
1

CS 211CS 211
Introduction to Explicitly Parallel Introduction to Explicitly Parallel 

Instruction Computing (EPIC) and Instruction Computing (EPIC) and 
Very Long Instruction Word (VLIW) Very Long Instruction Word (VLIW) 

ArchitecturesArchitectures

Bhagi Narahari

CS 211

Static ILP: VLIW/EPIC Architectures

• Overview of key Explicit Parallel 
Instruction Computing (EPIC) concepts
– speculation, predication, register files

• Very Large Instruction Word (VLIW) and 
EPIC:
– VLIW architectures progressed to EPIC
– Let’s take a quick look at VLIW

CS 211

VLIW and EPIC

• VLIW architectures progressed to EPIC
• A quick look at “pure” VLIW approach

CS 211

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for 
multiple operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as 

ops)

• Tradeoff instruction space for simple 
decoding

– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several 

branches



2

CS 211

What Is VLIW?
• VLIW separately directs each functional unit

add r1,r2,r3

FU FU FU FU

load r4,r5+4 mov r6,r2 mul r7,r8,r9
VLIW

Instruction
Execution

CS 211

Historical Perspective: 
Microcoding, nanocoding (and RISC)

micro
sequencer

microcode
store

datapath control

Macro 
Instructions

nanocode
store

datapath control

CS 211

Principles of VLIW Operation
• Statically scheduled ILP architecture.
• Wide instructions specify many independent simple 

operations.

• Multiple functional units executes all of the operations in an 
instruction concurrently, providing fine-grain parallelism 
within each instruction

• Instructions directly control the hardware with no 
interpretation and minimal decoding.

• A powerful optimizing compiler is responsible for locating 
and extracting ILP from the program and for scheduling 
operations to exploit the available parallel resources

The processor does not make any run-time control 
decisions below the program level

VLIW Instruction
100 - 1000 bits

CS 211

Realistic VLIW Datapath

FAdd
(1 cycle)

Multi-Ported Register File    

Instruction 
Memory

FMul
4 cyc pipe

FMul
4 cyc unpipe

FDiv
16 cycle

Sequencer
Condition Codes

Multi-Ported Register File    

No Bypass!!
No Stall!!



3

CS 211

Ideal Models for VLIW Machines
• Almost all VLIW research has been based upon 

an ideal processor model.
• This is primarily motivated by compiler algorithm 

developers to simplify scheduling algorithms and 
compiler data structures.
– This model includes:

• Multiple universal functional units
• Single-cycle global register file

and often:
• Single-cycle execution
• Unrestricted, Multi-ported memory
• Multi-way branching

and sometimes:
• Unlimited resources (Functional units, registers, etc.)

CS 211

Scheduling for Fine-Grain Parallelism

• The program is translated into primitive RISC-
style (three address) operations

• Dataflow analysis is used to derive an operation 
precedence graph from a portion of the original 
program

• Operations which are independent can be 
scheduled to execute concurrently contingent 
upon the availability of resources

• The compiler manipulates the precedence graph 
through a variety of semantic-preserving 
transformations to expose additional parallelism

CS 211

Example

Original Program 3-Address Code

Dependency Graph

VLIW Instructions

e = (a + b) * (c + d)
b++;

A: r1 = a + b
B: r2 = c + d
C: e = r1 * r2
D: b = b + 1

B

C

A

D

00: add a,b,r1 add c,d,r2 add b,1,b

01: mul r1,r2,e nop nop

CS 211

VLIW List Scheduling – will return to 
List Scheduling later…

• Assign Priorities
• Compute Data Ready List - all operations whose 

predecessors have been scheduled.
• Select from DRL in priority order while checking resource 

constraints
• Add newly ready operations to DRL and repeat for next 

instruction
1

5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

{13}13

{10,11,12}111012

{2,7,8,9}8729

{2,3,4,5,6}5436

{1}1

Data Ready List4-wide VLIW



4

CS 211

Recall: Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

CS 211

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

CS 211

Enabling Technologies for VLIW

• VLIW Architectures achieve high 
performance through the combination of a 
number of key enabling hardware and 
software technologies.
– Optimizing Schedulers (compilers)
– Static Branch Prediction
– Symbolic Memory Disambiguation
– Predicated Execution
– (Software) Speculative Execution
– Program Compression

CS 211

VLIW Design Issues

• Unresolved design issues 
– The best functional unit mix
– Register file and interconnect topology
– Memory system design
– Best instruction format

• Many questions could be answered through 
experimental research
– Difficult - needs effective retargetable compilers

• Compatibility issues still limit interest in 
general-purpose VLIW technology

However, VLIW may be the only way to build 8-16 
operation/cycle machines.



