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CS 211

Introduction to 
Optimizing Compilers

CS 211

Hardware-Software Interface

Machine Program

Performance = tcyc x CPI x code size 

X

Available resources
statically fixed

Designed to support
wide variety of programs

Required resources
dynamically varying

Designed to run well on
a variety of machines

Interested in having
itself run fast

Interested in running
many programs fast

Reflects how well the
machine resources match
the program requirements

CS 211

Compiler Tasks

• Code Translation
– Source language → target language

FORTRAN → C
C → MIPS, PowerPC or Alpha machine code
MIPS binary → Alpha binary

• Code Optimization
– Code runs faster
– Match dynamic code behavior to static machine 

structure

CS 211

Compiler Structure

Frond End Optimizer Back End

Machine  independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR
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Structure of Optimizing Compilers

TOOLS

Program 
Database Front-end #2Front-end #1

High-level
Optimizer

Lowering of IL

Low-level
Optimizer

Target-1
Code Generator 

and Linker

Target-2
Code Generator 

and Linker

Target-3
Code Generator 

and Linker

Target-1 Executable Target-2 Executable Target-3 Executable
Runtime
Systems

Middle 
end

Back 
ends

Front 
ends

High-level Intermediate Language
HIL

Optimized HIL

Low-level Intermediate Language
LIL

Optimized LIL

…..

…..

Source Program Source Program
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Front End

• Lexical Analysis
– Misspelling an identifier, keyword, or operator

e.g. lex

• Syntax Analysis
– Grammar errors, such as mismatched parentheses

e.g. yacc

• Semantic Analysis
– Type checking

CS 211

1. Scanner - converts input character 
stream into stream of lexical tokens

2. Parser - derives syntactic structure 
(parse tree, abstract syntax tree) from 
token stream, and reports any syntax 
errors encountered

Front-end

CS 211

Front-end

3. Semantic Analysis - generates 
intermediate language representation 
from input source program and user 
options/directives, and reports any 
semantic errors encountered
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High-level Optimizer

• Global intra-procedural and inter-
procedural analysis of source 
program's control and data flow

• Selection of high-level 
optimizations and transformations

• Update of high-level intermediate 
language

CS 211

Intermediate Representation
• Achieve retargetability

– Different source languages
– Different target machines

• Example (tree-based IR from CMCC)

d = a * (b+c)

A0   5   78   “a”

int a, b, c, d;

A1   5   78   “b”
A2   5   78   “c”
A3   5   78   “d”

FND1    ADDRL    A3
FND2    ADDRL    A0
FND3    INDIRI     FND2
FND4    ADDRL    A1
FND5    INDIRI     FND4
FND6    ADDRL    A2
FND7    INDIRI     FND6
FND8    ADDI       FND5    FND7
FND9    MULI       FND3    FND8
FND10  ASGI       FND1    FND9

Linear form of

ASGI

&a

&b &c

&d MULI

ADDIINDIRI

INDIRI INDIRI

Graphical  Representationgraphical representation
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Lowering of Intermediate Language

• Linearized storage/mapping of variables
– e.g. 2-d array to 1-d array

• Array/structure references   → load/store 
operations
– e.g. A[I] to load R1,(R0) where R0 contains i

• High-level control structures → low-level 
control flow
– e.g. “While” statement to Branch statements

CS 211

Machine-Independent Optimizations

• Dataflow Analysis and Optimizations
– Constant propagation
– Copy propagation
– Value numbering

• Elimination of common subexpression
• Dead code elimination
• Stength reduction
• Function/Procedure inlining
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Code-Optimizing Transformations

• Constant folding
(1 + 2)   ⇒ 3
(100 > 0) ⇒ true

• Copy propagation
x  =  b + c x  = b + c
z  =  y * x      z  = y * (b + c)

• Common subexpression
x  =  b * c + 4 t  = b * c
z  =  b * c - 1   x  = t + 4

z  = t - 1

• Dead code elimination
x  =  1
x  =  b + c or if x is not referred to at all

⇒

⇒

CS 211

Code Optimization Example
x =  1
y  =  a * b + 3
z  =  a * b + x + z + 2
x  =  3

propagation
x  =  1
y  =  a * b + 3
z  =  a * b + 1 + z + 2
x  =  3

constant
folding

x  =  1
y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

dead code
elimination

y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

common
subexpression

t   =  a * b + 3
y  =  t
z  =  t + z 
x  =  3
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Code Motion
• Move code between basic blocks
• E.g. move loop invariant computations 

outside of loops

t  =  x / y
while ( i < 100 ) { while ( i < 100 )  {

*p  =  x / y + i *p  =  t + i
i  =  i + 1 i  =  i  + 1

} }

CS 211

Strength Reduction
• Replace complex (and costly) expressions 

with simpler ones
• E.g.

