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CS 211: Computer Architecture

Introduction to ILP Processors & 
Concepts
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Course Outline

• Introduction: Trends, Performance models
• Review of computer organization and ISA 

implementation
• Overview of Pipelining
• ILP Processors: Superscalar Processors

– Next!  ILP Intro and Superscalar
• ILP: EPIC/VLIW Processors
• Compiler optimization techniques for ILP 

processors – getting max performance out of 
ILP design

• Part 2: Other components- memory, I/O.
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Introduction to Instruction Level 
Parallelism (ILP)

• What is ILP?
– Processor and Compiler design techniques that 

speed up execution by causing individual machine 
operations to execute in parallel

• ILP is transparent to the user
– Multiple operations executed in parallel even 

though the system is handed a single program 
written with a sequential processor in mind

• Same execution hardware as a normal RISC 
machine

– May be more than one of any given type of 
hardware

CS211 4

Architectures for 
Instruction-Level Parallelism

Scalar Pipeline (baseline)
Instruction Parallelism = D
Operation Latency = 1
Peak IPC = 1
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Superpipelined Machine

Superpipelined Execution
IP = DxM
OL = M minor cycles
Peak IPC = 1 per minor cycle (M per 

baseline cycle) 
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Superscalar Machines

Superscalar (Pipelined) Execution
IP = DxN
OL = 1 baseline cycles 
Peak IPC = N per baseline cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

N

CS211 7

Superscalar and Superpipelined

Superscalar and superpipelined machines of equal degree 
have roughly the same performance, i.e. if n = m then both 
have about   the same IPC.

Superscalar Parallelism
Operation Latency: 1

Issuing Rate: N

Superscalar Degree (SSD): N

(Determined by Issue Rate)

Superpipeline Parallelism
Operation Latency: M

Issuing Rate: 1

Superpipelined Degree (SPD): M

(Determined by Operation Latency)

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR Key:

IFetch
Dcode

Execute
Writeback
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Limitations of Inorder Pipelines

• CPI of inorder pipelines degrades very sharply if the 
machine parallelism is increased beyond a certain 
point, i.e. when NxM approaches average distance 
between dependent instructions

• Forwarding is no longer effective
⇒ must stall more often

– Pipeline may never be full due to frequent dependency 
stalls!!
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What is parallelism and where

+

+-

*

*2

a b

x
y

x = a + b;   
y = b * 2
z =(x-y) * (x+y)
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What is Parallelism?

• Work
T1 - time to complete a 

computation on a sequential 
system

• Critical Path
T∞ - time to complete the same 

computation on an infinitely-
parallel system 

• Average Parallelism
Pavg = T1 / T∞

• For a p wide system

Tp ≥ max{ T1/p, T∞ }

Pavg>>p ⇒ Tp ≈ T1/p
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a b

x
y

x = a + b;   
y = b * 2
z =(x-y) * (x+y)
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Example Execution

Functional Unit Operations Performed Latency
Integer Unit 1 Integer ALU Operations

Integer Multiplication
Loads
Stores

1
2
2
1

Integer Unit 2 /
Branch Unit

Integer ALU Operations
Integer Multiplication
Loads
Stores
Test-and-branch

1
2
2
1
1

Floating-point Unit 1
Floating-point Unit 2

Floating Point Operations 3
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Example Execution

Sequential Execution

ILP Execution
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ILP: Instruction-Level Parallelism

• ILP is is a measure of the amount of inter-
dependencies between instructions 

• Average ILP = no. instruction / no. cyc required
code1: ILP = 1

i.e. must execute serially
code2: ILP = 3

i.e. can execute at the same time

code1: r1 ← r2 + 1
r3 ← r1 / 17
r4 ← r0 - r3 

code2: r1 ← r2 + 1
r3 ← r9 / 17
r4 ← r0 - r10 
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Inter-instruction Dependences

Data dependence
r3 ← r1 op  r2 Read-after-Write
r5 ← r3 op  r4 (RAW)

Anti-dependence
r3 ← r1 op  r2 Write-after-Read
r1 ← r4 op  r5 (WAR)

Output dependence
r3 ← r1 op  r2 Write-after-Write
r5 ← r3 op  r4 (WAW)
r3 ← r6 op  r7

Control dependence
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Scope of ILP Analysis

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3
r11 ⇐ r12 + 1
r13 ⇐ r19 / 17
r14 ⇐ r0 - r20 

ILP=2
ILP=1

Out-of-order execution permits more ILP to be 
exploited
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Questions Facing ILP System Designers

• What gives rise to instruction-level parallelism in 
conventional, sequential programs 

• How is the potential parallelism identified and 
enhanced, and how much is there?

