
1

CS 211: Computer ArchitectureCS 211: Computer Architecture

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~narahari/cs211/

CS 211: Computer Architecture, Bhagi Narahari

Computer Architecture – Course Objectives

• Examine the role of computer
architecture (CA) in system/program
performance
¾ What are the key components of CA ?
¾ What are the architectures of today’s

processors ?
¾ What aspects of architecture design affect

performance of application and how ?
¾ How to extract max performance out of

today’s CAs ?
¾ Role of software in architecture performance
¾ What are the emerging trends in CA ?

• quantitative approach to CA

CS 211: Computer Architecture, Bhagi Narahari

What it is not..

• What the course is not
¾ Detailed exposition on hardware design
¾ Semiconductor technology details
¾ Case studies
¾ How to assemble/buy a new computer

CS 211: Computer Architecture, Bhagi Narahari

Perspective

• Computer architecture design is directly
linked to underlying technology
¾ Semiconductor
¾ Compiler technology
¾ Computational models

• Goal of software designers is to run an
application program efficiently on the
architecture
¾ Compiler plays a key role
¾ interplay between architecture features and

application program properties
¾ Bottom line is performance of application

2

CS 211: Computer Architecture, Bhagi Narahari

Let’s look at Architecture Trends,
Technologies

• Interplay between hardware and software
• Implications of technology trends on

emerging architecture designs

CS 211: Computer Architecture, Bhagi Narahari

Today

• What is Computer Architecture
¾ Architecture levels and our focus

• Technology Trends
¾ Summary of what has happened in CA

¾ Hardware performance trends and designs

¾ Impact of current trends on new designs
• Performance models

¾ What to measure and how
¾ Models linking hardware and software
¾ Thumb rules for CA design

• Read Chapter 1

CS 211: Computer Architecture, Bhagi Narahari

An Important Idea: what are Computers
meant to do ?

• We will be solving problems that are
describable in English (or Greek or French or
Hindi or Chinese or ...) and using a box filled
with electrons and magnetism to accomplish
the task.
¾ This is accomplished using a system of well

defined (sometimes) transformations that have
been developed over the last 50+ years.

¾ As a whole the process is complex, examined
individually the steps are simple and
straightforward

CS 211: Computer Architecture, Bhagi Narahari

Hardware Vs. Software

 Hardware

¾Medium to compute functions

 Software

¾Functions to compute

Computational Model connects them

3

CS 211: Computer Architecture, Bhagi Narahari

Two pillars of Computing

•Universal Computational Devices
¾ Given enough time and memory, all computers are

capable of computing exactly the same things
(irrespective of speed, size or cost).
¾ Turing’s Thesis: every computation can be performed by some “Turing

Machine” - a theoretical universal computational device

•Problem Transformation
¾ The ultimate objective is to transform a problem

expressed in natural language into electrons running
around a circuit!
¾ That’s what Computer Science and Computer Engineering are all about: a

continuum that embraces software & hardware.
¾ Note the role of compilers/translators

CS 211: Computer Architecture, Bhagi Narahari

Making the Electrons Work

• Problems
¾ application expressed in a natural language

¾ Find the quickest way to get from Network Node A to Node B

• Algorithms to solve the problem
¾ Djikstra’s shortest path algorithm

• Programming Language to implement algo
¾ Program is the output of this state

¾ C program with relevant data structures

• Machine (ISA) Architecture
¾ describes functions/capability of the HW

¾ IA-32 architecture (Pentium)

• Microarchitecture
¾ how is the ISA implemented on the chip

¾ Pipelined units, superscalar processor

• Circuits
¾ Basic building blocks – gates, buses

• Devices
¾ Transistors, semiconductor principles

CS 211: Computer Architecture, Bhagi Narahari

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

Machine Architecture

Devices

Micro-architecture

Logic Circuits

The desired behavior:
the application

The building blocks:
electronic devices

Focus of this course

CS 211: Computer Architecture, Bhagi Narahari

The Machine Level - 1

•Machine Architecture
¾This is the formal specification of all the functions a

particular machine can carry out, known as the
Instruction Set Architecture (ISA).
¾ We focus on the ISA level

•Microarchitecture
¾The implementation of the ISA in a specific CPU - i.e.

