
1

NOW Handout Page 1

CS 211 Computer Architecture

ILP to Multiprocessing

2

Review of Concept of ILP Processors

• Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing

3

Next…

• Quick review of Limits to ILP: Chapter 3
• Thread Level Parallelism: Chapter 3

– Multithreading
– Simultaneous Multithreading

• Multiprocessing: Chapter 4
– Fundamentals of multiprocessors

» Synchronization, memory, …
– Chip level multiprocessing: Multi-Core

4

Limits to ILP

• Conflicting studies of ILP amount
– Benchmarks
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

2

NOW Handout Page 2

5

Overcoming Limits

• Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

6

Limits to ILP

Assumptions for ideal/perfect machine to start:
1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW
5. Window size is infinite

7

Some numbers…
• Initial MIPS HW Model here; MIPS compilers.

• perfect caches; 1 cycle latency for all
instructions (FP *,/); unlimited instructions
issued/clock cycle

8

Upper Limit to ILP: Ideal Machine
(Figure 3.1)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

3

NOW Handout Page 3

9

ILP Limitations: In Reality –
Architecture “Parameters”

• Window size
– Large window size could lead to more ILP, but more time to examine

instruction packet to determine parallelism

• Register file size
– Finite size of register file (virtual and physical) introduces more name

dependencies

• Branch prediction
– Effects of realistic branch predictor

• Memory aliasing
– Idealized model assumes we can analyze all memory dependencies:

but compile time analysis cannot be perfect
– Realistic:

» Global/stack: assume perfect predictions for global and stack
data but all heap references will conflict

» Inspection: deterministic compile time references
• R1(10) and R1(100) cannot conflict if R1 has not changed between the two

» None: all memory accesses are assumed to conflict

10

ILP Limitations:
Architecture“Parameters”
• Window size

– Large window size could lead to more ILP, but more time to
examine instruction packet to determine parallelism

11

55
63

18

75

119

150

36 41

15

61 59 60

10 15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Infinite 2048 512 128 32

More Realistic HW: Window Impact
Figure 3.2

Change from Infinite
window 2048, 512, 128, 32 FP: 9 - 150

Integer: 8 - 63

IP
C

12

ILP Limitations:
Architecture“Parameters”

• Register file size
– Finite size of register file (virtual and physical) introduces

more name dependencies

4

NOW Handout Page 4

13

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5 7
4 4

5
4 5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact (N int + N fp +64)
Figure 3.5

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

14

ILP Limitations:
Architecture“Parameters”

• Branch prediction
– Effects of realistic branch predictor

15

35

41

16

61
58

60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 3.3

Change from Infinite
window to examine to
2048 and maximum
issue of 64 instructions
per clock cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

16

Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%
3% 2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

pr
ed

ic
tio

n
R

at
e

Profile-based 2-bit counter Tournament

5

NOW Handout Page 5

17

ILP Limitations:
Architecture“Parameters”
• Memory aliasing

– Idealized model assumes we can analyze all memory
dependencies: compile time analysis cannot be perfect

– Realistic:
» Global/stack: assume perfect predictions for global and

stack data but all heap references will conflict
» Inspection: deterministic compile time references

• R1(10) and R1(100) cannot conflict if R1 has not changed between the
two

» None: all memory accesses are assumed to conflict

18

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

19

How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits
for today, and perhaps overcome via research

• Compiler and ISA advances could change results
• WAR and WAW hazards through memory:

eliminated WAW and WAR hazards through
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames as a called
procedure reuses the memory addresses of a previous frame
on the stack

20

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation:

– HW best when dynamic branch prediction
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to
schedule better

• Compiler independence: does not require
new compiler, recompilation to run well

6

NOW Handout Page 6

21

Next….Thread Level Parallelism

22

Performance beyond single thread ILP

• There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data Level
Parallelism

• Thread: process with own instructions and data
– thread may be a process part of a parallel program of multiple

processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC, register

state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

– Example: Vector operations, matrix computations

23

Thread Level Parallelism (TLP)
• ILP exploits implicit parallel operations

within a loop or straight-line code
segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

24

New Approach: Mulithreaded Execution
• Multithreading: multiple threads to share the

functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch ≈ 100s to 1000s of clocks

