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Static ILP: VLIW/EPIC Architectures

• Overview of key Explicit Parallel 
Instruction Computing (EPIC) concepts
– speculation, predication, register files

• Very Large Instruction Word (VLIW) and 
EPIC:
– VLIW architectures progressed to EPIC
– Let’s take a quick look at VLIW
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VLIW and EPIC

• VLIW architectures progressed to EPIC
• A quick look at “pure” VLIW approach
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VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for 
multiple operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as 

ops)

• Tradeoff instruction space for simple 
decoding

– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

• 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several 

branches
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What Is VLIW?
• VLIW separately directs each functional unit

add r1,r2,r3

FU FU FU FU

load r4,r5+4 mov r6,r2 mul r7,r8,r9
VLIW

Instruction
Execution
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Historical Perspective: 
Microcoding, nanocoding (and RISC)

micro
sequencer

microcode
store

datapath control

Macro 
Instructions

nanocode
store

datapath control
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Principles of VLIW Operation
• Statically scheduled ILP architecture.
• Wide instructions specify many independent simple 

operations.

• Multiple functional units executes all of the operations in an 
instruction concurrently, providing fine-grain parallelism 
within each instruction

• Instructions directly control the hardware with no 
interpretation and minimal decoding.

• A powerful optimizing compiler is responsible for locating 
and extracting ILP from the program and for scheduling 
operations to exploit the available parallel resources

The processor does not make any run-time control 
decisions below the program level

VLIW Instruction
100 - 1000 bits

CS 211

Realistic VLIW Datapath

FAdd
(1 cycle)

Multi-Ported Register File    

Instruction 
Memory

FMul
4 cyc pipe

FMul
4 cyc unpipe

FDiv
16 cycle

Sequencer
Condition Codes

Multi-Ported Register File    

No Bypass!!
No Stall!!
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Ideal Models for VLIW Machines
• Almost all VLIW research has been based upon 

an ideal processor model.
• This is primarily motivated by compiler algorithm 

developers to simplify scheduling algorithms and 
compiler data structures.
– This model includes:

• Multiple universal functional units
• Single-cycle global register file

and often:
• Single-cycle execution
• Unrestricted, Multi-ported memory
• Multi-way branching

and sometimes:
• Unlimited resources (Functional units, registers, etc.)
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Scheduling for Fine-Grain Parallelism

• The program is translated into primitive RISC-
style (three address) operations

• Dataflow analysis is used to derive an operation 
precedence graph from a portion of the original 
program

• Operations which are independent can be 
scheduled to execute concurrently contingent 
upon the availability of resources

• The compiler manipulates the precedence graph 
through a variety of semantic-preserving 
transformations to expose additional parallelism
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Example

Original Program 3-Address Code

Dependency Graph

VLIW Instructions

e = (a + b) * (c + d)
b++;

A: r1 = a + b
B: r2 = c + d
C: e = r1 * r2
D: b = b + 1

B

C

A

D

00: add a,b,r1 add c,d,r2 add b,1,b

01: mul r1,r2,e nop nop
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VLIW List Scheduling – will return to 
List Scheduling later…

• Assign Priorities
• Compute Data Ready List - all operations whose 

predecessors have been scheduled.
• Select from DRL in priority order while checking resource 

constraints
• Add newly ready operations to DRL and repeat for next 

instruction
1

5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

{13}13

{10,11,12}111012
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Data Ready List4-wide VLIW
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Recall: Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)
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Enabling Technologies for VLIW

• VLIW Architectures achieve high 
performance through the combination of a 
number of key enabling hardware and 
software technologies.
– Optimizing Schedulers (compilers)
– Static Branch Prediction
– Symbolic Memory Disambiguation
– Predicated Execution
– (Software) Speculative Execution
– Program Compression
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VLIW Design Issues

• Unresolved design issues 
– The best functional unit mix
– Register file and interconnect topology
– Memory system design
– Best instruction format

• Many questions could be answered through 
experimental research
– Difficult - needs effective retargetable compilers

• Compatibility issues still limit interest in 
general-purpose VLIW technology

However, VLIW may be the only way to build 8-16 
operation/cycle machines.
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VLIW vs. Superscalar [Bob Rau, HP]

nomaybe
(Resv. Stations)

