
Page 1

CS211 1

CS 211: Computer Architecture

Introduction to ILP Processors &
Concepts

CS211 2

Course Outline

• Introduction: Trends, Performance models
• Review of computer organization and ISA

implementation
• Overview of Pipelining
• ILP Processors: Superscalar Processors

– Next! ILP Intro and Superscalar
• ILP: EPIC/VLIW Processors
• Compiler optimization techniques for ILP

processors – getting max performance out of
ILP design

• Part 2: Other components- memory, I/O.

CS211 3

Introduction to Instruction Level
Parallelism (ILP)

• What is ILP?
– Processor and Compiler design techniques that

speed up execution by causing individual machine
operations to execute in parallel

• ILP is transparent to the user
– Multiple operations executed in parallel even

though the system is handed a single program
written with a sequential processor in mind

• Same execution hardware as a normal RISC
machine

– May be more than one of any given type of
hardware

CS211 4

Architectures for
Instruction-Level Parallelism

Scalar Pipeline (baseline)
Instruction Parallelism = D
Operation Latency = 1
Peak IPC = 1

1
2

3 4
5

6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
TR

U
C

TI
O

N
S

D

Page 2

CS211 5

Superpipelined Machine

Superpipelined Execution
IP = DxM
OL = M minor cycles
Peak IPC = 1 per minor cycle (M per

baseline cycle)

1
2

3
4

5

IF DE EX WB
6

1 2 3 4 5 6

major cycle = M minor cycle
minor cycle

CS211 6

Superscalar Machines

Superscalar (Pipelined) Execution
IP = DxN
OL = 1 baseline cycles
Peak IPC = N per baseline cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

N

CS211 7

Superscalar and Superpipelined

Superscalar and superpipelined machines of equal degree
have roughly the same performance, i.e. if n = m then both
have about the same IPC.

Superscalar Parallelism
Operation Latency: 1

Issuing Rate: N

Superscalar Degree (SSD): N

(Determined by Issue Rate)

Superpipeline Parallelism
Operation Latency: M

Issuing Rate: 1

Superpipelined Degree (SPD): M

(Determined by Operation Latency)

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR Key:

IFetch
Dcode

Execute
Writeback

CS211 8

Limitations of Inorder Pipelines

• CPI of inorder pipelines degrades very sharply if the
machine parallelism is increased beyond a certain
point, i.e. when NxM approaches average distance
between dependent instructions

• Forwarding is no longer effective
⇒ must stall more often

– Pipeline may never be full due to frequent dependency
stalls!!

IF DE EX WB

1
2
3

4
5
6

9

7
8

Page 3

CS211 9

What is parallelism and where

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

CS211 10

What is Parallelism?

• Work
T1 - time to complete a

computation on a sequential
system

• Critical Path
T∞ - time to complete the same

computation on an infinitely-
parallel system

• Average Parallelism
Pavg = T1 / T∞

• For a p wide system

Tp ≥ max{ T1/p, T∞ }

Pavg>>p ⇒ Tp ≈ T1/p

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

CS211 11

Example Execution

Functional Unit Operations Performed Latency
Integer Unit 1 Integer ALU Operations

Integer Multiplication
Loads
Stores

1
2
2
1

Integer Unit 2 /
Branch Unit

Integer ALU Operations
Integer Multiplication
Loads
Stores
Test-and-branch

1
2
2
1
1

Floating-point Unit 1
Floating-point Unit 2

Floating Point Operations 3

CS211 12

Example Execution

Sequential Execution

ILP Execution

Page 4

CS211 13

ILP: Instruction-Level Parallelism

• ILP is is a measure of the amount of inter-
dependencies between instructions

• Average ILP = no. instruction / no. cyc required
code1: ILP = 1

i.e. must execute serially
code2: ILP = 3

i.e. can execute at the same time

code1: r1 ← r2 + 1
r3 ← r1 / 17
r4 ← r0 - r3

code2: r1 ← r2 + 1
r3 ← r9 / 17
r4 ← r0 - r10

CS211 14

Inter-instruction Dependences

Data dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW)

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR)

Output dependence
r3 ← r1 op r2 Write-after-Write
r5 ← r3 op r4 (WAW)
r3 ← r6 op r7

Control dependence

CS211 15

Scope of ILP Analysis

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3
r11 ⇐ r12 + 1
r13 ⇐ r19 / 17
r14 ⇐ r0 - r20

ILP=2
ILP=1

Out-of-order execution permits more ILP to be
exploited

CS211 16

Questions Facing ILP System Designers

• What gives rise to instruction-level parallelism in
conventional, sequential programs

• How is the potential parallelism identified and
enhanced, and how much is there?