• What must be done in order to exploit the parallelism 
that has been identified?

• How should the work of identifying, enhancing and 
exploiting the parallelism be divided between the 
hardware and software (the compiler)?

• What are the alternatives in selecting the architecture 
of an ILP processor?
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Sequential Processor
Sequential Instructions

Processor

Execution unitExecution unit
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ILP Processors:Superscalar
Sequential Instructions

Superscalar Processor

Scheduling

Logic

Scheduling

Logic

Instruction scheduling/
parallelism extraction

done by hardware

Instruction scheduling/Instruction scheduling/
parallelism extractionparallelism extraction

done by hardwaredone by hardware
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Serial Program
(C code)

Serial ProgramSerial Program
(C code)(C code) Scheduled Instructions

EPIC Processor

ILP Processors:EPIC/VLIW 

compiler
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ILP Architectures

• Between the compiler and the run-time 
hardware, the following functions must be 
performed

– Dependencies between operations must be 
determined

– Operations that are independent of any operation 
that has not yet completed must be determined

– Independent operations must be scheduled to 
execute at some particular time, on some specific 
functional unit, and must be assigned a register 
into which the result may be deposited.
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ILP Architecture Classifications

• Sequential Architectures
– The program is not expected to convey any explicit 

information regarding parallelism
• Dependence Architectures

– The program explicitly indicates dependencies 
between operations

• Independence Architectures
– The program provides information as to which 

operations are independent of one another
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Sequential Architecture

• Program contains no explicit information 
regarding dependencies that exist between 
instructions

• Dependencies between instructions must be 
determined by the hardware

– It is only necessary to determine dependencies with 
sequentially preceding instructions that have been 
issued but not yet completed 

• Compiler may re-order instructions to 
facilitate the hardware’s task of extracting 
parallelism
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Sequential Architecture Example

• Superscalar processor is a representative ILP 
implementation of a sequential architecture

– For every instruction issued by a Superscalar 
processor, the hardware must check whether the 
operands interfere with the operands of any other 
instruction that is either

» (1) already in execution, (2) been issued but 
waiting for completion of interfering 
instructions that would have been executed 
earlier in a sequential program, and (3) being 
issued concurrently but would have been 
executed earlier in the sequential execution of 
the program

– Superscalar proc. issues multiple inst. In cycle
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Sequential Architecture Example

• Superscalar processors attempt to issue 
multiple instructions per cycle

– However, essential dependencies are specified by 
sequential ordering so operations must be 
processed in sequential order

– This proves to be a performance bottleneck that is 
very expensive to overcome

• Alternative to multiple instructions per cycle 
is pipelining and issue instructions faster
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Dependence Architecture

• Compiler or programmer communicates to 
the hardware the dependencies between 
instructions

– removes the need to scan the program in sequential 
order (the bottleneck for superscalar processors)

• Hardware determines at run-time when to 
schedule the instruction
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Dependence Architecture Example

• Dataflow processors are representative of 
Dependence architectures

– Execute instruction at earliest possible time subject 
to availability of input operands and functional 
units

– Dependencies communicated by providing with 
each instruction a list of all successor instructions

– As soon as all input operands of an instruction are 
available, the hardware fetches the instruction

– The instruction is executed as soon as a functional 
unit is available

• Few Dataflow processors currently exist
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Independence Architecture

• By knowing which operations are 
independent, the hardware needs no further 
checking to determine which instructions can 
be issued in the same cycle

• The set of independent operations is far 
greater than the set of dependent operations

– Only a subset of independent operations are 
specified

• The compiler may additionally specify on 
which functional unit and in which cycle an 
operation is executed

– The hardware needs to make no run-time decisions
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Independence Architecture Example

• EPIC/VLIW processors are examples of 
Independence architectures

– Specify exactly which functional unit each 
operation is executed on and when each operation 
is issued

– Operations are independent of other operations 
issued at the same time as well as those that are in 
execution

– Compiler emulates at compile time what a dataflow 
processor does at run-time
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Frontend and Optimizer

Determine Dependences

Determine Independences

Bind Operations to Function Units

Bind Transports to Busses

Determine Dependences

Bind Transports to Busses

Execute

Superscalar

Dataflow

Indep. Arch.