Runtime instruction 
reordering

maybe
(iteration frames)

maybe
(renaming)

Runtime register allocation

occasionallymaybeRun-time analysis of 
memory dependencies

noyesRun-time analysis of register 
dependencies

noyesInstruction stream parsing

yesnoMultiple 
operations/instruction

yesyesMultiple instructions/cycle
VLIWSuperscalarAttributes
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Real VLIW Machines
• VLIW Minisupercomputers/Superminicomputers:

– Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
– Multiflow TRACE /500 [Bob Colwell]
– Cydrome Cydra 5 [Bob Rau]
– IBM Yorktown VLIW Computer (research machine)

• Single-Chip VLIW Processors:
– Intel iWarp, Philip’s LIFE Chips (research)

• Single-Chip VLIW Media (through-put) Processors:
– Trimedia, Chromatic, Micro-Unity 

• DSP Processors (Texas Inst. TMS320C6x , Philips 
Trimedia)

• Intel/HP  EPIC  IA-64 (Explicitly Parallel Instruction 
Comp.)

• Transmeta Crusoe (x86 on VLIW??)
• Sun MAJC (Microarchitecture for Java Computing)
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Why VLIW Now?

• Technology Trends: Nonscalability of Superscalar 
Processor
– ILP and complexity

• Better compilation technology

Data
CacheInstruction

Cache

CPU

Data
Cache

Instruction
Cache

16 IPC

(1MB) (1.5MB)

VLIW CPU

1 Billion Transistor
Superscalar Processor

1 Billion Transistor
VLIW Processor
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Performance Obstacles of Superscalars

• Branches
– branch prediction helps, but penalty is still significant
– limits scope of dynamic and static ILP analysis + code motion

• Memory Load Latency
– CPU speed increases at 60% per year
- memory speed increases only 5% per year

• Memory Dependence
– disambiguation is hard, both in hardware and software

• Sequential Execution Semantics ISAs
– total ordering of all the instructions
– implicit inter-instruction dependences

Very expensive to implement wide dynamic 
superscalars
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Strengths of VLIW Technology

• Parallelism can be exploited at the instruction level
– Available in both vectorizable and sequential programs.

• Hardware is regular and straightforward
– Most hardware is in the datapath performing useful computations.
– Instruction issue costs scale approximately linearly

Potentially very high clock rate

• Architecture is “Compiler Friendly”
– Implementation is completely exposed - 0 layer of interpretation
– Compile time information is easily propagated to run time.

• Exceptions and interrupts are easily managed
• Run-time behavior is highly predictable

– Allows real-time applications.
– Greater potential for code optimization.
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Weaknesses of VLIW Technology
• No object code compatibility between 

generations
• Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory compression” 
by encoding NOPs in the instruction memory

• Compilers are extremely complex
– Assembly code is almost impossible

• Philosophically incompatible with caching 
techniques

• VLIW memory systems can be very complex
– Simple memory systems may provide very low performance
– Program controlled multi-layer, multi-banked memory

• Parallelism is underutilized for some algorithms.
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The EPIC Model

• VLIW concept in terms of static ILP
– Use compiler to extract parallelism

• Try to overcome limitations of VLIW
• Can we use additional H/W support to 

enhance S/W techniques?
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EPIC Concepts

• Explicitly Parallel Instruction Computing
– unlike early VLIW designs, EPIC does not use fixed 

width instructions....as many parallel as possible!

• Programs must be written using 
sequential semantics
– parallel semantics not supported
– explicitly lay out the parallelism
– eg: swapping of operands
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Intel/HP EPIC/IA-64 Architecture

• EPIC (Explicitly Parallel Instruction 
Computing)
– An ISA philosophy/approach

e.g. CISC, RISC, VLIW
– Very closely related to but not the same as VLIW

• IA-64 
– An ISA definition

e.g. IA-32 (was called x86), PA-RISC
– Intel’s new 64-bit ISA
– An EPIC type ISA

• Itanium (was code named Merced) 
– A processor implementation of an ISA

» e.g. P6, PA8500

– The first implementation of the IA-64 ISA 
CS 211

IA-64  EPIC vs. Classic VLIW
• Similarities:

