#»
= busw 32
32 32 32-bit Result
Registers 32
Add busB
ress Instruction Word Clk . usB
Instruction +~ 32
Memory 32

CS 211: Bhagi Narahari,CS, GWU

CS 211: Bhagi Narahari,CS, GWU

'(%Utting it All Together: A Single Cycle Datapath

2i
st S e & |8
Memory o2 e (B
a S |a [T
dr v \ v

Rs Rt Rd Imml6

{?An Abstract View of the Critical Path
- Registerfileand.ideal.memory:
» The CLK input is a factor ONLY during write operation
» During read operation, behave as combinational logic:
» Address valid => Output valid after “access time.”

CS 211: Bhagi Narahari,CS, GWU

nPC sel | RegDst Equal ALUctr MemWr MemtoReg Critical Path (Load Operation) =
|Rd |Rt o PC’s Clk-to-Q +
Ideal Instruction Memory’s Access Time +
Rs Rt Instruction . Register File’s Access Time +
RegWr ¢ S Memory Instruction ALU to Perform a 32-bit Add +
* busA Rd| Rs| Rt Imm Data Memory Access Time +
busw Rw Ra Rb LS = Instruction 4 5| 5 5 16 Setup Time for Register File Write +
nstruction
3232-bit 32 | N e Clock Skew
32 Registers | bus 0\ A 32 0 A N 32 Data
Rw Ra Address
e 3 z < 32 w 2 INSY S
Clk m = 32 WrEn Adr ? w2z - Data =,
3 _/_.y Data In Registers | g Data Memory
imm16 ———|2 | 32 Data A T /\
3 Memor 0] _,;’
@ Clk y Clk § 2 Clk?
T
ExtOp ALUSrc
€5 211 Bhagi Narahari.CS, GWU €S 211: Bhagi Narahari.CS, GWU
An Abstract View of the Implementation ~Step 4. Given Datapath; RTL -> Control
N Y
| : Instruction<31:0>
1
\deal I Control : Inst é\) ’,/:\) % é a
) 1) Memon o o
Instruction |, o Control Signals conditions H Y s 8B [& @
Memory |or———— At ; Adr v [V [V |V
Rd| Rs| Rt
5/ 5 5)
—— dnstougtion L _ - (Y U R 2 5 5 -
. - N
Address
I[dares: A » [)Iata bata
Rw Ra Rb T\
: g 32 . 32 | Adglress Ideal Out
! 3o S2S2 it | Data —
: ; o Registers B Data Memory NnPC_sel RegWr RegDst ExtOp ALUSrc ALUctr MemWr MemtoReg Equal
I] 1\ oy /1} l l
' - ? - [N I
! x] Clk i ! Clk
1 © T
! 1 DATA PATH
N Datapath /