a : = b*17 a: = (b<<4) + b

• E.g.
p  =  & a[ i ]
t  =  i * 100

while ( i < 100 ) { while ( i < 100 ) {
a[ i ] =  i * 100 *p  =  t
i  =  i + 1 t  =  t + 100

} p  =  p  +  4
i  =  i  + 1

}

loop invariant: &a[i]==p, i*100==t
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Induction variable elimination

• Induction variable: loop index.
• Consider loop:

for (i=0; i<N; i++)
for (j=0; j<M; j++)

z[i][j] = b[i][j];

• Rather than recompute i*M+j for each 
array in each iteration, share induction 
variable between arrays, increment at end 
of loop body.

CS 211

Loop Optimizations
• Motivation: restructure program so as to 

enable more effective back-end 
optimizations and hardware exploitation

• Loop transformations are useful for 
enhancing
– register allocation
– instruction-level parallelism
– data-cache locality
– vectorization
– parallelization

CS 211

Importance of Loop Optimizations
Program No. of Static Dynamic % of

Loops B.B. Count B.B. Count Total

nasa7 9 --- 322M 64%

16 --- 362M 72%

83 --- 500M ~100%

matrix300 1 17 217.6M 98%

15 96 221.2M 98+%

tomcatv 1 7 26.1M 50%

5 22 52.4M 99+%

12 96 54.2M ~100%

Study of loop-intensive benchmarks in the SPEC92 suite [C.J. Newburn, 1991] CS 211

Loop optimizations

• Loops are good targets for optimization.
• Basic loop optimizations:

– code motion;
– induction-variable elimination;
– strength reduction (x*2 -> x<<1).

• Improve performance by unrolling the 
loop
– Note impact when using processors that allow parallel 

execution of instructions
• Texas Instruments new DSP processors
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Function inlining 

• Replace function calls with function body
• Increase compilation scope (increase ILP)

e.g. constant propagation, common subexpression

• Reduce function call overhead 
e.g. passing arguments, reg. saves and restores

[W.M. Hwu, 1991 (DEC 3100)]
Program In-line Speedup in-line Code Expansion
cccp 1.06 1.25
compress 1.05 1.00+
equ 1.12 1.21
espresso 1.07 1.09
lex 1.02 1.06
tbl 1.04 1.18
xlisp 1.46 1.32
yacc 1.03 1.17

CS 211

Back End

IR Back End

code
selection

code
scheduling

register
allocation

code
emission

Machine code

Instruction-level IR

• map virtual registers into architect registers
• rearrange code 
• target machine specific optimizations

- delayed branch
- conditional  move
- instruction combining 

auto increment addressing mode
add carrying (PowerPC)
hardware branch (PowerPC)
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Code Selection
• Map IR to machine instructions (e.g. pattern 

matching)

ASGI

&a

&b &c

&d MULI

ADDIINDIRI

INDIRI INDIRI

addi  Rt1,  Rb,  Rc
muli  Rt2,  Ra,  Rt1

Inst *match (IR *n) {
switch (n->opcode) {

case MUL :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F )

inst = mult_fp( (n->type == D), l, r );
else

inst = mult_int ( (n->type == I), l, r);
break;

case ADD :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F)

inst = add_fp( (n->type == D), l, r);
else 

inst = add_int ((n->type == I), l, r);
break;

}
return inst;

}

case ……..:

case ……..:

CS 211

Our old friend…CPU Time

• CPU time = CPI * IC * Clock
• What do the various optimizations affect

– Function inlining
– Loop unrolling
– Code optimizing transformations
– Code selection
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Machine Dependent Optimizations

• Register Allocation

• Instruction Scheduling

• Peephole Optimizations

CS 211

Peephole Optimizations

• Replacements of assembly instruction 
through template matching

• Eg. Replacing one addressing mode with 
another in a CISC

CS 211

Code Scheduling
• Rearrange code sequence to minimize 

execution time
– Hide instruction latency
– Utilize all available resources 

l.d     f4,  8(r8)
fadd  f5, f4, f6
 l.d     f2, 16(r8)
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9) 

1 stall 

1 stall

3 stalls

1 stall

reorder

l.d     f4,  8(r8)
l.d     f2, 16(r8)
fadd  f5, f4, f6
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9)

3 stalls

1 stall

0 stall
0 stall

l.d     f4,  8(r8)
l.d     f2, 16(r8)
fadd  f5, f4, f6
fsub  f7, f2, f6
fmul f7, f7, f5
l.d     f8, 0(r9)
s.d     f8, 8(r9)
s.d     f7, 24(r8)

0 stalls
1 stall

0 stall
0 stallreorder

(memory dis-ambiguation)