5

CS 211

VLIW vs. Superscalar [Bob Rau, HP]

nomaybe
(Resv. Stations)

Runtime instruction 
reordering

maybe
(iteration frames)

maybe
(renaming)

Runtime register allocation

occasionallymaybeRun-time analysis of 
memory dependencies

noyesRun-time analysis of register 
dependencies

noyesInstruction stream parsing

yesnoMultiple 
operations/instruction

yesyesMultiple instructions/cycle
VLIWSuperscalarAttributes

CS 211

Real VLIW Machines
• VLIW Minisupercomputers/Superminicomputers:

– Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
– Multiflow TRACE /500 [Bob Colwell]
– Cydrome Cydra 5 [Bob Rau]
– IBM Yorktown VLIW Computer (research machine)

• Single-Chip VLIW Processors:
– Intel iWarp, Philip’s LIFE Chips (research)

• Single-Chip VLIW Media (through-put) Processors:
– Trimedia, Chromatic, Micro-Unity 

• DSP Processors (Texas Inst. TMS320C6x , Philips 
Trimedia)

• Intel/HP  EPIC  IA-64 (Explicitly Parallel Instruction 
Comp.)

• Transmeta Crusoe (x86 on VLIW??)
• Sun MAJC (Microarchitecture for Java Computing)

CS 211

Why VLIW Now?

• Technology Trends: Nonscalability of Superscalar 
Processor
– ILP and complexity

• Better compilation technology

Data
CacheInstruction

Cache

CPU

Data
Cache

Instruction
Cache

16 IPC

(1MB) (1.5MB)

VLIW CPU

1 Billion Transistor
Superscalar Processor

1 Billion Transistor
VLIW Processor

CS 211

Performance Obstacles of Superscalars

• Branches
– branch prediction helps, but penalty is still significant
– limits scope of dynamic and static ILP analysis + code motion

• Memory Load Latency
– CPU speed increases at 60% per year
- memory speed increases only 5% per year

• Memory Dependence
– disambiguation is hard, both in hardware and software

• Sequential Execution Semantics ISAs
– total ordering of all the instructions
– implicit inter-instruction dependences

Very expensive to implement wide dynamic 
superscalars



6

CS 211

Strengths of VLIW Technology

• Parallelism can be exploited at the instruction level
– Available in both vectorizable and sequential programs.

• Hardware is regular and straightforward
– Most hardware is in the datapath performing useful computations.
– Instruction issue costs scale approximately linearly

Potentially very high clock rate

• Architecture is “Compiler Friendly”
– Implementation is completely exposed - 0 layer of interpretation
– Compile time information is easily propagated to run time.

• Exceptions and interrupts are easily managed
• Run-time behavior is highly predictable

– Allows real-time applications.
– Greater potential for code optimization.

CS 211

Weaknesses of VLIW Technology
• No object code compatibility between 

generations
• Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory compression” 
by encoding NOPs in the instruction memory

• Compilers are extremely complex
– Assembly code is almost impossible

• Philosophically incompatible with caching 
techniques

• VLIW memory systems can be very complex
– Simple memory systems may provide very low performance
– Program controlled multi-layer, multi-banked memory

• Parallelism is underutilized for some algorithms.

CS 211

The EPIC Model

• VLIW concept in terms of static ILP
– Use compiler to extract parallelism

• Try to overcome limitations of VLIW
• Can we use additional H/W support to 

enhance S/W techniques?

CS 211

EPIC Concepts

• Explicitly Parallel Instruction Computing
– unlike early VLIW designs, EPIC does not use fixed 

width instructions....as many parallel as possible!