the way in which the specifications of the ISA are
actually carried out.
¾ We will touch on some aspects of this level to examine how ISA solutions are

implemented … pre-req material

4

CS 211: Computer Architecture, Bhagi Narahari

The Machine Level - 2

•Logic Circuits
¾Each functional component of the microarchitecture is

built up of circuits that make “decisions” based on
simple rules
¾ Not the focus of this course – prerequisite material

•Devices
¾Finally, each logic circuit is actually built of electronic

devices such as CMOS or NMOS or GaAs (etc.)
transistors.
¾ Device electronics – not in this course

CS 211: Computer Architecture, Bhagi Narahari

Alternate Definitions: The Multi-Level
Concept

• Different levels, each with its unique
functionality
¾ Problem-Oriented Language Level (prog

languages)
¾ Assembly Language Level
¾ Operating System machine level
¾ Conventional Machine Level (Instruction Set

Architecture -- ISA)
¾ Micro-architecture level (Microprogramming

level)
¾ Digital Logic Level (program in VHDL,

Verilog)
¾ Device & Semiconductor Level

CS 211: Computer Architecture, Bhagi Narahari

For us, Computer Architecture is ...

Instruction Set Architecture

Organization
(MicroArchitecture)

(Logic Circuits)
Hardware

CS 211: Computer Architecture, Bhagi Narahari

Instruction Set Architecture (ISA)

instruction set

software

hardware

5

CS 211: Computer Architecture, Bhagi Narahari

The hardware/software interface:
Instruction Set Architecture (ISA)

instruction set

software

hardware

Which is easier to change/design???

CS 211: Computer Architecture, Bhagi Narahari

The Backdrop: Users

• Who will program these machines?
¾ Programmers

• What do they expect?
¾ Performance
¾ Correctness

• How?
¾ Write HLL program and Compile

• Compilation is key to performance
¾ Requires Hardware/Software interaction at ISA level
¾ Knowledge of architecture, application, algorithm

CS 211: Computer Architecture, Bhagi Narahari

Architecture: Introduction

• What is Computer Architecture
¾ Architecture levels and our focus

• Technology Trends
¾ Summary of what has happened in CA

¾ Hardware performance trends and designs

¾ Impact of current trends on new designs
• Performance models

¾ What to measure and how
¾ Models linking hardware and software
¾ Thumb rules for CA design

CS 211: Computer Architecture, Bhagi Narahari

Trends In Technology,
Applications,Architectures

6

CS 211: Computer Architecture, Bhagi Narahari

Performance:
Original Food Chain Picture

Big Fishes Eating Little Fishes

CS 211: Computer Architecture, Bhagi Narahari

Processor Performance
Trends

Microprocessors

Minicomputers

Mainframes

Supercomputers

Year

0.1

1

10

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

CS 211: Computer Architecture, Bhagi Narahari

1998 Computer Food Chain:
Cost/Performance

PCWork-
station

Mainframe

Supercomputer

Mini-
supercomputerMassively Parallel Processors

Mini-
computer

Now who is eating whom?

Server

CS 211: Computer Architecture, Bhagi Narahari

Computer Architecture: Over the years

• Microprocessors today (Intel,
PowerPC,etc.) faster than first Cray
supercomputer CRAY-1

• ENIAC filled a room, MicroProc today fit
on palm

• Big increase in functionality
¾ “old” days, one had to buy separate Math co-

processor for Intel PCs
¾ Now, even separate special purpose engines

(graphics co-proc., network proc. etc.) are
standard

7

CS 211: Computer Architecture, Bhagi Narahari

Why Such Change?

• Performance
¾ Technology Advances- Moore’s Law

¾ CMOS VLSI dominates older technologies (TTL, ECL) in cost AND
performance and is progressing rapidly

¾ Computer architecture advances improves low-
end
¾ RISC, superscalar, RAID, …

• Price: Lower costs due to …
¾ Simpler development, volumes, lower margins

• Function
¾ Rise of networking/local interconnection

technology

CS 211: Computer Architecture, Bhagi Narahari

Memory Capacity
(Single Chip DRAM)

size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns

CS 211: Computer Architecture, Bhagi Narahari

Technology Trends summary

Capacity Speed (latency)
Logic 2x in 2 years 2x in 3 years
DRAM 4x in 3 years 2x in 10 years
Disk 4x in 3 years 2x in 10 years