CS 211: Bhagi Narahari,CS, GWU

14

~Control Signals

inst ESQISIEF ransier

'{%tep 5: Logic for each control signal

sign ext
1

ExtOp ALUSrc

Cs 211: Bhagi Narahari,CS, GWU

e Logical vs. Physical Structure

Cs 211: Bhagi Narahari,CS, GWU

ADD R[rd] <~ R[rs] + R[rt]; PC<-PC+4 enPC_sel <=if (OP ==BEQ) then EQUAL else 0
ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” e ALUsrc <= If (OP — 000000") then n rean else
SuB R[rd] <- R[rs] - R[rt]; PC <-PC +4 “immed”
ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” B “ ”
16 el ALUET= TSUb T REGDSE = 1 REgn e sel = 7 e ALUctr <= if (OP == “000000") then funct
ORi R[rt] <- R[rs] + zero_ext(Imm16); PC<-PC+4 elseif (OP —= ORi) then “OR”
ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” e|Seif (OP - BEQ) then “ subn
LOAD R[rt] <- MEM[R[rs] + sign_ext(Imm16)]; PC<-PC+4 else “add”
ALUsrc = Im, Extop = “Sn”, ALUctr = “add” — J— H w ” “ai ”
MemtoReg, RegDst = rt, RegWTr, nPC_sel = “+4” ° EXtOp <= If (OP - ORI) then zero EISE 5|gn
STORE MEM[R[rs] +sign_ext(Imm16)] <-R[rs]|; PC<-PC+4 e MemWr <= (OP == Store)
ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” e Memto Reg <= (OP == Load)
BEQ if (R[rs] == R[rt]) then PC <- PC + sign_ext(Imm16)] || 00 else PC <- PC + 4 ° RegWr: <=if ((OP == Store) ” (OP =B EQ)) then 0
nPC_sel = EQUAL, ALUctr = “sub” else 1
e RegDst: <=if ((OP == Load) || (OP == ORi)) then 0
“Example: Load Instruction An Abstract View of the Implementation
e N[5 [2 [6 i ' N
Memory s R E B 1 H
Q|8 |a
Adr N A A eal |1 Control !
Rs Rt Rd Immi6 Instruction | | Instruction Control Signals congitions H
Memory |+ — ;
nPC_sel 2gDs ALUctr MemWr MemtoReg RIFTRSI"ROI--"-"""1T° |-~ ~"fr———"""~""~""~"~"">"="=-
‘+4 5, 5, 5 H{ \ { H
— = dnstougtion |- - - 4 Y G, A A SRR
e 055 N
I, Address A W Dlala oat
: & 3 |Rv R _Rb 32)] Adglress Ideal Oout
I %_, ol—! 32 3,2’b" : Data —
> N : ; o Registers B Data Memory
32 Registers | bus| 0 |32 0 1 i N\ e
= 3 zf— = ' D ck 9 % L ond
< x
Clk m X 32 WrEn Adr 1 | © -
& [—+—|t/ Datamin 1 |
imm16 ———|3 | 32 Data [~ \ Datapath ’
16 8 cik | Memory N o 4

15

€5 Summary

e 5steps to design a processor
> 1. Analyze instruction set => datapath requirements

> 2. Select set of datapath components & establish clock
methodology

» 3. Assemble datapath meeting the requirements

> 4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.

> 5. Assemble the control logic
e MIPS makes it easier
» Instructions same size
> Source registers always in same place
> Immediates same size, location
> Operations always on registers/immediates
e Single cycle datapath => CPI=1, CCT => long

€S 211: Bhagi Narahari,CS, GWU

e
-Systematic Generation of Control

becod OPcode Control Logic / Store

ecode (PLA, ROM)
- o] | I I O microinstruction
2 2
‘G =
2 ‘é Control
E O Points

Datapath

e In asingle-cycle processor, each instruction is
realized by exactly one control command or
“microinstruction”

» in general, the controller is a finite state machine
csanendiChOisifuction can also control sequencing (see later)

Fa -]
What's wrong with our CPI=1 processor?

Arithmetic & Logical
[PC T instMemory | RegFile [ms] ALU rud setud

Load

[PC T instMemory | RegFile [ms] ALU | Data Mem Jrmudsetup)
Critical Path

Store

[PC T InstMemory | RegFile [ms] ALU | Data Mem]

Branch
[Pc T instMemory T RegFile [cmp [mu]

e Long Cycle Time
o Allinstructions take as much time as the slowest

* Real memory is not as nice as our idealized memory
» cannot always get the job done in one (short) cycle

CS 211: Bhagi Narahari,CS, GWU

=
Partitioning the CPI=1 Datapath

nPC_sel

Next PC
PC

Result Store

Cs 211: Bhagi Narahari,CS, GWU

16

=
“Example Multicycle Datapath

MemToReg

—
| «—R2gDst

—
nPC_sel

File | TEowr

Reg.

Next PC

Reg

Instruction
Fetch
Result Store

~Controller Design

The state digrams that arise define the controller for an instruction
set processor are highly structured

Use this structure to construct a simple “microsequencer”
Control reduces to programming this very simple device

= microprogramming

sequencer | datapath control
control

microingtruction

°

§5

gg

o

micro-PC
e Critical Path ?
Microprogramming Microprogramming
control

e Microprogramming is a convenient method for
implementing structured control state diagrams:
> Random logic replaced by microPC sequencer and ROM

» Each line of ROM called a pinstruction:
contains sequencer control + values for control points

» limited state transitions:
branch to zero, next sequential,
branch to pinstruction address from displatch ROM
e Horizontal pgCode: one control bit in gInstruction
for every control line in datapath

e Vertical gCode: groups of control-lines coded
together in ginstruction (e.g. possible ALU dest)
e Control design reduces to Microprogramming

> Part of the design process is to develop a “language”
that describes control and is easy for humans to
understand