• Programs must be written using 
sequential semantics
– parallel semantics not supported
– explicitly lay out the parallelism
– eg: swapping of operands



7

CS 211

Intel/HP EPIC/IA-64 Architecture

• EPIC (Explicitly Parallel Instruction 
Computing)
– An ISA philosophy/approach

e.g. CISC, RISC, VLIW
– Very closely related to but not the same as VLIW

• IA-64 
– An ISA definition

e.g. IA-32 (was called x86), PA-RISC
– Intel’s new 64-bit ISA
– An EPIC type ISA

• Itanium (was code named Merced) 
– A processor implementation of an ISA

» e.g. P6, PA8500

– The first implementation of the IA-64 ISA 
CS 211

IA-64  EPIC vs. Classic VLIW
• Similarities:

– Compiler generated wide instructions
– Static detection of dependencies 
– ILP encoded in the binary (a group)
– Large number of architected registers

• Differences:
– Instructions in a bundle can have dependencies
– Hardware interlock between dependent instructions
– Accommodates varying number of functional units and 

latencies
– Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations 

but software won’t run at top speed until it is recompiled so 
“shrink-wrap binary” might need to include multiple builds

CS 211

EPIC: Key Concepts

• Speculation
• Predication (and parallel compares)
• Large (Rotating) Register Files

CS 211

EPIC Concepts: Speculation

• What do you do with all the parallelism and 
how
– traditional problem has been that we never have enough 

work ready in order to keep a machine fully busy

• what happens when you stop worrying about 
only doing things we must
– if we have the power of parallelism, key is to not throw it 

away
– anytime processor is ready to do six things, do not give it 

only two things to do and ignore ability to do more
– how?



8

CS 211

EPIC Concepts: Speculation

• Speculatively ask machine to do more things
• pick tasks that might be needed in future

– just aren’t sure whether they will be needed at the time
– make sure you can determine if they will be needed
– extra tasks does not involve time (due to parallel units)
– even if they useful only 50% of the time, we have completed 

50% of the tasks ahead of time!

• Promise of EPIC based on speculation
– goal is to compute things before they are needed, so when 

program needs result it is already there!

• Note: Branch Prediction is part of speculation but 
not all of speculation concept

CS 211

EPIC Concepts: Predication

• Branching is generally bad because it 
interferes with the ideal pipeline model of 
reading instructions while earlier inst is 
executed

• ideally, if we eliminate branches then this 
problem disappears
– Can we lin instruction to a condition ?

• Predication is process by which branches 
are eliminated
– Note: predication is not branch prediction!!

CS 211

EPIC Concepts: Predication

• Predication allows instructions to execute 
in parallel, with some “on”and some “off” 
but without need for branches
– Every instruction written with a specified predicate 

register to control whether instruction executes at run-
time

• Ability to do “parallel compares”
– ability to compute and combine comparison operations 

in parallel
– (A>B) and (B<0) can be computed in parallel using 

parallel compare instructions

CS 211

EPIC Concepts: Predication

• EPIC provides predicated instructions
– every instruction can be executed in predicated manner
– instruction execution tied to result of a predicate 

register
– one predicate register hardwired to a 1; use this to 

always execute



9

CS 211

EPIC Concepts: Predication

If (a > b) {
x = a
z = 1

} else  {
x = b 
z = z +1

}

CS 211

EPIC Concepts: Predication

Test = TRUE if (a > b), else FALSE
if (test is TRUE)   tmp1 = a
if (test is FALSE)  tmp1 = b
x = tmp1
if (test is TRUE) tmp2 =1
if (test is FALSE)  tmp2 = z +1
z = tmp2

note: No branches above!

CS 211

Predication

T F

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
r1 ← r2 + r3

...

pr1 ← cmp ...

...

r1 ← r2 - r3 if pr1

...

r1 ← r2 + r3 if !pr1

CS 211

cmp

Predicated Execution
• Each instruction can be separately predicated 
• 64 one-bit predicate registers in IA-64

An instruction is effectively a NOP if its predicate is false
• Converts control flow into dataflow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 ←cmp

join1

join2

else1p2

then2p1 else2p2

then1p1



10

CS 211

How does Predication help ILP?