CS 211

Cost of Instruction Scheduling

• Given a program segment, the goal is to execute 
it as quickly as possible

• The completion time is the objective function or 
cost to be minimized

• This is referred to as the makespan of the 
schedule

• It has to be balanced against the running time 
and space needs of the algorithm for finding the 
schedule, which translates to compilation cost
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Instruction Scheduling Example

main(int argc, char *argv[])
{

int a, b, c;

a = argc;
b = a * 255;
c = a * 15;
printf("%d\n", b*b - 4*a*c );

}

op 10 MPY vr2 ← param1, 255
op 12 MPY vr3 ← param1, 15
op 14 MPY vr8 ← vr2, vr2
op 15 SHL vr9 ← param1, 2
op 16 MPY vr10 ← vr9, r3
op 17 SUB param2 ← vr8, r10
op 18 MOV param1 ← addr("%d\n“)
op 27 PBRR vb12 ← addr(printf)
op 20 BRL ret_addr ← vb12

CS 211

After Scheduling

(Prior to Register Allocation)

CS 211

Instruction Scheduling

Given a source program P, schedule the 
instructions so as to minimize the 
overall execution time on the functional 
units in the target machine

CS 211

The General Instruction 
Scheduling Problem

Feasible Schedule: A specification of a start time
for  each instruction such that the following 
constraints are obeyed: 

1. Resource: Number of instructions of a 
given type of any time < corresponding 
number of FUs

2. Precedence and Latency: For each 
predecessor j of an instruction i in the DAG, i
is the started only δ cycles after j finishes 
where δ is the latency labeling the edge (j,i),

Output: A schedule with the minimum overall
completion time 
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Instruction Scheduling

Input: A basic block represented as a DAG

• i2 is a load instruction.
• Latency of 1 on (i2,i4) means that i4

cannot start for one cycle after i2
completes.

0

0 0

1

i1

i2

i3

i4

Latency

CS 211

• Two schedules for the above DAG with 
S2 as the desired sequence.

i1 i3 i2 i4

i1 i3i2 i4

Idle Cycle Due 
to Latency

S1

S2

Instruction Scheduling 

CS 211

Why Register Allocation?

• Storing and accessing variables from 
registers is much faster than accessing 
data from memory.
– Variables ought to be stored in registers

• It is useful to store variables as long as 
possible, once they are loaded into 
registers

• Registers are bounded in number
– “register-sharing” is needed over time.

CS 211

Register Allocation

• Map virtual registers into physical 
registers 
– minimize register usage to reduce memory accesses
– but introduces false dependencies . . . . .

l.d     f4,  8(r8)
fadd  f5, f4, f6
l.d     f2, 16(r8)
fsub  f7, f2, f6
fmul f7, f7, f5
s.d     f7, 24(r8)
l.d     f8, 0(r9)
s.d     f8, 8(r9) 

l.d     $f0,  8(r8)
fadd  $f2, $f0, $f3
l.d     $f0, 16(r8)
fsub  $f0, $f0, $f3
fmul $f0, $f0, $f2
s.d     $f0, 24(r8)
l.d     $f0, 0(r9)
s.d     $f0, 8(r9) 

$f0

$f2

$f3

f2
f4
f7
f8

f5

f6
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The Goal

• Primarily to assign registers to 
variables

• However, the allocator runs out of 
registers quite often

• Decide which variables  to “flush” out 
of registers to free them up, so that 
other variables can be bought in
– Spilling

CS 211

Cost of Register Allocation 
(Contd.)

• Therefore, maximizing the duration of operands in registers 
or minimizing the amount of spilling, is the goal

• Once again, the running time (complexity) and space used, 
of the algorithm for doing this is the compilation cost

CS 211

Register Allocation and Assignment

• Allocation: identifying program values (virtual 
registers, live ranges) and program points at 
which  values should be stored in a physical 
register

• Program values that are not allocated to 
registers are said to be spilled

• Assignment: identifying which physical register 
should hold an allocated value at each program 
point.

CS 211

Our old friend…CPU Time

• CPU time = CPI * IC * Clock
• What do the various optimizations affect

– Instruction scheduling
• Stall cycles

– Register Allocation
• Stall cycles due to false dependencies, spill code



11

CS 211

Performance analysis

• Elements of program performance (Shaw):
– execution time = program path + instruction timing

• Path depends on data values. Choose 
which case you are interested in.

• Instruction timing depends on pipelining, 
cache behavior.

CS 211

Programs and performance analysis

• Best results come from analyzing 
optimized instructions, not high-level 
language code:
– non-obvious translations of HLL statements into 

instructions;
– code may move;
– cache effects are hard to predict.

• importance of compiler 
– Back-end of compiler

CS 211

Instruction timing

• Not all instructions take the same amount 
of time.
– Hard to get execution time data for instructions.