• When switch?
– Fine Grain: Alternate instruction per thread
– Coarse grain: When a thread is stalled, perhaps for a cache

miss, another thread can be executed

7

NOW Handout Page 7

25

Multithreaded Processing

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Fine Grain Coarse Grain

26

Fine-Grained Multithreading
• Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

– Usually done in a round-robin fashion, skipping any stalled
threads

• CPU must be able to switch threads every clock
• Advantage:

– can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

• Disadvantage:
– slows down execution of individual threads, since a thread

ready to execute without stalls will be delayed by instructions
from other threads

• Used on Sun’s Niagara (see textbook)

27

Course-Grained Multithreading
• Switches threads only on costly stalls, such as L2

cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400
28

ILP and TLP…

8

NOW Handout Page 8

For most apps, most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

30

Do both ILP and TLP?
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented at ILP to

exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

32

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and
keeping separate PCs

– Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

9

NOW Handout Page 9

33

Multithreaded Categories

Tim
e (

pr
oc

es
so

r c
yc

le) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

34

Design Challenges in SMT
• Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Power 4Power 4

Power 5Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

10

NOW Handout Page 10

Power 5 data flow ...

Why only 2 threads? With 4, one of the
shared resources (physical registers, cache,
memory bandwidth) would be prone to
bottleneck

Power 5 thread performance ...

Relative priority
of each thread
controllable in
hardware.

For balanced
operation, both
threads run
slower than if
they “owned”
the machine.

39

Changes in Power 5 to support SMT
• Increased associativity of L1 instruction cache

and the instruction address translation buffers
• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3

caches
• Added separate instruction prefetch and

buffering per thread
• Increased the number of virtual registers from

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the

Power4 core because of the addition of SMT
support

40

Summary: Limits to ILP
• Doubling issue rates above today’s 3-6

instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– issue 3 or 4 data memory accesses per cycle,
– resolve 2 or 3 branches per cycle,
– rename and access more than 20 registers per cycle, and
– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these
capabilities is likely to mean sacrifices in the
maximum clock rate

– E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

11

NOW Handout Page 11

41

Limits to ILP
• Most techniques for increasing performance increase power

consumption
• The key question is whether a technique is energy efficient:

does it increase power consumption faster than it increases
performance?

• Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained

performance
• Number of transistors switching = f(peak issue rate), and

performance = f(sustained rate),
growing gap between peak and sustained performance
⇒ increasing energy per unit of performance

42

And in conclusion …
• Limits to ILP (power efficiency, compilers, dependencies

…) seem to limit to 3 to 6 issue for practical options
• Explicitly parallel (Data level parallelism or Thread level

parallelism) is next step to performance
– Coarse grain vs. Fine grained multihreading

» Only on big stall vs. every clock cycle
• Itanium/EPIC/VLIW is not a breakthrough in ILP

– In either scaling ILP or power consumption or complexity
• Balance of ILP and TLP decided in marketplace

• Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip
multiprocessors: multi-core processors

• In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which
contains 2 Power3 processors and an integrated L2 cache

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus
on single-chip multiprocessors rather than more aggressive
uniprocessors.

43

Multiprocessor Architectures…

44

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

3X

12

NOW Handout Page 12

45

Déjà vu all over again?

“… today’s processors … are nearing an impasse as technologies approach
the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)
• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor
8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year

46

Other Factors ⇒ Multiprocessors

• Growth in data-intensive applications
– Data bases, file servers, …

• Growing interest in servers, server perf.
• Increasing desktop perf. less important

– Outside of graphics

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment
by replication

– Rather than unique design

47

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Multiple Instruction Multiple
Data MIMD
(Clusters, SMP servers)

Multiple Instruction Single
Data (MISD)
(????)

Single Instruction Multiple
Data SIMD
(single PC: Vector, CM-2)

Single Instruction Single
Data (SISD)
(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

48

Back to Basics

• “A parallel computer is a collection of processing
elements that cooperate and communicate to
solve large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1.
• BW demands ⇒ Memory distributed among processors

13

NOW Handout Page 13

49

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory Distributed Memory

Scale

50

Centralized Memory Multiprocessor

• Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of
processors

• Can scale to a few dozen processors by using
a switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

51

Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale
memory bandwidth
• If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con: Communicating data between
processors more complex

• Con: Must change software to take
advantage of increased memory BW

52

2 Models for Communication and
Memory Architecture
1. Communication occurs by explicitly passing

messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared

address, centralized memory MP
• NUMA (Non Uniform Memory Access time

multiprocessor) for shared address, distributed
memory MP

• In past, confusion whether “sharing” means
sharing physical memory (Symmetric MP) or
sharing address space