• Two paths of branch become independent 
instructions – tagged by predicate register

• Can send both into execution pipeline
– Parallel execution

• Will retire/commit instruction when 
predicate register is set – if not set then 
effectively a NOP
– Note similarity to use of speculative tags in superscalar

CS 211

Compare Operations

• Comparison operations may
– set predicate registers (up to two simultaneously)
– compare to a GPR

• Comparison operations themselves can 
be predicated

• Predicate registers may be combined by 
logical operations

CS 211

If-conversion for Predication

s = s + a

*p = s

a < b

cmp.lt p1,p2=a,b;;
(p1) s = s + a  
(p2) s = s + b;;

*p = s

• Identifying region of basic blocks based on resource 
requirement and profitability (branch mis-prediction rate, 
mis-prediction cost, and parallelism) 
• Result: a predicated block

s = s + b

CS 211

Reducing Control Height
with parallel compares

p1=0;;
cmp.lt.or p1,p0=a,b
cmp.lt.or p1,p0=b,c

(p1) br s1;;
s2

• Convert nested if’s into a single predicate
• Result: shorter control path by reducing the number of 
branches

a < b

b < c

s1
s2

Y
N

Y N



11

CS 211

Multiway Branch Example

• Use Multiway
branches
– Speculate compare (i.e. 

move above branch)
– Do not reduce number of 

branches

B<C

A<B

cmp.lt p1,p0=a,b
cmp.lt p2,p0=b,c

(p1) br X
(p2) br Z;;

Y

X Y

cmp.lt p1,p0=a,b 

(p1) br X;;

cmp.lt p2,p0=b,c

(p2) br Z;;

Y

Z

CS 211

Predication is not 
Control Speculation

• Two type of speculation:
– data speculation
– control speculation

• In data speculation: loads are moved 
ahead of stores (will be discussed later)

• In control speculation: instructions are 
moved from below a branch to above a 
branch
– control speculation ≠ predication

CS 211

Differences

• In predication:
– compare instruction sets predicate registers
– predicate registers used to confirm instructions and 

annul others
– exceptions take place where they occur

CS 211

Differences

• In control speculation:
– instructions below a branch is moved to above it and 

marked as speculative
– exceptions are postponed via register tagging
– if speculation turns out to be false, result is discarded 

(register overwritten)
– if speculation turns out to be true, must check whether 

speculative instructions caused exceptions



12

CS 211

Control Speculation

T F

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
r1 ← r2 + r3

...

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

r1 is 
overwritten

non-spec 
use of r1 
cause tag 

check

CS 211

Control Speculation

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

Note: If the speculation caused 
a delayed exception, then r1’s 
speculation tag is set. 
However, in X, where the 
speculation is unwanted, r1 is 
simply overwritten - r2 and r3 
being non-speculative will 
cause the speculation tag of r1 
to be cleared.

CS 211

Control Speculation

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

Note: In the block where 
speculation is wanted, r1 is a 
source. A source of a non-
speculative instruction with a 
speculation tag set will cause 
an exception!

CS 211

Control and Data Speculation
• Two kinds of instructions in IA-64 programs

– Non-speculative instructions -- known to be useful/needed
• Would have been executed in the original program

– Speculative instructions -- may or may not be used
• Schedule operations before results are known to be needed
• Usually boosts performance, but occasionally may degrade
• Heuristics can guide compiler in aggressiveness

• Two kinds of speculation
– Control and Data

• Moving loads up is a key to performance
– Hide increasing memory latency
– Computation chains frequently begin with loads



13

CS 211

Architectural Support for Control Speculation
• 65th bit (NaT bit) on each GR indicates if an 

exception has occurred
– Plus which part of code it went to

• Special speculative loads that set the NaT bit if a 
deferrable exception occurs

• Special chk.s instruction that checks the NaT bit 
and branches to recovery, if set

• Computational instructions propagate NaTs like 
IEEE NaN’s

• Compare operations propagate “false” when 
writing predicates

CS 211

Architectural Support for Data Speculation

• ALAT – Advanced Load Architecture Table: HW 
structure containing information about 
outstanding loads advanced across stores

• Instructions
– ld.a - advanced loads
– ld.c - check loads
– chk.a - advance load checks
– aliasing st invalidating entries in ALAT

• Speculative advanced loads - ld.sa - is a control 
speculative advanced load with fault deferral 
(combines ld.a and ld.s)

CS 211

Speculative, Non-Faulting Load

• ld.s fetches speculatively from memory
i.e. any exception due to ld.s is suppressed

• If ld.s r did not cause an exception then chk.s r is an NOP, else a 
branch is taken (to some compensation code)

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br

CS 211

Speculative, Non-Faulting Load

• Speculatively load data can be consumed prior to check
• “speculation” status is propagated with speculated data
• Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions)
• chk.s checks the entire dataflow sequence for exceptions

inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1 
inst 2
use=r1
….
br

chk.s use…. ld r1=[a]
use=r1

br



14

CS 211

Advanced Load

• What if we have a load unit free ?
– Even within a basic block ?