VLIW

TTA

Compiler Hardware

Determine Independences

Bind Operations to Function Units

B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel: History overview, and perspective. The 
Journal of Supercomputing, 7(1-2):9-50, May 1993.

Compiler vs. Processor
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VLIW and Superscalar

• basic structure of VLIW and superscalar 
consists of a number of Eus, each capable of 
parallel operation on data fetched from 
register file

• VLIW and superscalar require highly 
multiported register files

– limit on register ports places inherent limitation on 
maximum number of EUs
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VLIW & Superscalar-Differences

• presentation of instructions:
– VLIW receive multi-operation instructions
– Superscalar accept traditional sequential stream 

but  can issue more than one instruction
• VLIW needs very long instructions in order to 

specify what each EU should do
• Superscalar receive stream of conventional 

instructions
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VLIW&Superscalar-Differences

• Decode and Issue unit in superscalar issues 
multiple instructions for the EUs

– Have to figure out dependencies and independent 
instructions

• VLIW expect dependency free code whereas 
superscalar typically do not expect this.

– Superscalars cope with dependencies using 
hardware



Page 9

CS211 33

Instruction Scheduling

• dependencies must be detected and resolved
• static: accomplished by compiler which 

avoids dependencies by rearranging code
• dynamic: detection and resolution performed 

by hardware. processor typically maintains 
issue window (prefetched inst) and execution 
window (being executed). check for 
dependencies in issue window.
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Instruction Scheduling: 
The Optimization Goal

• Given a source program P, schedule the 
instructions so as to minimize the overall execution 
time on the functional units in the target machine.
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EPIC/VLIW vs Superscalar: Summary

• In EPIC processors
– compiler manages hardware resources
– synergy between compiler and architecture is key
– some compiler optimizations will be covered in 

depth

• In Superscalar processors
– architecture is “self-managed”
– notably instruction dependence analysis and 

scheduling done by hardware
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Next. . . . 

• Basic ILP techniques: dependence analysis, 
simple code optimization

– First look at S/W (Compiler) technique to extract ILP
• Superscalar Processors/ Dynamic ILP

– Branches
– scheduling algorithms implemented in hardware

• EPIC Processors
– Intel IA64 family
– compiler optimizations needed

• Overview of Compiler Optimization
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Superscalar Processors
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Superscalar Terminology

•Basic
Superscalar Able to issue > 1 instruction / cycle
Superpipelined Deep, but not superscalar pipeline.

E.g., MIPS R5000 has 8 stages
Branch prediction Logic to guess whether or not branch will be 

taken, and possibly branch target

•Advanced
Out-of-order Able to issue instructions out of program order
Speculation Execute instructions beyond branch points, 

possibly nullifying later
Register renaming Able to dynamically assign physical 

registers to instructions
Retire unit Logic to keep track of instructions as they 

complete.
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Superscalar Execution Example
Single Order, Data Dependence – In Order

• Assumptions
– Single FP adder takes 2 

cycles
– Single FP multiplier takes 5 

cycles
– Can issue add & multiply 

together
– Must issue in-order
– <op> in,in,out

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6,  $f4

z: addt $f4, $f8, $f10 

v
w

x
y

(Single adder, data dependence)

(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =
9 cycles

+

w

z

$f12

z
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Adding Advanced Features

• Out Of Order Issue
– Can start y as soon as adder available
– Must hold back z until $f10 not busy & adder available

• With Register Renaming

v
w

x

y
z

v
w

x

y
z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6,  $f4

z: addt $f4, $f8, $f10 

v: addt $f2, $f4, $f10a

w: mult $f10a, $f6, $f10a

x: addt $f10a, $f8, $f12

y: addt $f4, $f6,  $f4

z: addt $f4, $f8, $f14
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Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data 

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow
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Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow
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Inorder Pipelines

IF

D1

D2

EX

WB

Intel i486

IF IF

D1 D1

D2 D2

EX EX

WB WB

Intel Pentium

U - Pipe V - Pipe

Inorder pipeline, no WAW no WAR (almost always true)
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Out-of-order Pipelining 101

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1 ← F2 x F3
. . . . .