14

NOW Handout Page 14

53

Challenges of Parallel Processing

• First challenge is % of program
inherently sequential

• Suppose 80X speedup from 100
processors. What fraction of original
program can be sequential?
a.10%
b.5%
c.1%
d.<1%

54

Amdahl’s Law Answers

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100
Fraction

 Fraction 1

1 08

Speedup
Fraction

 Fraction 1

1 Speedup

parallel

parallelparallel

parallel
parallel

parallel
parallel

parallel

parallel
enhanced

overall

==

×−×=

=+−×

+−
=

+−
=

55

Challenges of Parallel Processing

• Second challenge is long latency to
remote memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote
memory, all local accesses hit memory
hierarchy and base CPI is 0.5. (Remote
access = 200/0.5 = 400 clock cycles.)

• What is performance impact if 0.2%
instructions involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X

56

CPI Equation

• CPI = Base CPI +
Remote request rate
x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3
• No communication is 1.3/0.5 or 2.6 faster

than 0.2% instructions involve local
access

15

NOW Handout Page 15

57

Challenges of Parallel Processing
1. Application parallelism ⇒ primarily via

new algorithms that have better parallel
performance

2. Long remote latency impact ⇒ both by
architect and by the programmer

• For example, reduce frequency of remote
accesses either by
– Caching shared data (HW)
– Restructuring the data layout to make more

accesses local (SW)
• We will cover details on HW to help

latency via caches

58

Symmetric Shared-Memory Architectures
• From multiple boards on a shared bus to

multiple processors inside a single chip
• Caches both

– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data,
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

59

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

60

Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses

to different locations issued by a given process
– to preserve orders among accesses to same location by

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

16

NOW Handout Page 16

61

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will

be returned by a read
• Coherence defines behavior to same location,

Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O

62

What Does Coherency Mean?

• Informally:
– “Any read must return the most recent write”
– Too strict and too difficult to implement

• Better:
– “Any write must eventually be seen by a read”
– All writes are seen in proper order (“serialization”)

• Two rules to ensure this:
– “If P writes x and P1 reads it, P’s write will be seen by P1 if the read and

write are sufficiently far apart”
– Writes to a single location are serialized:

seen in one order
» Latest write will be seen
» Otherwise could see writes in illogical order

(could see older value after a newer value)

63

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to

location X that follows a write by P to X, with no writes of
X by another processor occurring between the write and
the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a

location, processors can never read the value of the location
as 2 and then later read it as 1

64

Cache Coherence Protocols
1. Directory based — Sharing status of a block of

physical memory is kept in just one location, the
directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium

(a bus or switch)
• All cache controllers monitor or snoop on the medium

to determine whether or not they have a copy of a
block that is requested on a bus or switch access

• We will cover details of Snooping based cache
coherence protocol…

17

NOW Handout Page 17

65

Symmetric Shared-Memory Architectures
• From multiple boards on a shared bus to

multiple processors inside a single chip
• Caches both

– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data,
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

66

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

67

Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses

to different locations issued by a given process
– to preserve orders among accesses to same location by

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

68

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will

be returned by a read
• Coherence defines behavior to same location,

Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O

18

NOW Handout Page 18

69

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to

location X that follows a write by P to X, with no writes of
X by another processor occurring between the write and
the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a

location, processors can never read the value of the location
as 2 and then later read it as 1

70

Write Consistency

• For now assume
1. A write does not complete (and allow the next

write to occur) until all processors have seen the
effect of that write

2. The processor does not change the order of any
write with respect to any other memory access

⇒ if a processor writes location A followed by
location B, any processor that sees the new
value of B must also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

71

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and
used there in a transparent fashion

– Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

• Replication – for reading shared data simultaneously,
since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

72

2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium

(a bus or switch)
• All cache controllers monitor or snoop on the medium

to determine whether or not they have a copy of a
block that is requested on a bus or switch access

19

NOW Handout Page 19

73

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

74

Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and

update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration

75

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read
– Broadcast uses up bus bandwidth…does not scale well

76

Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

20

NOW Handout Page 20

77

Architectural Building Blocks

• Cache block state transition diagram
– FSM specifying how disposition of block changes

» invalid, valid, exclusive
• Broadcast Medium Transactions (e.g., bus)

– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or
write accesses ⇒ Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same

cache block
• Also need to find up-to-date copy of cache block

78

Locate up-to-date copy of data

• Write-through: get up-to-date copy from memory
– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache

block, it provides it in response to a read
request and aborts the memory access

– Complexity from retrieving cache block from cache, which
can take longer than retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back

79

Cache Resources for WB Snooping
• Normal cache tags can be used for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes ⇒ Need to know if know whether any

other copies of the block are cached
– No other copies ⇒ No need to place write on bus for WB
– Other copies ⇒ Need to place invalidate on bus

80

Cache Resources for WB Snooping
• To track whether a cache block is shared, add

extra state bit associated with each cache block,
like valid bit and dirty bit

– Write to Shared block ⇒ Need to place invalidate on bus
and mark cache block as private (if an option)

– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or

exclusive)

21

NOW Handout Page 21

81

Cache behavior in response to bus

• Every bus transaction must check the cache-
address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1

cache to update the state and possibly retrieve the data, which
usually requires a stall of the processor

82

Example Protocol
• Snooping coherence protocol is usually

implemented by incorporating a finite-state
controller in each node

• Logically, think of a separate controller
associated with each cache block

– That is, snooping operations or cache requests for different
blocks can proceed independently

• In implementations, a single controller allows
multiple operations to distinct blocks to proceed
in interleaved fashion

– that is, one operation may be initiated before another is
completed, even through only one cache access or one bus
access is allowed at time

83

Write-through Invalidate Protocol

• 2 states per block in each cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that cache
• Writes invalidate all other cache

copies
– can have multiple simultaneous readers

of block,but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

84

Is 2-state Protocol Coherent?

• Processor only observes state of memory system by issuing
memory operations

• Assume bus transactions and memory operations are atomic
and a one-level cache

– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing next
– with one-level cache, assume invalidations applied during bus transaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or

enter directly in bus order

• Let’s understand other ordering issues

22

NOW Handout Page 22

85

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though

shared-medium (bus) will order read misses too
– any order among reads between writes is fine,

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

86

Example Write Back Snoopy
Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

87

Cache Coherence Mechanism
• Cache coherence mechanism

(protocol/controller) receives requests from:
– Processor
– Bus

• Responds to requests
– Depending on hit or miss, read or write, and state of block

88

Address
conflict miss:
write back
block, then
place read miss
on bus

ReplacementModifiedProc.Read miss

Address
conflict
miss:place read
miss on bus

ReplacementSharedProc.Read miss

Place read miss
on bus

Normal missInvalidProc.Read miss

Read data in
cache

Normal hitShared or modifiedProc.Read Hit

Function and
explanation

Type of cache
action

State of addressed
cache block

SourceRequest

23

NOW Handout Page 23

89

Address conflict
miss: write back
block, then place
write miss on bus

ReplacementModifiedProc.Write miss

Address conflict
miss: place write
miss on bus

ReplacementSharedProc.Write miss

Place write miss
on bus

Normal missInvalidProc.Write miss

Place invalidate on
bus. These
operations only
change state and
do not fetch data

CoherenceSharedProc.Write Hit

Write data in cacheNormal hitModifiedProc.Write Hit

Function and
explanation

Type of
cache action

State of
addressed cache
block

SourceRequest

90

Attempt to write
block that is
exclusive elsewhere:
write back the cache
block and make its
state invalid

CoherenceModifiedBusWrite miss

Attempt to write
block that is shared:
invalidate the block

CoherenceSharedBusWrite miss

Attempt to write
shared block:
invalidate the block

CoherenceSharedBusInvalidate

Attempt to share
data: place cache
block on bus and
change state to
shared

CoherenceModifiedBusRead miss

Allow memory to
service read miss

No actionSharedBusRead Miss

Function and
explanation

Type of
cache action

State of
addressed
cache block

SourceRequest

91

Cache Coherence Protocol
• Can implement the protocol using Finite State

Machines

92

CPU Read hit

Write-Back State Machine - CPU

• State machine
for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

24

NOW Handout Page 24

93

Write-Back State Machine- Bus request
• State machine

for bus requests
for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

94

Block-replacement

• State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

95

Place read miss
on bus

Write-back State Machine-III

• State machine
for CPU requests
for each
cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

96

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

25

NOW Handout Page 25

97

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

98

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

99

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

100

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

26

NOW Handout Page 26

101

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

102

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first,
and then write the same cache block!