CS 211: Computer Architecture, Bhagi Narahari

Performance Trends: Summary

• Workstation performance (measured in
Spec Marks) improves roughly 50% per
year
(2X every 18 months)

• Improvement in cost performance
estimated at 70% per year

8

CS 211: Computer Architecture, Bhagi Narahari

Emerging trends in Processor Design

• CISC to RISC
¾ Based on speeding up common instructions

¾ Shall return to this later

• What’s the trend in Semiconductor
technology and its impact on new types
of processor architectures ?
¾ some aspects to consider:

¾ Delay: switching time of transistor – impacts clock cycle
¾ Feature size: size of transistor – impacts amount of logic in

processor
¾ Interconnect delay: clock cycle/delay in sending signal across

the interconnect lines on a chip

CS 211: Computer Architecture, Bhagi Narahari

0

5

10

15

20

25

30

35

40

650 500 350 250 180 130 100

Feature Size (nm)

D
el

ay
 (p

s)

Gate Delay (ps)

Interconnect Delay (ps) Cu & Low k

Interconnect Delay (ps) Al & SiO2

Delay vs. Feature Size

2000

Bohr, M. T., “Interconnect Scaling - The Real Limiter To High Performance ULSI”, Proceedings of
the IEEE International Electron Devices, pages 241-242.

CS 211: Computer Architecture, Bhagi Narahari

As Wire Delays Become Significant...

• Focus on architectures that

¾ do not involve long distance communication

¾ distribute control and data processing logic

CS 211: Computer Architecture, Bhagi Narahari

Verification And Test

• With increasing chip complexity,
verification and test costs form a
significant component of the overall cost

• Long testing process will also affect time to
market

• Impact of high costs ?
¾ Keep architecture simple and regular

9

CS 211: Computer Architecture, Bhagi Narahari

0

200

400

600

800

1000

1200

1400

1600

1997 1999 2001 2003 2006 2009 2012

Year

MPU Transistors/chip (M)

DRAM Bits/chip (G)

Transistors / Chip

50 pentiums

CS 211: Computer Architecture, Bhagi Narahari

Available instruction-level parallelism
[Wall’93, DECWRL]

0

10

20

30

40

50

60

70

80

90

100

egre

sedd

yacc

eco

grr

m
et

alvi

com
p

dodu

espr

fppp

gcc1

hydr

li m
dlj

ora

sw
m

tom
c

Application

IL
P

Perfect Model
Superb Model
Good Model

CS 211: Computer Architecture, Bhagi Narahari

From Previous Slides...

• Lots of hardware parallelism available
¾ can accommodate approx. 50 pentiums on one die in few

years

However,

• Conventional architectures and compilation
¾ cannot expose enough parallelism in applications
¾ even the “superb” model yields an ILP < 10 on average

• Need for new architectures and compilation
techniques!

CS 211: Computer Architecture, Bhagi Narahari

Current Architecture Designs

• Reconfigurable Processors—better for special purpose
applications
¾ let compiler handle everything
¾ no commitment to a particular architecture
¾ compiler generates architecture and code for it
¾ Example: FPGA based processors

• ILP Architecture: instruction level parallelism
¾ Superscalar
¾ Explicitly Controlled Architectures (Very Large Instruction Word -

VLIW)
¾ simplify architectures as much as possible
¾ compiler handles a lot of processor’s decision making

¾ explicitly control issue, scheduling, allocation

¾ Explicitly Parallel Instruction Computing (EPIC)- Intel’s IA-64, Itanium

• Multi-Core Processors
¾ The ILP “wall”: ILP processors cannot expose enough parallelism..
¾ so move to multi-threaded/multiprocessor on chip

10

CS 211: Computer Architecture, Bhagi Narahari

Sequential Processor

Sequential Instructions

Processor

Execution unitExecution unit

CS 211: Computer Architecture, Bhagi Narahari

Instruction Level Parallelism: Shrinking
of the Parallel Processor

• Put multiple processors into one chip
• execute multiple instructions in each cycle
• move from multiple processor architectures

to multiple issue processors
• Two classes of Instruction Level Parallel

(ILP) processors
¾ Superscalar processors
¾ Explicitly Parallel Instruction Computers (EPIC)

¾ also known as Very Large Ins Word (VLIW)