Ib: F1 ← F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB
Ib: F1 ← “F4 + F5”

. . . . . .
Ia: F1 ← “F2 x F3”
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Output Dependences (WAW)

Superscalar Execution Check List

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR)
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In-order Issue into 
Diversified Pipelines

• • •

• • •

• • •

• • •

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

RD ← Fn (RS, RT)

Dest.
Reg.

Func
Unit

Source
Registers

Issue stage needs to check:
1. Structural Dependence
2. RAW Hazard
3. WAW Hazard
4. WAR Hazard

Inorder
Inst.

Stream
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Superscalar  Processors

• Tasks:
• parallel decoding
• superscalar instruction issue
• parallel instruction execution

– preserving sequential consistency of exception 
processing

– preserving sequential consistency of exec.
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Parallel Execution

• when instructions executed in parallel they will 
finish out of program order

– unequal execution times
• specific means needed to preserve logical 

consistency
– preservation of sequential consistency

• exceptions during execution
– preservation seq. consistency exception proc.
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More Hardware Features 
to Support ILP

• Pipelining
– Advantages

» Relatively low cost of implementation - requires 
latches within functional units

» With pipelining, ILP can be doubled, tripled or more
– Disadvantages

» Adds delays to execution of individual operations
» Increased latency eventually counterbalances 

increase in ILP
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• Additional Functional Units
– Advantages

» Does not suffer from increased latency 
bottleneck

– Disadvantages
» Amount of functional unit hardware 

proportional to degree of parallelism
» Interconnection network and register file size 

proportional to square of number of functional 
units

Hardware Features to Support ILP
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• Instruction Issue Unit
– Care must be taken not to issue an instruction if 

another instruction upon which it is dependent is 
not complete

– Requires complex control logic in Superscalar 
processors

– Virtually trivial control logic in VLIW processors

Hardware Features to Support ILP

CS211 52

• Speculative Execution
– Little ILP typically found in basic blocks

» a straight-line sequence of operations with no 
intervening control flow 

– Multiple basic blocks must be executed in parallel
» Execution may continue along multiple paths 

before it is known which path will be executed

Hardware Features to Support ILP
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• Requirements for Speculative Execution
– Terminate unnecessary speculative computation 

once the branch has been resolved
– Undo the effects of the speculatively executed 

operations that should not have been executed
– Ensure that no exceptions are reported until it is 

known that the excepting operation should have 
been executed

– Preserve enough execution state at each 
speculative branch point to enable execution to 
resume down the correct path if the speculative 
execution happened to proceed down the wrong 
one.

Hardware Features to Support ILP
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• Speculative Execution
– Expensive in hardware
– Alternative is to perform speculative code motion at 

compile time
» Move operations from subsequent blocks up 

past branch operations into proceeding blocks
– Requires less demanding hardware

» A mechanism to ensure that exceptions caused 
by speculatively scheduled operations are 
reported if and only if flow of control is such 
that they would have been executed in the non-
speculative version of the code

» Additional registers to hold the speculative 
execution state

Hardware Features to Support ILP
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Introduction to S/W Techniques for ILP
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Instruction Level Parallelism (ILP)

• ILP: Overlap execution of unrelated instructions
• How to extract parallelism from program? 

– Beyond single block to get more instruction level parallelism
• Who does instruction scheduling and parallelism 

extraction?
– Software or Hardware or mix ?
– Superscalar processors require H/W solutions, but can also 

use some compiler help
• What new hardware features are required to support 

more ILP..? 
– Different requirements for Superscalar and EPIC
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ILP Techniques
• Key issue to worry about is Hazards

– Control and data
– Rising out of dependencies
– Introduces stalls in execution

• How to increase ILP
– Reduce data hazards: RAW, WAR, WAW
– Handle control hazards better
– Increase ideal IPC (instructions per cycle)

• Note: Bottom line is how to better schedule 
instructions
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Recall our old friend from Review of 
pipelining

• CPI = ideal CPI + Structural Stalls + Data Hazard 
Stalls + Control Stalls

– Ideal (pipeline) CPI: measure of the maximum 
performance attainable by the implementation

– Structural hazards: HW cannot support this 
combination of instructions

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching 
of instructions and decisions about changes in control 
flow (branches and jumps)
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Ideas to Reduce Stalls