• Instruction execution times are not 
independent.

• Execution time may depend on operand 
values.

CS 211

Trace-driven performance analysis

• Trace: a record of the execution path of a 
program.

• Trace gives execution path for 
performance analysis.

• A useful trace:
– requires proper input values;
– is large (gigabytes).

• Trace generation  in H/W or S/W?
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Execution Frequencies?Execution Frequencies?

CS 211

What are Execution Frequencies

• Branch probabilities

• Average number of loop iterations

• Average number of procedure calls

CS 211

How are Execution Frequencies 
Used?

• Focus optimization on most frequently used regions

– region-based compilation

• Provides quantitative basis for evaluating quality of 
optimization heuristics

CS 211

How are Execution Frequencies 
Obtained?

• Profiling tools:
– Mechanism: sampling vs. counting
– Granularity = procedure vs. basic block

• Compile-time estimation:
– Default values
– Compiler analysis
– Goal is to select same set of program regions and 

optimizations that would be obtained from profiled frequencies
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What are Execution Costs?

Cost of intermediate code operation 
parametrized according to target architecture:

• Number of target instructions

• Resource requirement template

• Number of cycles

CS 211

How are Execution Costs Used?

In conjunction with execution frequencies:

• Identify most time-consuming regions of program

• Provides quantitative basis for evaluating quality of 
optimization heuristics

CS 211

How are Execution Costs 
Obtained?

• Simplistic translation of intermediate code operation to 
corresponding instruction template for target machine

CS 211

Cost Functions

• Effectiveness of the Optimizations: How well 
can we  optimize our objective function?
Impact on running time of the compiled code 
determined by the completion time.

• Efficiency of the optimization: How fast can 
we optimize?
Impact on the time it takes to compile or cost 
for gaining the benefit of code with fast 
running time.
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Instruction Scheduling:
Program Dependence Graph

CS 211

Basic Graphs

• A graph is made up of a set of nodes (V) 
and a set of edges (E)

• Each edge has a source and a sink, both 
of which must be members of the nodes 
set, i.e. E = V × V

• Edges may be directed or undirected
– A directed graph has only directed edges
– A undirected graph has only undirected edges

CS 211

Examples

Undirected graph Directed graph
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Paths

Undirected graph Directed graph

source

sink

path

CS 211

Cycles

Undirected graph Directed graph Acyclic 
Directed 
graph

CS 211

Connected Graphs

Unconnected graph Connected 
directed graph

CS 211

Connectivity of Directed Graphs

• A strongly connected directed graph is 
one which has a path from each vertex to 
every other vertex

• Is this graph strongly 
connected?

A

B

C

D

E F
G
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Program Dependence Graph

• The Program Dependence Graph (PDG) is 
the intermediate (abstract) representation 
of a program designed for use in 
optimizations

• It consists of two important graphs:
– Control Dependence Graph captures control flow and 

control dependence
– Data Dependence Graph captures data dependences

CS 211

Control Flow Graphs

• Motivation: language-independent and machine-
independent representation of control flow in 
programs used in high-level and low-level code 
optimizers. The flow graph data structure lends 
itself to use of several important algorithms from 
graph theory.

CS 211

Control Flow Graph: Definition
A control flow graph CFG = ( Nc ; Ec ; Tc ) consists of

• Nc, a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow 
i.e. a basic block.

• Ec ⊆ Nc x Nc x Labels, a set of labeled edges.
• Tc , a node type mapping. Tc(n) identies the type of node n

as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node 
and a unique STOP node, and that for any node N in
CFG, there exist directed paths from START to N and
from N to STOP.

CS 211

CFG From Trimaran
main(int argc, char *argv[ ])

{

if (argc == 1) {

printf("1");

} else {

if (argc == 2) {

printf("2");

} else {

printf("others");

}

}

printf("done");

}

BB1

BB2

BB4BB3

BB6BB5

BB8

BB9
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Data and Control Dependences

Motivation: identify only the essential control and 
data

dependences which need to be obeyed by
transformations for code optimization.

Program Dependence Graph (PDG) consists of
1. Set of nodes, as in the CFG
2. Control dependence edges
3. Data dependence edges

Together, the control and data dependence edges
dictate whether or not a proposed code 

transformation
is legal.

CS 211

Data Dependence Analysis
If two operations have potentially interfering data 
accesses, data dependence analysis is necessary for
determining whether or not an interference actually
exists.  If there is no interference, it may be possible to
reorder the operations or execute them concurrently.

The data accesses examined for data dependence
analysis may arise from array variables, scalar
variables, procedure parameters, pointer
dereferences, etc. in the original source program.

Data dependence analysis is conservative, in that it
may state that a data dependence exists between two
statements, when actually none exists.