• What must be done in order to exploit the parallelism
that has been identified?

• How should the work of identifying, enhancing and
exploiting the parallelism be divided between the
hardware and software (the compiler)?

• What are the alternatives in selecting the architecture
of an ILP processor?

Page 5

CS211 17

Sequential Processor
Sequential Instructions

Processor

Execution unitExecution unit

CS211 18

ILP Processors:Superscalar
Sequential Instructions

Superscalar Processor

Scheduling

Logic

Scheduling

Logic

Instruction scheduling/
parallelism extraction

done by hardware

Instruction scheduling/Instruction scheduling/
parallelism extractionparallelism extraction

done by hardwaredone by hardware

CS211 19

Serial Program
(C code)

Serial ProgramSerial Program
(C code)(C code) Scheduled Instructions

EPIC Processor

ILP Processors:EPIC/VLIW

compiler

CS211 20

ILP Architectures

• Between the compiler and the run-time
hardware, the following functions must be
performed

– Dependencies between operations must be
determined

– Operations that are independent of any operation
that has not yet completed must be determined

– Independent operations must be scheduled to
execute at some particular time, on some specific
functional unit, and must be assigned a register
into which the result may be deposited.

Page 6

CS211 21

ILP Architecture Classifications

• Sequential Architectures
– The program is not expected to convey any explicit

information regarding parallelism
• Dependence Architectures

– The program explicitly indicates dependencies
between operations

• Independence Architectures
– The program provides information as to which

operations are independent of one another

CS211 22

Sequential Architecture

• Program contains no explicit information
regarding dependencies that exist between
instructions

• Dependencies between instructions must be
determined by the hardware

– It is only necessary to determine dependencies with
sequentially preceding instructions that have been
issued but not yet completed

• Compiler may re-order instructions to
facilitate the hardware’s task of extracting
parallelism

CS211 23

Sequential Architecture Example

• Superscalar processor is a representative ILP
implementation of a sequential architecture

– For every instruction issued by a Superscalar
processor, the hardware must check whether the
operands interfere with the operands of any other
instruction that is either

» (1) already in execution, (2) been issued but
waiting for completion of interfering
instructions that would have been executed
earlier in a sequential program, and (3) being
issued concurrently but would have been
executed earlier in the sequential execution of
the program

– Superscalar proc. issues multiple inst. In cycle

CS211 24

Sequential Architecture Example

• Superscalar processors attempt to issue
multiple instructions per cycle

– However, essential dependencies are specified by
sequential ordering so operations must be
processed in sequential order

– This proves to be a performance bottleneck that is
very expensive to overcome

• Alternative to multiple instructions per cycle
is pipelining and issue instructions faster

Page 7

CS211 25

Dependence Architecture

• Compiler or programmer communicates to
the hardware the dependencies between
instructions

– removes the need to scan the program in sequential
order (the bottleneck for superscalar processors)

• Hardware determines at run-time when to
schedule the instruction

CS211 26

Dependence Architecture Example

• Dataflow processors are representative of
Dependence architectures

– Execute instruction at earliest possible time subject
to availability of input operands and functional
units

– Dependencies communicated by providing with
each instruction a list of all successor instructions

– As soon as all input operands of an instruction are
available, the hardware fetches the instruction

– The instruction is executed as soon as a functional
unit is available

• Few Dataflow processors currently exist

CS211 27

Independence Architecture

• By knowing which operations are
independent, the hardware needs no further
checking to determine which instructions can
be issued in the same cycle

• The set of independent operations is far
greater than the set of dependent operations

– Only a subset of independent operations are
specified

• The compiler may additionally specify on
which functional unit and in which cycle an
operation is executed

– The hardware needs to make no run-time decisions

CS211 28

Independence Architecture Example

• EPIC/VLIW processors are examples of
Independence architectures

– Specify exactly which functional unit each
operation is executed on and when each operation
is issued

– Operations are independent of other operations
issued at the same time as well as those that are in
execution

– Compiler emulates at compile time what a dataflow
processor does at run-time

Page 8

CS211 29

Frontend and Optimizer

Determine Dependences

Determine Independences

Bind Operations to Function Units

Bind Transports to Busses

Determine Dependences

Bind Transports to Busses

Execute

Superscalar

Dataflow

Indep. Arch.