CS 211: Bhagi Narahari,CS, GWU

<=3 p-Code ROM

Decoders
1 1 I I implement our p-
code language:

microinptruction (w)

n-sequencer:
fetch,dispatch

micro-

Decode||Decode|

sequential lull uu Qﬁ?jtsnce:
To DataPath =ALU
ROM mem-ALU

e Microprogramming is a fundamental concept

> implement an instruction set by building a very simple
processor and interpreting the instructions

essential for very complex instructions and when few
register transfers are possible

> overkill when ISA matches datapath 1-1

Opcode

v

Cs 211: Bhagi Narahari,CS, GWU

17

Microprogramming one inspiration for RISC

e If simple instruction could execute at very
high clock rate...
» you could even write compilers to produce
microinstructions...
e If most programs use simple instructions
and addressing modes...

e If microcode is kept in RAM instead of ROM
so as to fix bugs ...

e Then why not skip instruction interpretation
by a microprogram and simply compile
directly into lowest language of machine?
(microprogramming is overkill when ISA
matches datapath 1-1)

€S 211: Bhagi Narahari,CS, GWU

How to improve performance?

e Recall performance is function of
> CPI: cycles per instruction
» Clock cycle
» Instruction count

e Reducing any of the 3 factors will lead to
improved performance

CS 211: Bhagi Narahari,CS, GWU

How to improve performance?

e First step is to apply concept of
pipelining to the instruction execution
process

» Overlap computations

e What does this do?

» Decrease clock cycle

> Decrease effective CPl compared to original
clock cycle

Cs 211: Bhagi Narahari,CS, GWU

Pipelining: Its Natural!

e Laundry Example
e Ann, Brian, Cathy, Dave

BHBDD

each have one load of —
clothes =
to wash, dry, and fold .
e Washer takes 30 minutes _
o
o Dryer takes 40 minutes E

e “Folder” takes 20 minutes QH__

Cs 211: Bhagi Narahari,CS, GWU

-oa-=0 ~un o -

Sequential Laundry
6PM 7 8 9 10 11 Midnight
I Time

2030 40 20 30 40 20 30 40 20
&k
& (et
= an
B

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

€S 211: Bhagi Narahari,CS, GWU

Pipelined Laundry

6PM 7 8 9 10 11 Midnight
} Time
30‘ ‘To ‘To ‘70 ‘%‘

® ey
7

~on o A

o1
A
)

e Pipelined laundry takes 3.5 hours for 4 loads

CS 211: Bhagi Narahari,CS, GWU

~on o -

~oa-=0

Pipelining Lessons

e Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

—‘ e Pipeline rate limited by

20 slowest pipeline stage

e Multiple tasks operating
simultaneously

e Potential speedup =
Number pipe stages

e Unbalanced lengths of
pipe stages reduces
speedup

e Time to “fill” pipeline
and time to “drain” it
reduces speedup

6PM 7 8 9

|
‘ Time
||

30 40 40

40 40

CS 211: Bhagi Narahari,CS, GWU

Instruction Pipeline

e Instruction execution process lends itself
naturally to pipelining

> overlap the subtasks of instruction fetch,
decode and execute

CS 211: Bhagi Narahari,CS, GWU

19

How to improve performance?

e Recall performance is function of
> CPI: cycles per instruction
» Clock cycle
» Instruction count

e Reducing any of the 3 factors will lead to
improved performance

€S 211: Bhagi Narahari,CS, GWU

How to improve performance?

e First step is to apply concept of
pipelining to the instruction execution
process

> Overlap computations
e What does this do?
> Decrease clock cycle

» Decrease effective CPU time compared to
original clock cycle

CS 211: Bhagi Narahari,CS, GWU

Pipeline Approach to Improve System
Performance

e Analogous to fluid flow in pipelines and
assembly line in factories

e Divide process into “stages” and send
tasks into a pipeline

» Overlap computations of different tasks by
operating on them concurrently in different
stages

CS 211: Bhagi Narahari,CS, GWU

Instruction Level Parallel Processors

(1)

e early ILP - one of two orthogonal
concepts:
> pipelining - vertical approach
> multiple (non-pipelined) units - horizontal
approach
e progression to multiple pipelined units
e instruction issue became bottleneck, led
to
» superscalar ILP processors
> Very Large Instruction Word (VLIW)
 Note: key performance metric in all ILP
processor classes is IPC (instructions per
cycle)
s bRIS.IS the degree of parallelism achieved

20

Instruction Pipeline

e Instruction execution process lends itself
naturally to pipelining

» overlap the subtasks of instruction fetch,
decode and execute

€S 211: Bhagi Narahari,CS, GWU

21