CS 211

Data Dependence: Definition
A data dependence, S1 → S2, exists between CFG 
nodes S1 and S2 with respect to variable X if and 

only if 

1. there exists a path P: S1 → S2 in CFG, with no 
intervening write to X, and 

2. at least one of the following is true:

(a) (flow) X is written by S1 and later read by S2, or
(b) (anti) X is read by S1 and later is written by S2
or
(c) (output) X is written by S1 and later written by 
S2 CS 211

Def/Use chaining for Data 
Dependence Analysis

A def-use chain links a definition D (i.e. a write access
of variable X to each use U (i.e. a read access), such
that there is a path from D to U in CFG that does not
redefine X.

Similarly, a use-def chain links a use U to a definition
D, and a def-def chain links a definition D to a
definition D’ (with no intervening write to X in all
cases).

Def-use, use-def, and def-def chains can be computed
by data flow analysis, and provide a simple but
conservative way of enumerating flow, anti, and output
data dependences. 
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Impact of Control Flow

• Acyclic control flow is easier to deal with than 
cyclic control flow. Problems in dealing with cyclic 
flow:

· A loop implicitly represent a large run-time program space 
compactly.

· Not possible to open out the loops fully at compile-time.

· Loop unrolling provides a partial solution.

more...
CS 211

Impact of Control Flow (Contd.)

· Using  the loop to optimize its dynamic behavior is a 
challenging problem.

· Hard to optimize well without detailed knowledge of the 
range of the iteration.

· In practice, profiling can offer limited help in estimating 
loop bounds.

CS 211

Control Dependence Analysis

We want to capture two related ideas with control 
dependence analysis of a CFG:
1. Node Y should be control dependent on node X if 

node X evaluates a predicate (conditional 
branch) which can control whether node Y will 
subsequently be executed or not. This idea is 
useful for determining whether node Y needs to 
wait for node X to complete, even though they 
have no data dependences.

CS 211

Control Dependence 
Analysis (contd.)

2. Two nodes, Y and Z, should be identified as 

having identical control conditions if in every run 

of the program, node Y is executed if and only if 

node Z is executed. This idea is useful for 

determining whether nodes Y and Z can be made 

adjacent and executed concurrently, even though 

they may be far apart in the CFG.
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Instruction Scheduling AlgorithmsInstruction Scheduling Algorithms

CS 211

Acyclic Instruction Scheduling

• We will consider the case of acyclic control 
flow first.

• The acyclic case itself has two parts:
– The simpler case that we will consider first has no 

branching and corresponds to basic block of code, eg., 
loop bodies.

– The more complicated case of scheduling programs with 
acyclic control flow with branching will be considered 
next. 

CS 211

The Core Case: Scheduling Basic Blocks

• Why are basic blocks easy?

• All instructions specified as part of the 
input must be executed.

• Allows deterministic modeling of the input.

• No “branch probabilities” to contend with; 
makes problem space easy to optimize 
using classical methods. 

CS 211

Instruction Scheduling

• Input: A basic block represented as a DAG

• i2 is a load instruction.
• Latency of 1 on (i2,i4) means that i4

cannot start for one cycle after i2
completes.

0

0 0

1

i1

i2

i3

i4

Latency



20

CS 211

• Two schedules for the above DAG with S2 
as the desired sequence.

i1 i3 i2 i4

i1 i3i2 i4

Idle Cycle Due 
to Latency

S1

S2

Instruction Scheduling (Contd.)

CS 211

The General Instruction 
Scheduling Problem

• Input: DAG representing each basic block 
where:

• 1. Nodes encode unit execution time
(single cycle) instructions.

• 2. Each node requires a definite class of 
FUs.

• 3. Additional pipeline delays encoded as 
latencies on the edges.

• 4. Number of FUs of each type in the 
target machine.

more...

CS 211

The General Instruction Scheduling 
Problem (Contd.)

• Feasible Schedule: A specification of a start time for  
each instruction such that the following constraints 
are obeyed: 

• 1. Resource: Number of instructions of a given 
type   at any time < corresponding number of FUs.

• 2. Precedence and Latency: For each 
predecessor j of an instruction i in the DAG, i is the 
started only cycles after j finishes where k is the 
latency labeling the edge (j,i),

• Output: A schedule with the minimum overall 
completion time (makespan).

CS 211

Drawing on Deterministic Scheduling

• Canonical List Scheduling Algorithm:

• 1. Assign a Rank (priority) to each 
instruction (or node).

• 2. Sort and build a priority list of the 
instructions in non-decreasing order of 
Rank.
– Nodes with smaller ranks occur earlier
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Drawing on Deterministic Scheduling 
(Contd.)