• Move a load instruction to an earlier slot: 
what do we have to watch out for ??
– Load R1, (R2)      assume R2=100

• Make sure no intervening store has written 
to same address
– Has store has written anything into address 100 ?

• Yes= redo load again, No= use the loaded data

CS 211

“Advanced” Load

• ld.a starts the monitoring of any store to the same address as the 
advanced load

• If no aliasing has occurred since ld.a, ld.c is a NOP
• If aliasing has occurred, ld.c re-loads from memory

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]

CS 211

Using Load Results 

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a r1
….

st[?]

ld r1=[a]
use=r1

CS 211

EPIC Concepts: Rotating Register Sets 
and Software Pipelining

• Speculation and Predication require large 
sets of registers in EPIC

• In addition, concept of Rotating Register 
Sets to support Software Pipelining
– to help with execution of loops
– extend pipeline concept

• Recall Loop unrolling concept:
– Unroll loop iterations: perform multiple iterations 

concurrently
• Can explode the code size



15

CS 211

Software Pipelining: 
also known as Modulo Scheduling

Iteration

1

Conventional Sequential Execution of iterations

Loop Body

2 n

n

2

1

Overlapped Execution by
Pipelining iterations

Less time overall

Iterations

CS 211

Software Pipelining Example

A
B
C 
D

Four
Independent
Instructions

A
B     A
C     B     A

D     C     B     A

D     C     B
D     C

D

Loop 
Body

SOFTWARE 
PIPELINE

Prologue

New Loop Body

ILP = 4

Epilogue

CS 211

Rotating Loop Frames for Loop Pipelining
Suppose Bi is only data 

dependent (through data 
stored in registers) on Ai; 
and Ci only on Bi

• The “pipelined” kernel 
block (containing 
independent computation 
from Ci, Bi+1 and Ai+2 ) 
potentially has better ILP

What happens if Ci is also 
data dependent on Ai

• The result placed in 
register by A gets 
clobbered by the next 
execution of A (in the next 
cycle) before C can use it 
two cycles from now

A

B

C

A

B

C

A

B A

C

C B

ep
ilo

g
ke

rn
el

pr
ol

og

CS 211

i=0
while (i<99) {

;; a[ i ]=a[ i ]/10
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry
i++

}

Nice Loop Pipelining Example

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry

i=i+3
}

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry

Ry=Rx / 10

Rx=a[i+2]

i++
}

a[97]=Ry
a[98]=Rx / 10

A
B
C

A

B

C



16

CS 211

EPIC Concepts: Software Pipelining

• Software pipeline (also known as Modulo 
Scheduling) requires ‘register reuse’
– instead provide Rotating Register Sets

• In IA-64 Registers organized into set of 32 
static registers and 96 rotating registers
– R[1], R[2],...R[32]
– RRB: Rotating register base

• Can reference one set of rotating registers in an iteration, 
and the H/W takes care of assigning others

• can allow same references in four different iterations

CS 211

Register Files
Static/Rotating

• Each register file may have a static and a rotating portion
• The ith rotating register in file F is named F[i]
• F [i]  ≡ FR [(RRB + i) % size(FR)]

FR

FS

F

size(FR)

CS 211

Rotating Registers: Example

• Let loop body use:  r1,r2,r3,r4
• Can specify RRB (base) = 33

– First iteration will get  33, 34, 35,36
– Second iteration will get 37,38,39,40
– i.e., modulo 4

CS 211

• 128 general purpose physical integer 
registers

• Register names R0 to R31 are static 
and refer to the first 32 physical 
GPRs

• Register names R32 to R127 are 
known as “rotating registers” and are 
renamed onto the remaining 96 
physical registers by an offset

• Remapping wraps around the 
rotating registers such that when 
offset is non-zero, physical location 
of R127 is just below R32