VLIW

TTA

Compiler Hardware

Determine Independences

Bind Operations to Function Units

B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel: History overview, and perspective. The
Journal of Supercomputing, 7(1-2):9-50, May 1993.

Compiler vs. Processor

CS211 30

VLIW and Superscalar

• basic structure of VLIW and superscalar
consists of a number of Eus, each capable of
parallel operation on data fetched from
register file

• VLIW and superscalar require highly
multiported register files

– limit on register ports places inherent limitation on
maximum number of EUs

CS211 31

VLIW & Superscalar-Differences

• presentation of instructions:
– VLIW receive multi-operation instructions
– Superscalar accept traditional sequential stream

but can issue more than one instruction
• VLIW needs very long instructions in order to

specify what each EU should do
• Superscalar receive stream of conventional

instructions

CS211 32

VLIW&Superscalar-Differences

• Decode and Issue unit in superscalar issues
multiple instructions for the EUs

– Have to figure out dependencies and independent
instructions

• VLIW expect dependency free code whereas
superscalar typically do not expect this.

– Superscalars cope with dependencies using
hardware

Page 9

CS211 33

Instruction Scheduling

• dependencies must be detected and resolved
• static: accomplished by compiler which

avoids dependencies by rearranging code
• dynamic: detection and resolution performed

by hardware. processor typically maintains
issue window (prefetched inst) and execution
window (being executed). check for
dependencies in issue window.

CS211 34

Instruction Scheduling:
The Optimization Goal

• Given a source program P, schedule the
instructions so as to minimize the overall execution
time on the functional units in the target machine.

CS211 35

EPIC/VLIW vs Superscalar: Summary

• In EPIC processors
– compiler manages hardware resources
– synergy between compiler and architecture is key
– some compiler optimizations will be covered in

depth

• In Superscalar processors
– architecture is “self-managed”
– notably instruction dependence analysis and

scheduling done by hardware

CS211 36

Next. . . .

• Basic ILP techniques: dependence analysis,
simple code optimization

– First look at S/W (Compiler) technique to extract ILP
• Superscalar Processors/ Dynamic ILP

– Branches
– scheduling algorithms implemented in hardware

• EPIC Processors
– Intel IA64 family
– compiler optimizations needed

• Overview of Compiler Optimization

Page 10

CS211 37

Superscalar Processors

CS211 38

Superscalar Terminology

•Basic
Superscalar Able to issue > 1 instruction / cycle
Superpipelined Deep, but not superscalar pipeline.

E.g., MIPS R5000 has 8 stages
Branch prediction Logic to guess whether or not branch will be

taken, and possibly branch target

•Advanced
Out-of-order Able to issue instructions out of program order
Speculation Execute instructions beyond branch points,

possibly nullifying later
Register renaming Able to dynamically assign physical

registers to instructions
Retire unit Logic to keep track of instructions as they

complete.

CS211 39

Superscalar Execution Example
Single Order, Data Dependence – In Order

• Assumptions
– Single FP adder takes 2

cycles
– Single FP multiplier takes 5

cycles
– Can issue add & multiply

together
– Must issue in-order
– <op> in,in,out

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v
w

x
y

(Single adder, data dependence)

(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =
9 cycles

+

w

z

$f12

z

CS211 40

Adding Advanced Features

• Out Of Order Issue
– Can start y as soon as adder available
– Must hold back z until $f10 not busy & adder available

• With Register Renaming

v
w

x

y
z

v
w

x

y
z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v: addt $f2, $f4, $f10a

w: mult $f10a, $f6, $f10a

x: addt $f10a, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f14

Page 11

CS211 41

Flow Path Model of Superscalars

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

CS211 42

Superscalar Pipeline Design

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

Instruction
Flow

Data Flow

CS211 43

Inorder Pipelines

IF

D1

D2

EX

WB

Intel i486

IF IF

D1 D1

D2 D2

EX EX

WB WB

Intel Pentium

U - Pipe V - Pipe

Inorder pipeline, no WAW no WAR (almost always true)
CS211 44

Out-of-order Pipelining 101

• • •

• • •

• • •

• • •IF

ID

RD

WB

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

EX

Program Order

Ia: F1 ← F2 x F3
.