• 3. Greedily list-schedule .
– Scan iteratively and on each scan, choose the largest 

number of “ready” instructions subject to resource (FU) 
constraints in list-order

– An instruction is ready provided 
• it has not been chosen earlier and 

• all of its predecessors have been chosen and the 
appropriate latencies have elapsed.

•

CS 211

Code Scheduling

• Objectives:  minimize execution latency of the 
program
– Start as early as possible instructions on the critical path
– Help expose more instruction-level parallelism to the hardware
– Help avoid resource conflicts that increase execution time

• Constraints
– Program Precedences
– Machine Resources

• Motivations
– Dynamic/Static Interface (DSI):  By employing more software 

(static) optimization techniques at compile time, hardware 
complexity can be significantly reduced

– Performance Boost:  Even with the same complex hardware, 
software scheduling can provide additional performance 
enhancement over that of unscheduled code

CS 211

Precedence Constraints
• Minimum required ordering and latency 

between definition and use 
• Precedence graph

– Nodes: instructions
– Edges (a→b):  a precedes b
– Edges are annotated with minimum latency

w[i+k].ip = z[i].rp + z[m+i].rp;
w[i+j].rp = e[k+1].rp*

(z[i].rp -z[m+i].rp) -
e[k+1].ip *
(z[i].ip - z[m+i].ip);

FFT  code  fragment

i1: l.s f2, 4(r2) 
i2: l.s f0, 4(r5) 
i3: fadd.s f0, f2, f0 
i4: s.s f0, 4(r6) 
i5: l.s f14, 8(r7)
i6: l.s f6, 0(r2)
i7: l.s f5, 0(r3) 
i8: fsub.s f5, f6, f5 
i9: fmul.s f4, f14, f5 
i10: l.s f15, 12(r7)
i11: l.s f7, 4(r2) 
i12: l.s f8, 4(r3) 
i13: fsub.s f8, f7, f8 
i14: fmul.s f8, f15, f8 
i15: fsub.s f8, f4, f8 
i16: s.s f8, 0(r8) CS 211

Precedence Graph

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2
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Resource Constraints

• Bookkeeping
– Prevent resources from being oversubscribed

I1 I2 FA FM

cycle

Machine model

add r1, r1, 1

fadd f1, f1, f2

fadd f3, f3, f4

add r2, r2, 4

CS 211

The Value of Greedy List Scheduling

• Example: Consider the DAG shown below:

• Using the list = <i1, i2, i3, i4, i5>

• Greedy scanning produces the steps of 
the schedule as follows:
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The Value of Greedy List Scheduling 
(Contd.)

• 1. On the first scan: i1 which is the first 
step.

• 2. On the second and third scans and out 
of the list order, respectively i4 and i5 to 
correspond to steps  two and three of the 
schedule.

• 3. On the fourth and fifth scans, i2 and i3 
respectively scheduled in steps four and five.
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List Scheduling for Basic Blocks

1. Assign priority to each instruction
2. Initialize ready list that holds all ready 

instructions
Ready = data ready and can be scheduled

3. Greedily choose one ready instruction I from 
ready list with the highest priority

Possibly using tie-breaking heuristics

4. Insert I into schedule 
Making sure resource constraints are satisfied

5. Add those instructions whose precedence 
constraints are now satisfied into the ready list 
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Rank/Priority Functions/Heuristics

• Number of descendants in precedence 
graph

• Maximum latency from root node of 
precedence graph

• Length of operation latency
• Ranking of paths based on importance
• Combination of above

CS 211

Orientation of Scheduling

• Instruction Oriented
– Initialization (priority and ready list)
– Choose one ready instruction I and find a slot in schedule

make sure resource constraint is satisfied
– Insert I into schedule 
– Update ready list

• Cycle Oriented
– Initialization (priority and ready list)
– Step through schedule cycle by cycle
– For the current cycle C, choose one ready instruction I

be sure latency and resource constraints are satisfied
– Insert I into schedule (cycle C)
– Update ready list
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List Scheduling Example
(a + b) * (c - d) + e/f

load: 2 cycles
add: 1 cycle

mul: 4 cycles
div: 10 cycles

sub: 1 cycle

orientation: cycle 
direction:  backward
heuristic: maximum latency to root

ld a ld b ld c ld d ld e ld f

fadd fsub fdiv

fadd

fmul

1 2 3 4 5 6

7 8 9

10

11

CS 211

(a+b)*c

Load: 2 cycles
Add: 1 cycle
Mult: 2 cycles

ld a ld b ld c

add

mul

1 2 3

4

5
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Scalar Scheduling Example

14
13
12
11
10

mult559
mult558
ld c33,57
ld c33,56
a+b44,3,55
ld b22,4,3,54
ld b22,4,3,53
ld a11,2,4,3,52
ld a11,2,4,3,51

CodeScheduleReady listCycle

Ready inst are green
Red indicates not ready
Black indicates under execution
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ILP Scheduling Example

multX556
multX55 5

ld cX33, 5 4
(a+b)ld cXX4,34,3,53
ld bld aXX1,21,2,4,3,52

ld bld aXX1,21,2,4,3,51

ALUMe
m

Mem Code
Resources

ScheduleReady listCycle

CS 211

Some Intuition

• Greediness helps in making sure that idle 
cycles don’t remain if there are available 
instructions further “down stream.”