– Compiler generated wide instructions
– Static detection of dependencies 
– ILP encoded in the binary (a group)
– Large number of architected registers

• Differences:
– Instructions in a bundle can have dependencies
– Hardware interlock between dependent instructions
– Accommodates varying number of functional units and 

latencies
– Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations 

but software won’t run at top speed until it is recompiled so 
“shrink-wrap binary” might need to include multiple builds
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EPIC: Key Concepts

• Speculation
• Predication (and parallel compares)
• Large (Rotating) Register Files
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EPIC Concepts: Speculation

• What do you do with all the parallelism and 
how
– traditional problem has been that we never have enough 

work ready in order to keep a machine fully busy

• what happens when you stop worrying about 
only doing things we must
– if we have the power of parallelism, key is to not throw it 

away
– anytime processor is ready to do six things, do not give it 

only two things to do and ignore ability to do more
– how?
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EPIC Concepts: Speculation

• Speculatively ask machine to do more things
• pick tasks that might be needed in future

– just aren’t sure whether they will be needed at the time
– make sure you can determine if they will be needed
– extra tasks does not involve time (due to parallel units)
– even if they useful only 50% of the time, we have completed 

50% of the tasks ahead of time!

• Promise of EPIC based on speculation
– goal is to compute things before they are needed, so when 

program needs result it is already there!

• Note: Branch Prediction is part of speculation but 
not all of speculation concept
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EPIC Concepts: Predication

• Branching is generally bad because it 
interferes with the ideal pipeline model of 
reading instructions while earlier inst is 
executed

• ideally, if we eliminate branches then this 
problem disappears
– Can we lin instruction to a condition ?

• Predication is process by which branches 
are eliminated
– Note: predication is not branch prediction!!
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EPIC Concepts: Predication

• Predication allows instructions to execute 
in parallel, with some “on”and some “off” 
but without need for branches
– Every instruction written with a specified predicate 

register to control whether instruction executes at run-
time

• Ability to do “parallel compares”
– ability to compute and combine comparison operations 

in parallel
– (A>B) and (B<0) can be computed in parallel using 

parallel compare instructions
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EPIC Concepts: Predication

• EPIC provides predicated instructions
– every instruction can be executed in predicated manner
– instruction execution tied to result of a predicate 

register
– one predicate register hardwired to a 1; use this to 

always execute
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EPIC Concepts: Predication

If (a > b) {
x = a
z = 1

} else  {
x = b 
z = z +1

}

CS 211

EPIC Concepts: Predication

Test = TRUE if (a > b), else FALSE
if (test is TRUE)   tmp1 = a
if (test is FALSE)  tmp1 = b
x = tmp1
if (test is TRUE) tmp2 =1
if (test is FALSE)  tmp2 = z +1
z = tmp2

note: No branches above!
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Predication

T F

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
r1 ← r2 + r3

...

pr1 ← cmp ...

...

r1 ← r2 - r3 if pr1

...

r1 ← r2 + r3 if !pr1

CS 211

cmp

Predicated Execution
• Each instruction can be separately predicated 
• 64 one-bit predicate registers in IA-64

An instruction is effectively a NOP if its predicate is false
• Converts control flow into dataflow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 ←cmp

join1

join2

else1p2

then2p1 else2p2

then1p1
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How does Predication help ILP?

• Two paths of branch become independent 
instructions – tagged by predicate register

• Can send both into execution pipeline
– Parallel execution

• Will retire/commit instruction when 
predicate register is set – if not set then 
effectively a NOP
– Note similarity to use of speculative tags in superscalar
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Compare Operations

• Comparison operations may
– set predicate registers (up to two simultaneously)
– compare to a GPR

• Comparison operations themselves can 
be predicated

• Predicate registers may be combined by 
logical operations
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If-conversion for Predication

s = s + a

*p = s

a < b

cmp.lt p1,p2=a,b;;
(p1) s = s + a  
(p2) s = s + b;;