CS 211: Computer Architecture, Bhagi Narahari

ILP Processors:Superscalar

Sequential Instructions

Superscalar Processor

Scheduling

Logic

Scheduling

Logic

Instruction scheduling/
parallelism extraction

done by hardware

Instruction scheduling/Instruction scheduling/
parallelism extractionextraction

done by hardwaredone by hardware

Example: Intel IA-32/Pentium
CS 211: Computer Architecture, Bhagi Narahari

Serial Program
(C code)

Serial ProgramSerial Program
(C code)(C code) Scheduled Instructions

EPIC Processor

ILP Processors:EPIC/VLIW

compiler

Example: Intel IA-64; Itanium

11

CS 211: Computer Architecture, Bhagi Narahari

Multi-Core Processors

Sequential Instructions

Multi-Core Processor

Multi-processing on Chip;
Multiple threads – for each core

MultiMulti--processing on Chip;processing on Chip;
Multiple threads Multiple threads –– for each corefor each core

Example: Intel Core 2 Duo

ILP “processor”ILP “processor”

“core 1” “core 2”

CS 211: Computer Architecture, Bhagi Narahari

Frontend and Optimizer

Determine Dependences

Determine Independences

Bind Operations to Function Units

Bind Transports to Busses

Determine Dependences

Bind Transports to Busses

Execute

Superscalar

Dataflow

Indep. Arch.

VLIW

TTA

Compiler Hardware

Determine Independences

Bind Operations to Function Units

B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel: History overview, and perspective. The Journal of
Supercomputing, 7(1-2):9-50, May 1993.

Who is doing what:
Compiler vs. Processor

CS 211: Computer Architecture, Bhagi Narahari

Importance of Compilers in
ILPArchitectures

• Role of compiler more important than
ever
A optimize code
A analyze dependencies between instructions
A extract parallelism
A schedule code onto processors
A EPIC processors does not have any hardware

utilities for scheduling, conflict resolution
etc.
Ahas to be done by the compiler

CS 211: Computer Architecture, Bhagi Narahari

Another aspect: Quantifying Power
Consumption

• What else is an issue in
processor/system design/performance

• Power consumption/heat dissipation
¾ Limited energy source (battery) in embedded

systems (or even laptops)
¾ Apple switch to Intel chips in 2005 ?

12

CS 211: Computer Architecture, Bhagi Narahari

Power Equation

• PAVG - the average dynamic power consumed by the gates

• NG - the number of gates that transition
¾ This is usually dropped from the equation

• fclk - the frequency of the system clock

• CL - the average capacitive load per gate

• VDD - the supply voltage

2
2
1

DDLclkGAVG VCfNP =

• For mobile devices, energy better metric

VoltageLoadCapacitiveEnergydynamic
2

×=

CS 211: Computer Architecture, Bhagi Narahari

Define and quantify power

• For CMOS chips, traditional dominant energy
consumption has been in switching transistors,
called dynamic power

• For a fixed task, slowing clock rate (frequency
switched) reduces power, but not energy

• Capacitive load a function of number of transistors
connected to output and technology, which
determines capacitance of wires and transistors

• Dropping voltage helps both, so went from 5V to 1V
• To save energy & dynamic power, most CPUs now

turn off clock of inactive modules (e.g. Fl. Pt. Unit)

CS 211: Computer Architecture, Bhagi Narahari

Example of quantifying power

• Suppose 15% reduction in voltage results
in a 15% reduction in frequency. What is
impact on dynamic power?

dynamic

dynamic

dynamic

OldPower
OldPower

witchedFrequencySVoltageLoadCapacitive
witchedFrequencySVoltageLoadCapacitivePower

×

×

××××

×××

≈
=

×=

=

6.0
)85(.

)85(.85.2/1
2/1

3

2

2

CS 211: Computer Architecture, Bhagi Narahari

Power

• Because leakage current flows even when a
transistor is off, now static power important
too

• Leakage current increases in processors with
smaller transistor sizes

• Increasing the number of transistors increases
power even if they are turned off

• In 2006, goal for leakage is 25% of total power
consumption; high performance designs at 40%

• Very low power systems even gate voltage to
inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=

13

CS 211: Computer Architecture, Bhagi Narahari

What about the embedded processor ?

Source: Richard Newton
CS 211: Computer Architecture, Bhagi Narahari

Summary: What’s up with Architecture
Trends ?