• Ranks help prioritize nodes such that 
choices made early on favor instructions 
with greater enabling power, so that there 
is no unforced idle cycle.
– Rank/Priority function is critical 

CS 211

How Good is Greedy?

• Approximation: For any pipeline depth k 1 
and any number m of pipelines,

• Sgreedy/Sopt (2 – 1/mk).
•



25

CS 211

How good is greedy?

• For example, with one pipeline (m=1) and the 
latencies k grow as 2,3,4,…, the approximate 
schedule is guaranteed to have a completion time 
no more 66%, 75%, and 80% over the optimal 
completion time.

• This theoretical guarantee shows that greedy 
scheduling is not bad, but the bounds are worst-
case; practical experience tends to be much 
better. 

more...
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How Good is Greedy? (Contd.)

• Running Time of Greedy List Scheduling:
Linear in the size of the DAG.

• “Scheduling Time-Critical Instructions on 
RISC Machines,” K. Palem and B. Simons, 
ACM Transactions on Programming 
Languages and Systems, 632-658, Vol. 15, 
1993.
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A Critical Choice: The  Rank Function A Critical Choice: The  Rank Function 
for Prioritizing Nodesfor Prioritizing Nodes

CS 211

Rank Functions

• 1. “Postpass Code Optimization of 
Pipelined Constraints”, J. Hennessey and 
T. Gross, ACM Transactions on 
Programming Languages and Systems, 
vol. 5, 422-448, 1983.

• 2. “Scheduling Expressions on a Pipelined 
Processor with a Maximal Delay of One 
Cycle,” D. Bernstein and I. Gertner, ACM 
Transactions on Programming Languages 
and Systems, vol. 11 no. 1, 57-66, Jan 1989.
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Rank Functions (Contd.)

• 3. “Scheduling Time-Critical Instructions 
on RISC Machines,” K. Palem and B. 
Simons, ACM Transactions on 
Programming Languages and Systems, 
632-658, vol. 15, 1993

• Optimality: 2 and 3 produce optimal 
schedules for RISC processors such as the 
IBM 801, Berkeley RISC and so on. 
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An Example Rank Function

• The example DAG

• 1. Initially label all the nodes by the same value, say  
• 2. Compute new labels from old starting with nodes at level 

zero (i4) and working towards higher levels:
• (a) All nodes at level zero get a rank of  .
•

more... 

0

0 0

1

i1

i2

i3

i4

Latency

CS 211

An Example Rank Function (Contd.)

• (b) For a node at level 1, construct a new 
label           which is the concentration of 
all its successors   connected by a latency 
1 edge.
– Edge i2 to i4 in this case.

• (c) The empty symbol    is associated with 
latency zero edges.
– Edges i3 to i4 for example.
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An Example Rank Function (Contd.)

• (d) The result is that i2 and i3 respectively 
get new labels and hence ranks  ’=   >  ’’ =  
.

• Note that  ’=   >  ’’ =   i.e., labels are drawn           
from a totally ordered alphabet.

• (e) Rank of i1 is the concentration of the 
ranks of its  immediate successors i2 and 
i3 i.e., it is  ’’’=  ’| ’’.

• 3. The resulting sorted list is (optimum) i1, 
i2, i3, i4. 

•
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Limitations of List Scheduling
• Cannot move instructions past conditional 

branch instructions in the program (scheduling 
limited by basic block boundaries)

• Problem: Many programs have small numbers of 
instructions (4-5) in each basic block. Hence, not 
much code motion is possible

• Solution: Allow code motion across basic block 
boundaries.
– Speculative Code Motion: “jumping the gun”

• execute instructions before we know whether or not we need to
• utilize otherwise idle resources to perform work which we 

speculate will need to be done
– Relies on program profiling to make intelligent decisions 

about speculation
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Getting around basic block 
limitations

• Basic block size limits amount of 
parallelism available for extraction
– Need to consider more “flexible” regions of instructions

• A well known classical approach is to 
consider traces through the (acyclic) 
control flow graph.
– Shall return to this when we cover Compiling for ILP 

processors
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Traces
• “Trace Scheduling: A Technique for Global 

Microcode Compaction,” J.A. Fisher, IEEE 
Transactions on Computers, Vol. C-30, 1981.

• Main Ideas:

· Choose a program segment that has no cyclic 
dependences.