*p = s

• Identifying region of basic blocks based on resource 
requirement and profitability (branch mis-prediction rate, 
mis-prediction cost, and parallelism) 
• Result: a predicated block

s = s + b

CS 211

Reducing Control Height
with parallel compares

p1=0;;
cmp.lt.or p1,p0=a,b
cmp.lt.or p1,p0=b,c

(p1) br s1;;
s2

• Convert nested if’s into a single predicate
• Result: shorter control path by reducing the number of 
branches

a < b

b < c

s1
s2

Y
N

Y N



11

CS 211

Multiway Branch Example

• Use Multiway
branches
– Speculate compare (i.e. 

move above branch)
– Do not reduce number of 

branches

B<C

A<B

cmp.lt p1,p0=a,b
cmp.lt p2,p0=b,c

(p1) br X
(p2) br Z;;

Y

X Y

cmp.lt p1,p0=a,b 

(p1) br X;;

cmp.lt p2,p0=b,c

(p2) br Z;;

Y

Z
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Predication is not 
Control Speculation

• Two type of speculation:
– data speculation
– control speculation

• In data speculation: loads are moved 
ahead of stores (will be discussed later)

• In control speculation: instructions are 
moved from below a branch to above a 
branch
– control speculation ≠ predication

CS 211

Differences

• In predication:
– compare instruction sets predicate registers
– predicate registers used to confirm instructions and 

annul others
– exceptions take place where they occur

CS 211

Differences

• In control speculation:
– instructions below a branch is moved to above it and 

marked as speculative
– exceptions are postponed via register tagging
– if speculation turns out to be false, result is discarded 

(register overwritten)
– if speculation turns out to be true, must check whether 

speculative instructions caused exceptions
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Control Speculation

T F

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
r1 ← r2 + r3

...

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

r1 is 
overwritten

non-spec 
use of r1 
cause tag 

check
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Control Speculation

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

Note: If the speculation caused 
a delayed exception, then r1’s 
speculation tag is set. 
However, in X, where the 
speculation is unwanted, r1 is 
simply overwritten - r2 and r3 
being non-speculative will 
cause the speculation tag of r1 
to be cleared.
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Control Speculation

T F

r1 ← r2 + r3 (sp)

...

pr1 ← cmp ...

...

br X if pr1

X:
r1 ← r2 - r3

...
... ← r1...

...

Note: In the block where 
speculation is wanted, r1 is a 
source. A source of a non-
speculative instruction with a 
speculation tag set will cause 
an exception!
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Control and Data Speculation
• Two kinds of instructions in IA-64 programs

– Non-speculative instructions -- known to be useful/needed
• Would have been executed in the original program

– Speculative instructions -- may or may not be used
• Schedule operations before results are known to be needed
• Usually boosts performance, but occasionally may degrade
• Heuristics can guide compiler in aggressiveness

• Two kinds of speculation
– Control and Data

• Moving loads up is a key to performance
– Hide increasing memory latency
– Computation chains frequently begin with loads
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Architectural Support for Control Speculation
• 65th bit (NaT bit) on each GR indicates if an 

exception has occurred
– Plus which part of code it went to

• Special speculative loads that set the NaT bit if a 
deferrable exception occurs

• Special chk.s instruction that checks the NaT bit 
and branches to recovery, if set

• Computational instructions propagate NaTs like 
IEEE NaN’s

• Compare operations propagate “false” when 
writing predicates
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Architectural Support for Data Speculation

• ALAT – Advanced Load Architecture Table: HW 
structure containing information about 
outstanding loads advanced across stores

• Instructions
– ld.a - advanced loads
– ld.c - check loads
– chk.a - advance load checks
– aliasing st invalidating entries in ALAT

• Speculative advanced loads - ld.sa - is a control 
speculative advanced load with fault deferral 
(combines ld.a and ld.s)

CS 211

Speculative, Non-Faulting Load

• ld.s fetches speculatively from memory
i.e. any exception due to ld.s is suppressed

• If ld.s r did not cause an exception then chk.s r is an NOP, else a 
branch is taken (to some compensation code)

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br
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Speculative, Non-Faulting Load

• Speculatively load data can be consumed prior to check
• “speculation” status is propagated with speculated data
• Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions)
• chk.s checks the entire dataflow sequence for exceptions

inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1 
inst 2
use=r1
….
br

chk.s use…. ld r1=[a]
use=r1

br
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Advanced Load

• What if we have a load unit free ?
– Even within a basic block ?