• Moore’s law: density doubles every 18-24
months
¾ smaller processors, faster clocks
¾ leads to more powerful and smaller

processors!
¾Small computing platforms like Palmtop computers,

Palm, WinCE

• Trends/Lessons/Limits ?

CS 211: Computer Architecture, Bhagi Narahari

• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)

• Old CW: Sufficiently increasing Instruction Level Parallelism via
compilers, innovation (Out-of-order, speculation, VLIW, …)

• New CW: “ILP wall” law of diminishing returns on more HW for ILP

• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)

Crossroads: Conventional Wisdom in Comp. Arch

CS 211: Computer Architecture, Bhagi Narahari

Conventional Wisdom…

• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall

= Brick Wall
¾ Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”

(2X processors per chip / ~ 2 years)
¾ More simpler processors are more power efficient

14

CS 211: Computer Architecture, Bhagi Narahari

Multi-Core Processors

Sequential Instructions

Multi-Core Processor

Multi-processing on Chip;
Multiple threads – for each core

MultiMulti--processing on Chip;processing on Chip;
Multiple threads Multiple threads –– for each corefor each core

Example: Intel Core 2 Duo

ILP “processor”ILP “processor”

“core 1” “core 2”

CS 211: Computer Architecture, Bhagi Narahari

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
• “… today’s processors … are nearing an impasse as

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)
• Difference is all microprocessor companies switch to

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

CS 211: Computer Architecture, Bhagi Narahari

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread Level Parallelism or Data
Level Parallelism for 1000 CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by

just by computer architects and compiler writers alone, but
also cannot be solved without participation of computer
architects

CS 211: Computer Architecture, Bhagi Narahari

Course Information

• Course materials placed at
¾ www.seas.gwu.edu/~bhagiweb/cs211/
¾ All lecture notes, homeworks, simulator s/w

info, and announcements
¾ Check at least once a week – before class.
¾ Strong pre-requisite: CS135 or equivalent

first course in Computer
Organization/Systems

¾ Programming skills and basic system skills

15

CS 211: Computer Architecture, Bhagi Narahari

Course Information

• Textbook: Hennessy and Patterson,
Computer Architecture: A quantitative
approach; 4th Edition, Pub. Morgan
Kauffman
¾ If you have 3rd Edition that will work fine.

• course topic to book chapter mapping
placed on website

• Website will contain lecture materials
and homeworks, as well as references

• Homework & Project submissions will
use Blackboard

CS 211: Computer Architecture, Bhagi Narahari

Course Requirements

• Prerequisites: data structures, discrete math, computer
organization

• Requirements:
¾ Exams: 65%

¾ Midterm and Final

¾ Homework assignments: 10%
¾ Work individually

¾ Projects – 15%
¾ Work in teams of 3 persons
¾ Students *may* be permitted to

¾ substitute term paper or project for some of the projects—will have to meet me
before October 1.

¾ Substitute different project for assigned project
¾ Class discussions & presentations

¾ Readings will be assigned to teams; present and lead discussion in class
• Academic Integrity Policy

¾ Absolutely no collaboration of any kind on homeworks
¾ No outside sources (people or content)

¾ Programming projects can be done in 2-3 person teams – no
collaboration between teams

CS 211: Computer Architecture, Bhagi Narahari

Programming projects

• Projects require programming using Simple
Scalar simulator
¾ Some homeworks may also require use of this
¾ Students placed into teams (3 person teams; 2 also

allowed) for programming projects – team selection
target date is October 1.

• www.simplescalar.com
• Objective of using Simplescalar

¾ Connect concepts covered with ‘real’ implementations
and study impact of architecture techniques on actual
applications.

• Machines in Academic Center, 7th Floor Terminal
Room 724.
¾ Linux machines
¾ Grad student (part-time TA) will cover this in office hours

• No regular TA for course

CS 211: Computer Architecture, Bhagi Narahari

Course Outline

• Computer Organization Review – Mostly Self study
• Architecture challenges, design objectives, thumb rules,

emerging issues
• (I) Processor architectures:

¾ Instruction level parallel (ILP) processors
¾ Pipelined, superscalar, and EPIC/VLIW..vector
¾ Midterm – date to be decided…plan for 8th or 9th week

• (II) Components:
¾ Compiler Optimization
¾ Memory Design: cache optimizations
¾ I/O system