Ib: F1 ← F4 + F5

What is the value of F1? WAW!!!

Out-of-order WB
Ib: F1 ← “F4 + F5”

.
Ia: F1 ← “F2 x F3”

Page 12

CS211 45

Output Dependences (WAW)

Superscalar Execution Check List

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR)

CS211 46

In-order Issue into
Diversified Pipelines

• • •

• • •

• • •

• • •

INT Fadd1 Fmult1 LD/ST

Fadd2 Fmult2

Fmult3

RD ← Fn (RS, RT)

Dest.
Reg.

Func
Unit

Source
Registers

Issue stage needs to check:
1. Structural Dependence
2. RAW Hazard
3. WAW Hazard
4. WAR Hazard

Inorder
Inst.

Stream

CS211 47

Superscalar Processors

• Tasks:
• parallel decoding
• superscalar instruction issue
• parallel instruction execution

– preserving sequential consistency of exception
processing

– preserving sequential consistency of exec.

CS211 48

Parallel Execution

• when instructions executed in parallel they will
finish out of program order

– unequal execution times
• specific means needed to preserve logical

consistency
– preservation of sequential consistency

• exceptions during execution
– preservation seq. consistency exception proc.

Page 13

CS211 49

More Hardware Features
to Support ILP

• Pipelining
– Advantages

» Relatively low cost of implementation - requires
latches within functional units

» With pipelining, ILP can be doubled, tripled or more
– Disadvantages

» Adds delays to execution of individual operations
» Increased latency eventually counterbalances

increase in ILP

CS211 50

• Additional Functional Units
– Advantages

» Does not suffer from increased latency
bottleneck

– Disadvantages
» Amount of functional unit hardware

proportional to degree of parallelism
» Interconnection network and register file size

proportional to square of number of functional
units

Hardware Features to Support ILP

CS211 51

• Instruction Issue Unit
– Care must be taken not to issue an instruction if

another instruction upon which it is dependent is
not complete

– Requires complex control logic in Superscalar
processors

– Virtually trivial control logic in VLIW processors

Hardware Features to Support ILP

CS211 52

• Speculative Execution
– Little ILP typically found in basic blocks

» a straight-line sequence of operations with no
intervening control flow

– Multiple basic blocks must be executed in parallel
» Execution may continue along multiple paths

before it is known which path will be executed

Hardware Features to Support ILP

Page 14

CS211 53

• Requirements for Speculative Execution
– Terminate unnecessary speculative computation

once the branch has been resolved
– Undo the effects of the speculatively executed

operations that should not have been executed
– Ensure that no exceptions are reported until it is

known that the excepting operation should have
been executed

– Preserve enough execution state at each
speculative branch point to enable execution to
resume down the correct path if the speculative
execution happened to proceed down the wrong
one.

Hardware Features to Support ILP

CS211 54

• Speculative Execution
– Expensive in hardware
– Alternative is to perform speculative code motion at

compile time
» Move operations from subsequent blocks up

past branch operations into proceeding blocks
– Requires less demanding hardware

» A mechanism to ensure that exceptions caused
by speculatively scheduled operations are
reported if and only if flow of control is such
that they would have been executed in the non-
speculative version of the code

» Additional registers to hold the speculative
execution state

Hardware Features to Support ILP

CS211 55

Introduction to S/W Techniques for ILP

CS211 56

Instruction Level Parallelism (ILP)

• ILP: Overlap execution of unrelated instructions
• How to extract parallelism from program?