• Move a load instruction to an earlier slot: 
what do we have to watch out for ??
– Load R1, (R2)      assume R2=100

• Make sure no intervening store has written 
to same address
– Has store has written anything into address 100 ?

• Yes= redo load again, No= use the loaded data
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“Advanced” Load

• ld.a starts the monitoring of any store to the same address as the 
advanced load

• If no aliasing has occurred since ld.a, ld.c is a NOP
• If aliasing has occurred, ld.c re-loads from memory

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]
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Using Load Results 

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a r1
….

st[?]

ld r1=[a]
use=r1
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EPIC Concepts: Rotating Register Sets 
and Software Pipelining

• Speculation and Predication require large 
sets of registers in EPIC

• In addition, concept of Rotating Register 
Sets to support Software Pipelining
– to help with execution of loops
– extend pipeline concept

• Recall Loop unrolling concept:
– Unroll loop iterations: perform multiple iterations 

concurrently
• Can explode the code size
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Software Pipelining: 
also known as Modulo Scheduling

Iteration

1

Conventional Sequential Execution of iterations

Loop Body

2 n

n

2

1

Overlapped Execution by
Pipelining iterations

Less time overall

Iterations
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Software Pipelining Example

A
B
C 
D

Four
Independent
Instructions

A
B     A
C     B     A

D     C     B     A

D     C     B
D     C

D

Loop 
Body

SOFTWARE 
PIPELINE

Prologue

New Loop Body

ILP = 4

Epilogue
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Rotating Loop Frames for Loop Pipelining
Suppose Bi is only data 

dependent (through data 
stored in registers) on Ai; 
and Ci only on Bi

• The “pipelined” kernel 
block (containing 
independent computation 
from Ci, Bi+1 and Ai+2 ) 
potentially has better ILP

What happens if Ci is also 
data dependent on Ai

• The result placed in 
register by A gets 
clobbered by the next 
execution of A (in the next 
cycle) before C can use it 
two cycles from now

A

B

C

A

B

C

A

B A

C

C B

ep
ilo

g
ke

rn
el

pr
ol

og
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i=0
while (i<99) {

;; a[ i ]=a[ i ]/10
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry
i++

}

Nice Loop Pipelining Example

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry

i=i+3
}

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry

Ry=Rx / 10

Rx=a[i+2]

i++
}

a[97]=Ry
a[98]=Rx / 10

A
B
C

A

B

C
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EPIC Concepts: Software Pipelining

• Software pipeline (also known as Modulo 
Scheduling) requires ‘register reuse’
– instead provide Rotating Register Sets

• In IA-64 Registers organized into set of 32 
static registers and 96 rotating registers
– R[1], R[2],...R[32]
– RRB: Rotating register base

• Can reference one set of rotating registers in an iteration, 
and the H/W takes care of assigning others

• can allow same references in four different iterations
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Register Files
Static/Rotating

• Each register file may have a static and a rotating portion
• The ith rotating register in file F is named F[i]
• F [i]  ≡ FR [(RRB + i) % size(FR)]

FR

FS

F

size(FR)

CS 211

Rotating Registers: Example

• Let loop body use:  r1,r2,r3,r4
• Can specify RRB (base) = 33

– First iteration will get  33, 34, 35,36
– Second iteration will get 37,38,39,40
– i.e., modulo 4

CS 211

• 128 general purpose physical integer 
registers

• Register names R0 to R31 are static 
and refer to the first 32 physical 
GPRs

• Register names R32 to R127 are 
known as “rotating registers” and are 
renamed onto the remaining 96 
physical registers by an offset

• Remapping wraps around the 
rotating registers such that when 
offset is non-zero, physical location 
of R127 is just below R32

Register Renaming

ph
ys

ic
al

 re
gi

st
er

R
0 

to
 R

31
ph

ys
ic

al
 re

gi
st

er
 R

32
 to

 R
12

7

re
gi

st
er

  n
am

e 
R

32
 a

nd
 u

p

offset

re
g 

na
m

e 
R

0 
to

 R
31
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Renaming with Rotating Registers

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i= -2

while (i<99) {
pred(i>-1):

a[i]=Ry+RR(x-2)

pred(i>-2 && i<98):
Ry=RR(x-1) / 10

pred(i<97):
RR(x)=a[i+2]