• (III) Multi-core and Multiprocessors:
¾ Multiprocessor Architectures overview
¾ Introduction to Multi-core computing

• Other topics time permitting

16

CS 211: Computer Architecture, Bhagi Narahari

Architecture: Introduction

• What is Computer Architecture
¾ Architecture levels and our focus

• Technology Trends
¾ Summary of what has happened in CA

¾ Hardware performance trends and designs

¾ Impact of current trends on new designs
• Performance models

¾ What to measure and how
¾ Models linking hardware and software
¾ Thumb rules for CA design

CS 211: Computer Architecture, Bhagi Narahari

Recurring Theme

Performance
– Calculating & measuring performance
– Designing & tuning software

CS 211: Computer Architecture, Bhagi Narahari

Performance

• How do you measure performance?
¾ Throughput

¾ Number of tasks completed per time unit

¾ Response time/latency
¾ time taken to complete the task

¾ metric chosen depends on user community
¾ System admin vs single user submitting homework

CS 211: Computer Architecture, Bhagi Narahari

The Bottom Line:
Performance (and Cost)

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Performance ?

17

CS 211: Computer Architecture, Bhagi Narahari

The Bottom Line:
Performance (and Cost)

• Time to run the task (Execution Time/Response Time/Latency)
– Time to travel from DC to Paris

• Tasks per unit time (Throughput/Bandwidth)
• Passenger miles per hour; how many passengers

transported per unit time

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

CS 211: Computer Architecture, Bhagi Narahari

The Bottom Line:
Performance (and Cost)

"X is n times faster than Y" means

ExTime(Y) Performance(X)
--------- = ---------------

ExTime(X) Performance(Y)

• Speed of Concorde vs. Boeing 747

• Throughput of Boeing 747 vs. Concorde

CS 211: Computer Architecture, Bhagi Narahari

How to Model Performance

• What are we trying to model ?
¾ Time taken to run an application program

• Why not just use “time” function in
Unix?

CS 211: Computer Architecture, Bhagi Narahari

Aspects of CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU = IC * CPI * Clk
Holy grail of CS 211 ☺

18

CS 211: Computer Architecture, Bhagi Narahari

CPU time and Architecture Interplay

• 3 components to CPU time: IC, CPI, Clk
¾ Factors that affect these components

• Consider all three components when optimizing
• Workloads change!

CS 211: Computer Architecture, Bhagi Narahari

CPI: Cycles per instruction

• Depends on the instruction executed
•Can have different times for diff. inst.

• Average cycles per instruction

• Example:

CS 211: Computer Architecture, Bhagi Narahari

Measurement Tools

• Benchmarks, Traces, Mixes
• Hardware: Cost, delay, area, power

estimation
• Simulation (many levels)

¾ ISA, RT, Gate, Circuit
• Queuing Theory
• Rules of Thumb
• Fundamental “Laws”/Principles

CS 211: Computer Architecture, Bhagi Narahari

Measuring IC/CPI/Clk

• Existing Processors
– IC: most processors have performance counters
– CPI: calculate from IC, Clk, and execution time
– Clk: known

• New Designs
– IC: functional simulation or analyze static
instructions
– CPI: simple models or execution-driven
simulation
– Clk: estimate from simple structures or ??

19

CS 211: Computer Architecture, Bhagi Narahari

Measure performance of what applications?

• CPU A versus CPU B
¾ How to compare ?

CS 211: Computer Architecture, Bhagi Narahari

Performance Evaluation

• “For better or worse, benchmarks shape a field”
• Good products created when have:

¾ Good benchmarks
¾ Good ways to summarize performance

• Execution time is the measure of computer
performance!

CS 211: Computer Architecture, Bhagi Narahari

SPEC: System Performance Evaluation
Cooperative

• First Round 1989
¾ 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
¾ SPECInt92 (6 int. programs) and SPECfp92 (14 flt pt.)

• Third Round 1995
¾ SPECint95 (8 int programs) and SPECfp95 (10 flt pt)

• Fourth Round 2000: SPEC CPU2000
¾ 12 Integer, 14 Floating point
¾ 2 choices on compilation; “aggressive” or “conservative”
¾ multiple data sets so that can train compiler if trying to

collect data for input to compiler to improve optimization
• Why SPEC: characterization of wide spectrum of

use

CS 211: Computer Architecture, Bhagi Narahari

What other benchmarks ?