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic:

can have multiple outstanding transactions for a block
» Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

103

Implementing Snooping Caches

• Multiple processors must be on bus, access to both
addresses and data

• Add a few new commands to perform coherency,
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags,
could interfere with CPU just to check:

– solution 1: duplicate set of tags for L1 caches just to allow checks in
parallel with CPU

– solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

104

Limitations in Symmetric Shared-Memory
Multiprocessors and Snooping Protocols

• Single memory accommodate all CPUs
⇒ Multiple memory banks

• Bus-based multiprocessor, bus must
support both coherence traffic & normal
memory traffic

⇒ Multiple buses or interconnection
networks (cross bar or small point-to-point)

• Opteron
– Memory connected directly to each dual-core chip
– Point-to-point connections for up to 4 chips
– Remote memory and local memory latency are similar,

allowing OS Opteron as UMA computer

27

NOW Handout Page 27

105

Performance of Symmetric Shared-
Memory Multiprocessors
• Cache performance is combination of
1. Uniprocessor cache miss traffic
2. Traffic caused by communication

– Results in invalidations and subsequent cache misses

• 4th C: coherence miss
– Joins Compulsory, Capacity, Conflict

106

Coherency Misses
1. True sharing misses arise from the

communication of data through the cache
coherence mechanism
• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is
invalidated because some word in the block,
other than the one being read, is written into
• Invalidation does not cause a new value to be communicated,

but only causes an extra cache miss
• Block is shared, but no word in block is actually shared

⇒ miss would not occur if block size were 1 word

107

Example: True v. False Sharing v.
Hit?

Read x25

Write x24

Write x13

Read x22

Write x11
True, False, Hit? Why?P2P1Time

• Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

108

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 MB 2 MB 4 MB 8 MB
Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• True sharing
and false
sharing
unchanged
going from 1 MB
to 8 MB (L3 cache)

• Uniprocessor
cache misses
improve with
cache size
increase
(Instruction,
Capacity/Conflict,
Compulsory)

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

28

NOW Handout Page 28

109

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

• True sharing,
false sharing
increase
going from 1
to 8 CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

110

Bus-based Coherence

• done through broadcast on bus
• Could do it in scalable network too

– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least p network

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

111

Scalable Approach: Directories
• Every memory block has associated directory

information
– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory
information

112

Directory Protocol
• No bus and don’t want to broadcast:

– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

29

NOW Handout Page 29

113

Directory Protocol
• Similar to Snoopy Protocol: Three states

– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date
• In addition to cache state, must track which processors

have data when in the shared state (usually bit vector, 1 if
processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent

114

Distributed Directory MPs

Interconnection Network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

115

A Popular Middle Ground

• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected non-

hiearchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

116

Summary
• Caches contain all information on state of cached

memory blocks
• Snooping and Directory Protocols similar; bus

makes snooping easier because of broadcast
(snooping => uniform memory access)

• Directory has extra data structure to keep track of
state of all cache blocks

• Distributing directory => scalable shared address
multiprocessor
=> Cache coherent, Non uniform memory access

30

NOW Handout Page 30

117

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved ⇒ assignments before ifs above

– SC: delay all memory accesses until all invalidates done

118

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not an issue for most programs; they are synchronized

– A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since
most programs are synchronized; characterized by their
attitude towards: RAR, WAR, RAW, WAW
to different addresses

119

Relaxed Consistency Models: The Basics

• Key idea: allow reads and writes to complete out of order, but
to use synchronization operations to enforce ordering, so that
a synchronized program behaves as if the processor were
sequentially consistent

– By relaxing orderings, may obtain performance advantages
– Also specifies range of legal compiler optimizations on shared data
– Unless synchronization points are clearly defined and programs are

synchronized, compiler could not interchange read and write of 2 shared
data items because might affect the semantics of the program

• 3 major sets of relaxed orderings:
1. W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that
operate under sequential consistency operate under this model,
without additional synchronization. Called processor consistency

2. W → W ordering (all writes completed before next write)
3. R → W and R → R orderings, a variety of models depending on

ordering restrictions and how synchronization operations
enforce ordering

• Many complexities in relaxed consistency models; defining
precisely what it means for a write to complete; deciding when
processors can see values that it has written