`increase RR offset by 1’
i++

}
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Loop Pipelining Requiring Renaming

i=0
while (i<99) {

;; a[ i ]=a[ i ]/10+a[ i ]
Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry+Rx
i++

}

i=0
Ry=a[ 0 ] / 10
Rx=a[ 1 ]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i=0
while (i<99) {

Rx = a[ i ]
Ry = Rx / 10
a[ i ] = Ry+Rx

Rx = a[ i+1 ]
Ry = Rx / 10
a[ i+1 ] = Ry+Rx

Rx = a[ i+2 ]
Ry = Rx / 10
a[ i+2 ] = Ry+Rx

i=i+3
}

WAR

WAR

A
B
C
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EPIC Summary

• H/W techniques added to pure VLIW S/W 
techniques
– Speculation support
– Predicated execution model
– Rotating registers for s/w pipelining

• Next: 
– An example EPIC: IA-64

• How to solve the code compatibility issue?
• How to deal with recompiling when changing the 

microarchitecture ?
– Concept of Bundle Scheduling

– Some advanced superscalar features: branch prediction
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Quick Look at an EPIC Processor:
The IA-64 Architecture

• 128 general-purpose registers
• 128 floating-point registers
• Arbitrary number of functional units
• Arbitrary latencies on the functional units
• Arbitrary number of memory ports
• Arbitrary implementation of the memory 

hierarchy

Needs retargetable compiler and recompilation to 
achieve maximum program performance on 
different IA-64 implementations
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IA-64 Instruction Format
• IA-64 “Bundle”

– Total of 128 bits
– Contains three IA-64 instructions (aka syllables)
– Template bits in each bundle specify dependencies both 

within a bundle as well as between sequential bundles
– A collection of independent bundles forms a “group”

A more efficient and flexible way to encode ILP then a fixed 
VLIW format

• IA-64 Instruction
– Fixed-length 40 bits long
– Contains three 7-bit register specifiers
– Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers

inst1 inst2 inst3 temp
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IA-64: Groups & Bundles

• A group is a set of “parallel”/independent 
instructions
– All operations in a group can be executed in parallel if 

there are no resource limits
– A STOP command indicates end of group

• A bundle is what is presented to a 
processor
– Group consists of a number of bundles
– A bundle sent to the processor

• What is the advantage of this ?
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Cool Features of IA64

• Predicated execution
• Speculative, non-faulting Load instruction
• Software-assisted branch prediction
• Register stack
• Rotating register frame
• Software-assisted memory hierarchy

Mostly adapted from mechanisms that had 
existed for VLIWs
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Itanium Specifics
• 6-wide 10-stage pipeline
• Fetch 2 bundles per cycle with the help of BP into a 8-bundle deep 

fetch queue
• 512-entry 2-level BPT, 64-entry BTAC, 4 TAR, and a RSB
• Issue up to 2 bundles per cycle some mixes of 6 instructions 

e.g. (MFI,MFI) or (MIB,MIBh) 
• Can issue as little as one syllable per cycle on RAW hazard interlock 

or structural hazard  (scoreboard for RAW detection)
• 8R-6W 128 Entry Int. GPR, 128 82-bit FPR, 64 predicate reg’s
• 4 globally-bypassed single-cycle integer ALUs with MMX,

2 FMACs, 2 LSUs, 3 BUs
• Can execute IA-32 software directly

• Intended for high-end server and workstations
• You can buy one now, finally.
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IA-64  EPIC vs. Classic VLIW
• Similarities:

– Compiler generated wide instructions
– Static detection of dependencies 
– ILP encoded in the binary (a group)
– Large number of architected registers

• Differences:
– Instructions in a bundle can have dependencies
– Hardware interlock between dependent instructions
– Accommodates varying number of functional units and 

latencies
– Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations 

but software won’t run at top speed until it is recompiled so 
“shrink-wrap binary” might need to include multiple builds
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EPIC and Compiler Optimization

• EPIC requires dependency free 
“scheduled code”

• Burden of extracting parallelism falls on 
compiler

• success of EPIC architectures depends on 
efficiency of Compilers!!

• We provide overview of Compiler 
Optimization techniques (as they apply to 
EPIC/ILP)