Technique Reduces
Dynamic scheduling Data hazard stalls
Dynamic branch
prediction

Control stalls

Issuing multiple
instructions per cycle

Ideal CPI

Speculation Data and control stalls
Dynamic memory
disambiguation

Data hazard stalls involving
memory

Loop unrolling Control hazard stalls
Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence
analysis

Ideal CPI and data hazard stalls

Software pipelining and
trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation Ideal CPI, data and control stalls

Chapter 3

Chapter 4
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Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in except to 
the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25% 
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance enhancements, we must 

exploit ILP across multiple basic blocks
• Simplest: loop-level parallelism to exploit parallelism among 

iterations of a loop
– Vector is one way

» Where is this useful ?
– If not vector, then either dynamic via branch prediction or static 

via loop unrolling by compiler
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Quick recall of data hazards..

• True/flow dependencies - RAW
• Name dependencies WAR, WAW

– Also known as false dependencies, output dep
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• InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

• or InstrJ is data dependent on InstrK which is 
dependent on InstrI

• Caused by a “True Dependence” (compiler term)  
• If true dependence caused a hazard in the pipeline, 

called a Read After Write (RAW) hazard 

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Name dependence: when 2 instructions use same 
register or memory location, called a name, but no 
flow of data between the instructions associated 
with that name; 2 versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline, 
called a Write After Read (WAR) hazard

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: 
Anti-dependence
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Name Dependence #2: 
Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline, 
called a Write After Write (WAW) hazard

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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ILP and Data Hazards

• HW/SW must preserve program order: 

– order instructions would execute in if executed sequentially 
one at a time as determined by original source program

– Does this mean we can never change order of execution of 
instructions ?

» Ask - What happens if we change the order of an 
instruction

» Does result change ? 
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ILP and Data Hazards

• HW/SW goal: exploit parallelism by 
preserving program order only where it 
affects the outcome of the program

• Instructions involved in a name dependence 
can execute simultaneously if name used in 
instructions is changed so instructions do 
not conflict

– Register renaming resolves name dependence for 
regs

– Either by compiler or by HW
•
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Control Dependencies

• Every instruction is control dependent on some set of 
branches, and, in general, these control dependencies 
must be preserved to preserve program order
if p1 {
S1;

};
if p2 {
S2;

}
• S1 is control dependent on p1, and S2 is control 

dependent on p2 but not on p1.
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Control Dependence Ignored

• Control dependence need not be preserved
– willing to execute instructions that should not have been 

executed, thereby violating the control dependences, if
can do so without affecting correctness of the program 

• Instead, 2 properties critical to program 
correctness are exception behavior and data flow
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Exception Behavior

• Preserving exception behavior => any 
changes in instruction execution order must 
not change how exceptions are raised in 
program (=> no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
• Problem with moving LW before BEQZ?
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Data Flow

• Data flow: actual flow of data values among 
instructions that produce results and those that 
consume them

– branches make flow dynamic, determine which instruction 
is supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU? 
Must preserve data flow on execution
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Ok.. ILP through Software/Compiler

• Ask what you (SW/compiler) can do for the 
HW ?

• Quick look at one SW technique to 
– Decrease CPU time
– expose more ILP
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Loop Unrolling: A Simple S/W Technique

• Parallelism within one “basic block” is 
minimal

– Need to look at larger regions of code to schedule
• Loops are very common

– Number of iterations, same tasks in each iteration
• Simple Observation : If iterations are 

independent, then multiple iterations can be 
executed in parallel

• Loop Unrolling- Unrolling multiple iterations 
of a loop to create more instructions to 
schedule
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Example FP Loop: Where are the Hazards?

Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar from F2

SD 0(R1),F4 ;store result

SUBI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

• Where are the stalls?
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FP Loop Hazards

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar in F2

SD 0(R1),F4 ;store result

SUBI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot
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FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: LD F0,0(R1) ;F0=vector element

2 stall
3 ADDD F4,F0,F2 ;add scalar in F2

4 stall
5 stall
6 SD 0(R1),F4 ;store result

7 SUBI R1,R1,8 ;decrement pointer 8B (DW)

8 BNEZ R1,Loop ;branch R1!=zero

9 stall ;delayed branch slot
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Revised FP Loop Minimizing Stalls

6 clocks: Unroll loop 4 times code to make  faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: LD F0,0(R1)

2 stall
3 ADDD F4,F0,F2

4 SUBI R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD
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Unroll Loop Four Times (straightforward 
way)

Rewrite loop to 
minimize stalls?