120

Mark Hill observation

• Instead, use speculation to hide latency from
strict consistency model
– If processor receives invalidation for memory reference

before it is committed, processor uses speculation recovery
to back out computation and restart with invalidated
memory reference

1. Aggressive implementation of sequential
consistency or processor consistency gains
most of advantage of more relaxed models

2. Implementation adds little to implementation
cost of speculative processor

3. Allows the programmer to reason using the
simpler programming models

31

NOW Handout Page 31

121

Fundamental Issue:
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address

=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a
processor

122

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update

memory (atomic operation);
– User level synchronization operation using this

primitive;
– For large scale MPs, synchronization can be a

bottleneck; techniques to reduce contention and
latency of synchronization

123

Coordination/Synchronization
Constructs

• For shared memory and message passing two types
of synchronization activity
– Sequence control ... to enable correct operation
– Access control ... to allow access to common resources

• synchronization activities constitute an overhead!

124

Synchronization Constructs

• Barrier synchronization
– for sequence control
– processors wait at barrier till all (or subset) have completed
– hardware implementations available
– can also implement in s/w

• Critical section access control mechanisms
– Test&Set Lock protocols
– Semaphores

32

NOW Handout Page 32

125

Barrier Synchronization
• Many programs require that all processes come

to a “barrier” point before proceeding further
– this constitutes a synchronization point

• Concept of Barrier
– When processor hits a barrier it cannot proceed further until

ALL processors have hit the barrier point
» note that this forces a global synchronization point

• Can implement in S/W or Hardware
– in s/w can implement using a shared variable; proc checks

value of shared variable

126

Barrier Synch. . . Example
For i := 1 to N do in parallel

A[i] := k* A[i];
B[i] := A[i] + B[i];

endfor
BARRIER POINT
for i := 1 to N do in parallel

C[i] := B[i] + B[i-1] + B[i-2];

127

Barrier Synchronization:
Implementation

• Bus based
– each processor sets single bit when it arrives at barrier
– collection of bits sent to AND (or OR) gates
– send outputs of gates to all processors
– number of synchs/cycle grows with N (proc) if change in bit at one proc

can be propagated in since cycle
» takes O(log N) in reality

– delay in performance due to barrier measured how?
• Multiple Barrier lines

– a barrier bit sent to each processor
– each can set bit for each barrier line
– X1,...,Xn in processor; Y1,...,Yn is barrier setting

128

Synchronization: Message Passing

• Synchronous vs. Asynchronous
• Synchronous: sending and receiving process synch in

time and space
– system must check if (i) receiver ready, (ii) path available and (iii) one

or more to be sent to same or multiple dest
– also known as blocking send-receive
– send and receive process cannot continue past instruction till

message transfer complete

• Asychronous: send&rec do not have to synch

33

NOW Handout Page 33

129

Lock Protocols
Test&Set (lock)

temp <- lock
lock := 1
return (temp);

Reset (lock)
lock :=0

Process waits for lock to be 0
can remove indefinite waits by ???

130

Semaphores
• P(S) for shared variable/section S

– test if S>0 & enter critical section and decrement S else wait

• V(S)
– increment S and exit

• note that P and V are blocking synchronization
constructs

• can allow number of concurrent accesses to S

131

Semaphores : Example
Z= A*B + [(C*D) * (I+G)]
var S_w, S_y are semaphores
initial: S_w=S_y= 0
P1: begin P2: begin

U = A*B W = C*D
P(S_y) V(S_w)
Z = U + Y end

end

P3: begin
X= I+G
P(S_w)
Y= W*X
V(S_y)

end

132

Hardware level synchronization
• Key is to provide uninterruptible instruction or

instruction sequence capable of atomically
retrieving a value
– S/W mechanisms then constructed from these H/W primitives

• Uninterruptible instruction
– Atomic exchange
– Test & Set
– Fetch & Increment

– Build high level synchronization primitives using one of
these…

• ….

34

NOW Handout Page 34

133

Fundamental Issue: Performance and
Scalability
• Performance must scale with

– system size
– problem/workload size

• Amdahl’s Law
– perfect speedup cannot be achieved since there is a

inherently sequential part to every program

• Scalability measures
– Efficiency (speedup per processor)

134

Parallel Algorithms
• Solving problems on a multiprocessor

architecture requires design of parallel
algorithms

• How do we measure efficiency of a parallel
algorithm ?
– 10 seconds on Machine 1 and 20 seconds on machine 2 –

which algorithm is better ?