• What if you are targeting the design for
an application domain

• Some domains have well-
defined/accepted benchmarks
¾ Media Bench– for multimedia apps
¾ Data Intensive Sys. (DIS) – for embedded

systems that process input data
¾ MI Bench – for embedded systems
¾ TPC- transaction processing benchmarks to

measure trans. proc. systems

20

CS 211: Computer Architecture, Bhagi Narahari

How to Summarize Performance

• Arithmetic mean (weighted arithmetic mean)
tracks execution time:

Σ(Ti)/n or Σ(Wi*Ti)

• Harmonic mean (weighted harmonic mean) of
rates (e.g., MFLOPS) tracks execution time:

n/Σ(1/Ri) or n/Σ(Wi/Ri)

• Normalized execution time is handy for scaling
performance (e.g., X times faster than
SPARCstation 10)

CS 211: Computer Architecture, Bhagi Narahari

Performance

• How do you measure performance?
¾ Throughput, Response time/latency
¾ metric chosen depends on user community

¾ System admin vs single user submitting homework

• Models for performance
¾ CPU time equation

• What to measure
¾ Benchmarks- SPEC, MIBench, etc.

• Next: How to improve performance –
thumb rules

CS 211: Computer Architecture, Bhagi Narahari

Performance: The AAA rule for designers

• Application
• Algorithm
• Architecture

CS 211: Computer Architecture, Bhagi Narahari

Quantitative Principles of Computer
Architecture Design (Thumb Rules)

• Performance equation
• Common case fast

¾ Focus on improving those instructions that
are frequently used

• Amdahl’s Law
¾ Fraction enhanced/optimized runs faster
¾ Parts of program that cannot be enhanced

• Locality
¾ Spatial
¾ Temporal

• Concurrency/Parallelism – overlap
instruction execution

21

CS 211: Computer Architecture, Bhagi Narahari

Parallelism

• Increasing throughput of server computer
via multiple processors or multiple disks

• Detailed HW design
¾ Carry lookahead adders uses parallelism to

speed up computing sums from linear to
logarithmic in number of bits per operand

¾ Multiple memory banks searched in parallel in
set-associative caches

• Pipelining: overlap instruction execution to
reduce the total time to complete an
instruction sequence.

CS 211: Computer Architecture, Bhagi Narahari

The Principle of Locality

• The Principle of Locality:
¾ Program access a relatively small portion of the address space at

any instant of time.
• Two Different Types of Locality:

¾ Temporal Locality (Locality in Time): If you use something then
you will use it again soon

¾ If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse)

¾ Spatial Locality (Locality in Space): If you use something then
you will use something nearby

¾ If an item is referenced, items whose addresses are close by tend to be referenced soon (e.g.,
straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

CS 211: Computer Architecture, Bhagi Narahari

Focus on the Common Case

• Common sense guides computer design
¾ Since its engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over the
infrequent case
¾ E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
¾ E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done faster than

the infrequent case
¾ E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
¾ May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance improved

by making case faster => Amdahl’s Law

CS 211: Computer Architecture, Bhagi Narahari

Common Case

• 90% time spent on 10% of code
• Examples: Word proc, CAD

¾ 80% of program instructions executed were
from 3-5% of the code

¾ 90% of inst. executed were from 9-12% code

22

CS 211: Computer Architecture, Bhagi Narahari

Amdahl’s Law: Speedup

• Application takes X time
• How to run it faster

¾ Enhance/optimize a portion of it
¾ Which portion

¾ Can we enhance all of it
¾ Note that we are talking of solving the

enhanced part in a different way, and
possibly using different (more costly)
resources

• Eg: Getting from A to B, B to C.
¾ Two portions to the task (A-B) and (B-C)

CS 211: Computer Architecture, Bhagi Narahari

Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

CS 211: Computer Architecture, Bhagi Narahari

Amdahl’s Law example

• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

¾ Implies can “enhance”/optimize only 40% of code

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, its human nature to be attracted
by 10X faster, vs. keeping in perspective its
just 1.6X faster ☺

CS 211: Computer Architecture, Bhagi Narahari

Architecture Design: Summary

• Design to last through trends
• Understand the principles

¾ Make common case fast
¾ Amdahl’s law
¾ Locality
¾ Parallelism/concurrency