1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4
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Unrolled Loop That Minimizes Stalls

• What assumptions made 
when moved code?

– OK to move store past 
SUBI even though changes 
register

– OK to move loads before 
stores: get right data?

– When is it safe for 
compiler to do such 
changes?

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
When safe to move instructions?
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Compiler Perspectives on Code 
Movement

• Definitions: compiler concerned about dependencies in 
program, whether or not a HW hazard depends on a given 
pipeline

• Try to schedule to avoid hazards
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k,  and instruction k 

is data dependent on instruction i.
• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory: 

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?
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Where are the data dependencies?

1 Loop: LD F0,0(R1)

2 ADDD F4,F0,F2

3 SUBI R1,R1,8

4 BNEZ R1,Loop ;delayed branch

5 SD 8(R1),F4 ;altered when move past SUBI
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Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F0,-8(R1)
2 ADDD F4,F0,F2
3 SD -8(R1),F4 ;drop SUBI & BNEZ
7 LD F0,-16(R1)
8 ADDD F4,F0,F2
9 SD -16(R1),F4 ;drop SUBI & BNEZ
10 LD F0,-24(R1)
11 ADDD F4,F0,F2
12 SD -24(R1),F4
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

How can remove them?
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Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

Called “register renaming”
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Compiler Perspectives on Code 
Movement

• Again Name Dependenceis are Hard for Memory 
Accesses 

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1 
doesn’t change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

There were no dependencies between some loads and 
stores so they could be moved by each other
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Compiler Perspectives on Code 
Movement

• Final kind of dependence called control dependence
• Example

if p1 {S1;};

if p2 {S2;};

S1 is control dependent on p1 and S2 is control 
dependent on p2 but not on p1.
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Compiler Perspectives on Code 
Movement

• Another kind of dependence called name dependence: 
two instructions use same name (register or memory 
location) but don’t exchange data

• Antidependence (WAR if a hazard for HW)
– Instruction j writes a register or memory location that 

instruction i reads from and instruction i is executed first
• Output dependence (WAW if a hazard for HW)

– Instruction i and instruction j write the same register or memory 
location; ordering between instructions must be preserved. 
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Compiler Perspectives on Code 
Movement

• Two (obvious) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be moved   

before the branch so that its execution is no longer controlled by the
branch.

– An instruction that is not control dependent on a branch cannot be 
moved to after the branch so that its execution is controlled by the 
branch. 

• Control dependencies relaxed to get parallelism; get same effect if 
preserve order of exceptions (address in register checked by 
branch before use) and data flow (value in register depends on 
branch)

– Can “violate” the two constraints above by placing some ‘checks’ in 
place ?

» Branch prediction, speculation
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Where are the control dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 

4 SUBI R1,R1,8

5 BEQZ R1,exit
6 LD F0,0(R1)
7 ADDD F4,F0,F2
8 SD 0(R1),F4 

9 SUBI R1,R1,8

10 BEQZ R1,exit
11 LD F0,0(R1)
12 ADDD F4,F0,F2
13 SD 0(R1),F4 

14 SUBI R1,R1,8

15 BEQZ R1,exit
....
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When Safe to Unroll Loop?

• Example: Where are data dependencies? 
(A,B,C distinct & nonoverlapping)
for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i];    /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

1. S2 uses the value, A[i+1], computed by S1 in the same iteration. 
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same 
is true of S2 for B[i] and B[i+1]. 
This is a “loop-carried dependence”: between iterations

• Implies that iterations are dependent, and can’t be 
executed in parallel

• Not the case for our prior example; each iteration was 
distinct
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HW Schemes: Instruction Parallelism

• Why in HW at run time?
– Works when can’t know real dependence at compile time
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

– Enables out-of-order execution => out-of-order completion
– ID stage checked both for structuralScoreboard dates to 

CDC 6600 in 1963
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Next. . . Superscalar Processor Design

• How to deal with instruction flow
– Dynamic Branch prediction 

• How to deal with register/data flow
– Register renaming

• Dynamic branch prediction
• Dynamic scheduling using Tomasulo method