135

Parallel Algorithm Complexity
• Parallel time complexity

– Express in terms of Input size and System size (num of
processors)

– T(N,P): input size N, P processors
– Relationship between N and P

» Independent size analysis – no link between N and P
» Dependent size – P is a function of N; eg. P=N/2

• Speedup: how much faster than sequential
– S(P)= T(N,1)/T(N,P)

• Efficiency: speedup per processor
– S(P)/P

136

Parallel Computation Models
• Shared Memory

– Protocol for shared memory ?..what happens when two
processors/processes try to access same data

» EREW: Exclusive Read, Exclusive Write
» CREW: Concurrent Read, Exclusive Write
» CRCW: Concurrent read, Concurrent write

• Distributed Memory
– Explicit communication through message passing

» Send/Receive instructions

35

NOW Handout Page 35

137

Formal Models of Parallel
Computation
• Alternating Turing machine
• P-RAM model

– Extension of sequential Random Access Machine (RAM)
model

• RAM model
– One program
– One memory
– One accumulator
– One read/write tape

138

P-RAM model
• P programs, one per processor
• One memory

– In distributed memory it becomes P memories
• P accumulators
• One read/write tape
• Depending on shared memory protocol we have

– CREW P-RAM
– EREW PRAM
– CRCW PRAM

139

PRAM Model
• Assumes synchronous execution
• Idealized machine

– Helps in developing theoretically sound solutions
– Actual performance will depend on machine characteristics

and language implementation

140

PRAM Algorithms -- Summing
• Add N numbers in parallel using P processors

– How to parallelize ?

36

NOW Handout Page 36

141

Parallel Summing
• Using N/2 processors to sum N numbers in

O(Log N) time
• Independent size analysis:

– Do sequential sum on N/P values and then add in parallel
– Time= O(N/P + log P)

142

Parallel Sorting on CREW PRAM
• Sort N numbers using P processors

– Assume P unlimited for now.

• Given an unsorted list (a1, a2,…,an) created
sorted list W, where W[i]<W[i+1]

• Where does a1 go ?

143

Parallel Sorting on CREW PRAM
• Using P=N2 processors
• For each processor P(i,j) compare ai>aj

– If ai>aj then R[i,j]=1 else 0
– Time = O(1)

• For each “row” of processors P(i,j) for j=1 to j=N
do parallel sum to compute rank
– Compute R[i]= sum of R[i,j]
– Time = O(log N)

• Write ai into W[R(i)]
• Total time complexity= O(log N)

144

Parallel Algorithms
• Design of parallel algorithm has to take system

architecture into consideration
• Must minimize interprocessor communication in

a distributed memory system
– Communication time is much larger than computation
– Comm. Time can dominate computation if not problem is not

“partitioned” well

• Efficiency

37

NOW Handout Page 37

145 146

Synchronization..continued..

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory (atomic

operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of synchronization

147

Uninterruptable Instruction to Fetch
and Update Memory

• Atomic exchange: interchange a value in a register for
a value in memory

0 ⇒ synchronization variable is free
1 ⇒ synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value
passes the test

• Fetch-and-increment: it returns the value of a memory
location and atomically increments it

– 0 ⇒ synchronization variable is free

148

Uninterruptable Instruction to Fetch
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

38

NOW Handout Page 38

149

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire,
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• Other user level synchronization primitives can be
constructed similarly from HW primitives

150

Challenges of Parallel Processing
1. Application parallelism ⇒ primarily via

new algorithms that have better parallel
performance

2. Long remote latency impact ⇒ both by
architect and by the programmer

• For example, reduce frequency of remote
accesses either by
– Caching shared data (HW)
– Restructuring the data layout to make more

accesses local (SW)
• Today’s lecture on HW to help latency

via caches

151

Multiprocessors: Summary
• Parallel processing is “old news”
• ILP is “old news”

• To get over the “ILP Wall” use Simultaneous
multithreading (SMT) – this is “new” news!

• Put multiprocessing on a single chip, to get
multi-core processors –this is “new” news!

152

And in Conclusion …

• Caches contain all information on state of
cached memory blocks

• Snooping cache over shared medium for smaller
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values
returned by a read), Consistency (when a written
value will be returned by a read)

• Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping => uniform memory access)

• Directory has extra data structure to keep track
of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory access