Register Renaming

ph
ys

ic
al

 re
gi

st
er

R
0 

to
 R

31
ph

ys
ic

al
 re

gi
st

er
 R

32
 to

 R
12

7

re
gi

st
er

  n
am

e 
R

32
 a

nd
 u

p

offset

re
g 

na
m

e 
R

0 
to

 R
31



17

CS 211

Renaming with Rotating Registers

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i= -2

while (i<99) {
pred(i>-1):

a[i]=Ry+RR(x-2)

pred(i>-2 && i<98):
Ry=RR(x-1) / 10

pred(i<97):
RR(x)=a[i+2]

`increase RR offset by 1’
i++

}

CS 211

Loop Pipelining Requiring Renaming

i=0
while (i<99) {

;; a[ i ]=a[ i ]/10+a[ i ]
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry+Rx
i++

}

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry+Rx

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry+Rx

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry+Rx

i=i+3
}

WAR

WAR

A
B
C

CS 211

EPIC Summary

• H/W techniques added to pure VLIW S/W 
techniques
– Speculation support
– Predicated execution model
– Rotating registers for s/w pipelining

• Next: 
– An example EPIC: IA-64

• How to solve the code compatibility issue?
• How to deal with recompiling when changing the 

microarchitecture ?
– Concept of Bundle Scheduling

– Some advanced superscalar features: branch prediction

CS 211

Quick Look at an EPIC Processor:
The IA-64 Architecture

• 128 general-purpose registers
• 128 floating-point registers
• Arbitrary number of functional units
• Arbitrary latencies on the functional units
• Arbitrary number of memory ports
• Arbitrary implementation of the memory 

hierarchy

Needs retargetable compiler and recompilation to 
achieve maximum program performance on 
different IA-64 implementations



18

CS 211

IA-64 Instruction Format
• IA-64 “Bundle”

– Total of 128 bits
– Contains three IA-64 instructions (aka syllables)
– Template bits in each bundle specify dependencies both 

within a bundle as well as between sequential bundles
– A collection of independent bundles forms a “group”

A more efficient and flexible way to encode ILP then a fixed 
VLIW format

• IA-64 Instruction
– Fixed-length 40 bits long
– Contains three 7-bit register specifiers
– Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers

inst1 inst2 inst3 temp

CS 211

IA-64: Groups & Bundles

• A group is a set of “parallel”/independent 
instructions
– All operations in a group can be executed in parallel if 

there are no resource limits
– A STOP command indicates end of group

• A bundle is what is presented to a 
processor
– Group consists of a number of bundles
– A bundle sent to the processor

• What is the advantage of this ?

CS 211

Cool Features of IA64

• Predicated execution
• Speculative, non-faulting Load instruction
• Software-assisted branch prediction
• Register stack
• Rotating register frame
• Software-assisted memory hierarchy

Mostly adapted from mechanisms that had 
existed for VLIWs

CS 211

Itanium Specifics
• 6-wide 10-stage pipeline
• Fetch 2 bundles per cycle with the help of BP into a 8-bundle deep 

fetch queue
• 512-entry 2-level BPT, 64-entry BTAC, 4 TAR, and a RSB
• Issue up to 2 bundles per cycle some mixes of 6 instructions 

e.g. (MFI,MFI) or (MIB,MIBh) 
• Can issue as little as one syllable per cycle on RAW hazard interlock 

or structural hazard  (scoreboard for RAW detection)
• 8R-6W 128 Entry Int. GPR, 128 82-bit FPR, 64 predicate reg’s
• 4 globally-bypassed single-cycle integer ALUs with MMX,

2 FMACs, 2 LSUs, 3 BUs
• Can execute IA-32 software directly

• Intended for high-end server and workstations
• You can buy one now, finally.



19

CS 211

IA-64  EPIC vs. Classic VLIW
• Similarities:

– Compiler generated wide instructions
– Static detection of dependencies 
– ILP encoded in the binary (a group)
– Large number of architected registers

• Differences:
– Instructions in a bundle can have dependencies
– Hardware interlock between dependent instructions
– Accommodates varying number of functional units and 

latencies
– Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations 

but software won’t run at top speed until it is recompiled so 
“shrink-wrap binary” might need to include multiple builds

CS 211

EPIC and Compiler Optimization

• EPIC requires dependency free 
“scheduled code”

• Burden of extracting parallelism falls on 
compiler

• success of EPIC architectures depends on 
efficiency of Compilers!!

• We provide overview of Compiler 
Optimization techniques (as they apply to 
EPIC/ILP)