– Beyond single block to get more instruction level parallelism
• Who does instruction scheduling and parallelism

extraction?
– Software or Hardware or mix ?
– Superscalar processors require H/W solutions, but can also

use some compiler help
• What new hardware features are required to support

more ILP..?
– Different requirements for Superscalar and EPIC

Page 15

CS211 57

ILP Techniques
• Key issue to worry about is Hazards

– Control and data
– Rising out of dependencies
– Introduces stalls in execution

• How to increase ILP
– Reduce data hazards: RAW, WAR, WAW
– Handle control hazards better
– Increase ideal IPC (instructions per cycle)

• Note: Bottom line is how to better schedule
instructions

CS211 58

Recall our old friend from Review of
pipelining

• CPI = ideal CPI + Structural Stalls + Data Hazard
Stalls + Control Stalls

– Ideal (pipeline) CPI: measure of the maximum
performance attainable by the implementation

– Structural hazards: HW cannot support this
combination of instructions

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps)

CS211 59

Ideas to Reduce Stalls

Technique Reduces
Dynamic scheduling Data hazard stalls
Dynamic branch
prediction

Control stalls

Issuing multiple
instructions per cycle

Ideal CPI

Speculation Data and control stalls
Dynamic memory
disambiguation

Data hazard stalls involving
memory

Loop unrolling Control hazard stalls
Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence
analysis

Ideal CPI and data hazard stalls

Software pipelining and
trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation Ideal CPI, data and control stalls

Chapter 3

Chapter 4

CS211 60

Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in except to
the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25%
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance enhancements, we must

exploit ILP across multiple basic blocks
• Simplest: loop-level parallelism to exploit parallelism among

iterations of a loop
– Vector is one way

» Where is this useful ?
– If not vector, then either dynamic via branch prediction or static

via loop unrolling by compiler

Page 16

CS211 61

Quick recall of data hazards..

• True/flow dependencies - RAW
• Name dependencies WAR, WAW

– Also known as false dependencies, output dep

CS211 62

• InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

• or InstrJ is data dependent on InstrK which is
dependent on InstrI

• Caused by a “True Dependence” (compiler term)
• If true dependence caused a hazard in the pipeline,

called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

CS211 63

• Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated
with that name; 2 versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1:
Anti-dependence

CS211 64

Name Dependence #2:
Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Page 17

CS211 65

ILP and Data Hazards

• HW/SW must preserve program order:

– order instructions would execute in if executed sequentially
one at a time as determined by original source program

– Does this mean we can never change order of execution of
instructions ?

» Ask - What happens if we change the order of an
instruction

» Does result change ?

CS211 66

ILP and Data Hazards

• HW/SW goal: exploit parallelism by
preserving program order only where it
affects the outcome of the program

• Instructions involved in a name dependence
can execute simultaneously if name used in
instructions is changed so instructions do
not conflict

– Register renaming resolves name dependence for
regs

– Either by compiler or by HW
•

CS211 67

Control Dependencies

• Every instruction is control dependent on some set of
branches, and, in general, these control dependencies
must be preserved to preserve program order
if p1 {
S1;

};
if p2 {
S2;

}
• S1 is control dependent on p1, and S2 is control

dependent on p2 but not on p1.

CS211 68

Control Dependence Ignored

• Control dependence need not be preserved
– willing to execute instructions that should not have been

executed, thereby violating the control dependences, if
can do so without affecting correctness of the program

• Instead, 2 properties critical to program
correctness are exception behavior and data flow

Page 18

CS211 69

Exception Behavior

• Preserving exception behavior => any
changes in instruction execution order must
not change how exceptions are raised in
program (=> no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
• Problem with moving LW before BEQZ?

CS211 70

Data Flow

• Data flow: actual flow of data values among
instructions that produce results and those that
consume them

– branches make flow dynamic, determine which instruction
is supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution

CS211 71

Ok.. ILP through Software/Compiler

• Ask what you (SW/compiler) can do for the
HW ?

• Quick look at one SW technique to
– Decrease CPU time
– expose more ILP

CS211 72

Loop Unrolling: A Simple S/W Technique

• Parallelism within one “basic block” is
minimal

– Need to look at larger regions of code to schedule
• Loops are very common

– Number of iterations, same tasks in each iteration
• Simple Observation : If iterations are

independent, then multiple iterations can be
executed in parallel

• Loop Unrolling- Unrolling multiple iterations
of a loop to create more instructions to
schedule

Page 19

CS211 73

Example FP Loop: Where are the Hazards?

Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar from F2

SD 0(R1),F4 ;store result

SUBI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

• Where are the stalls?
CS211 74

FP Loop Hazards

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar in F2

SD 0(R1),F4 ;store result

SUBI R1,R1,8 ;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

NOP ;delayed branch slot

CS211 75

FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: LD F0,0(R1) ;F0=vector element

2 stall
3 ADDD F4,F0,F2 ;add scalar in F2

4 stall
5 stall
6 SD 0(R1),F4 ;store result

7 SUBI R1,R1,8 ;decrement pointer 8B (DW)

8 BNEZ R1,Loop ;branch R1!=zero

9 stall ;delayed branch slot

CS211 76

Revised FP Loop Minimizing Stalls

6 clocks: Unroll loop 4 times code to make faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: LD F0,0(R1)

2 stall
3 ADDD F4,F0,F2

4 SUBI R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

Page 20

CS211 77

Unroll Loop Four Times (straightforward
way)

Rewrite loop to
minimize stalls?

1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4

CS211 78

Unrolled Loop That Minimizes Stalls

• What assumptions made
when moved code?

– OK to move store past
SUBI even though changes
register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
When safe to move instructions?

CS211 79

Compiler Perspectives on Code
Movement

• Definitions: compiler concerned about dependencies in
program, whether or not a HW hazard depends on a given
pipeline

• Try to schedule to avoid hazards
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k

is data dependent on instruction i.
• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory:

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

CS211 80

Where are the data dependencies?

1 Loop: LD F0,0(R1)

2 ADDD F4,F0,F2

3 SUBI R1,R1,8

4 BNEZ R1,Loop ;delayed branch

5 SD 8(R1),F4 ;altered when move past SUBI

Page 21

CS211 81

Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F0,-8(R1)
2 ADDD F4,F0,F2
3 SD -8(R1),F4 ;drop SUBI & BNEZ
7 LD F0,-16(R1)
8 ADDD F4,F0,F2
9 SD -16(R1),F4 ;drop SUBI & BNEZ
10 LD F0,-24(R1)
11 ADDD F4,F0,F2
12 SD -24(R1),F4
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

How can remove them?

CS211 82

Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

Called “register renaming”

CS211 83

Compiler Perspectives on Code
Movement

• Again Name Dependenceis are Hard for Memory
Accesses

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

CS211 84

Compiler Perspectives on Code
Movement

• Final kind of dependence called control dependence
• Example

if p1 {S1;};

if p2 {S2;};

S1 is control dependent on p1 and S2 is control
dependent on p2 but not on p1.

Page 22

CS211 85

Compiler Perspectives on Code
Movement

• Another kind of dependence called name dependence:
two instructions use same name (register or memory
location) but don’t exchange data

• Antidependence (WAR if a hazard for HW)
– Instruction j writes a register or memory location that

instruction i reads from and instruction i is executed first
• Output dependence (WAW if a hazard for HW)

– Instruction i and instruction j write the same register or memory
location; ordering between instructions must be preserved.

CS211 86

Compiler Perspectives on Code
Movement

• Two (obvious) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled by the
branch.

– An instruction that is not control dependent on a branch cannot be
moved to after the branch so that its execution is controlled by the
branch.

• Control dependencies relaxed to get parallelism; get same effect if
preserve order of exceptions (address in register checked by
branch before use) and data flow (value in register depends on
branch)

– Can “violate” the two constraints above by placing some ‘checks’ in
place ?

» Branch prediction, speculation

CS211 87

Where are the control dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4

4 SUBI R1,R1,8

5 BEQZ R1,exit
6 LD F0,0(R1)
7 ADDD F4,F0,F2
8 SD 0(R1),F4

9 SUBI R1,R1,8

10 BEQZ R1,exit
11 LD F0,0(R1)
12 ADDD F4,F0,F2
13 SD 0(R1),F4

14 SUBI R1,R1,8

15 BEQZ R1,exit
....

CS211 88

When Safe to Unroll Loop?

• Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)
for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same
is true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations

• Implies that iterations are dependent, and can’t be
executed in parallel

• Not the case for our prior example; each iteration was
distinct

Page 23

CS211 89

HW Schemes: Instruction Parallelism

• Why in HW at run time?
– Works when can’t know real dependence at compile time
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

– Enables out-of-order execution => out-of-order completion
– ID stage checked both for structuralScoreboard dates to

CDC 6600 in 1963

CS211 90

Next. . . Superscalar Processor Design

• How to deal with instruction flow
– Dynamic Branch prediction

• How to deal with register/data flow
– Register renaming

• Dynamic branch prediction
• Dynamic scheduling using Tomasulo method