· Choose one of the paths out of each branch that is 
encountered.

more...
CS 211

BB-1

BB-4 BB-5

BB-6

BB-7

BB-2

BB-3

STOP

STAR
T

A trace  BB-1, BB-4, BB-6

Branch Instruction
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Register Allocation

CS 211

Revisiting A Typical Optimizing 
Compiler

Front End Back EndSource Program

Intermediate Language

Scheduling Register Allocation

CS 211

Rationale for Separating Register 
Allocation from Scheduling

• Each of Scheduling and Register Allocation 
are hard to solve individually, let alone 
solve globally as a combined optimization.

• So, solve each optimization locally and 
heuristically “patch up” the two stages.

CS 211

The Goal

• Primarily to assign registers to 
variables

• However, the allocator runs out of 
registers quite often

• Decide which variables  to “flush” out 
of registers to free them up, so that 
other variables can be bought in
– Spilling
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Register Allocation and Assignment

• Allocation: identifying program values (virtual 
registers, live ranges) and program points at 
which  values should be stored in a physical 
register

• Program values that are not allocated to 
registers are said to be spilled

• Assignment: identifying which physical register 
should hold an allocated value at each program 
point.

CS 211

Register Allocation – Key Concepts

• Determine the range of code over which a 
variable is used
– Live ranges

• Formulate the problem of assigning 
variables to registers as a graph problem
– Graph coloring
– Use application domain (Instruction execution) to define 

the priority function

CS 211

Live Ranges

Live range of 
virtual register 
a = (BB1, BB2, 
BB3, BB4, 
BB5, BB6, 
BB7).

Def-Use chain of 
virtual register 
a = (BB1, BB3, 
BB5, BB7).

a :=...

:= a

:= a

:= a

T F

BB1

BB2

BB4BB3

BB5

BB6

BB7

CS 211

Computing Live Ranges

Using data flow analysis, we compute for each 
basic 

block:

• In the forward direction, the reaching attribute.

A variable is reaching block i if a definition or 
use of the variable reaches the basic block along 
the edges of the CFG.

• In the backward direction, the liveness attribute.

A variable is live at block i if there is a direct 
reference to the variable at block i or at some 
block j that succeeds i in the CFG, provided the 
variable in question is not redefined in the 
interval between i and j.
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Computing Live Ranges (Contd.)

The live range of a variable is the 
intersection of basic-blocks in CFG 
nodes in which the variable is live, and 

the set which it can reach.

CS 211

Global Register Allocation
• Local register allocation does not store data in 

registers across basic blocks.
Local allocation has poor register utilization   
global register allocation is essential.

• Simple global register allocation: allocate most 
“active” values in each inner loop.

• Full global register allocation: identify live ranges 
in control flow graph, allocate live ranges, and 
split ranges as needed.
Goal: select allocation so as to minimize number of 
load/store instructions performed by optimized 
program.

CS 211

a =...

b = ... ..= a

.. = b

T F

B1

B3

B4

B2

Control Flow 
Graph

Simple Example of Global Register 
Allocation

• Live range of a = {B1, B3}
• Live range of b = {B2, B4}
• No interference! a and b can be assigned 

to the same register
CS 211

a =...

b = ... c = c +1

...= a +b

T F

B1

B3

B4

B2

Control Flow 
Graph

T

F

Another Example of Global Register 
Allocation

• Live range of a = {B1, B2, B3, B4}
• Live range of b = {B2, B4}
• Live range of c = {B3}
• In this example, a and c interfere, and c should be 

given priority because it has a higher usage 
count.
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Cost and Savings

• Compilation Cost: running time and space 
of the global allocation algorithm.

• Execution Savings: cycles saved due to 
register residence of variables in 
optimized program execution.

• Contrast with memory-residence which 
leads to longer execution times.
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Interference Graph
• Definition: An interference graph G is an undirected 

graph with the following properties:

• (a) each node x denotes exactly one distinct live 
range X, and 

• (b) an edge exists between nodes x and y iff X, Y 
interfere (overlap), where X and Y are the live ranges 
corresponding to nodes x and y.
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Interference Graph Example
Live Ranges

a := …
b := …
c := …

:= a
:= b

d := …
:= c
:= d

Interference Graph

a

b c

Live ranges overlap
and hence interfere

Node model
live ranges

CS 211

Interference Graph Example
Live Ranges

a := …
b := …
c := …

:= a
:= b

d := …
:= c
:= d

Interference Graph

a

b c

Live ranges overlap
and hence interfere

Node model
live ranges



32

CS 211

The Classical Approach

• “Register Allocation and Spilling via Graph 
Coloring”, G. Chatin, Proceedings SIGPLAN-82 
Symposium on Compiler Construction, 98-105, 
1982.

• “Register Allocation via Coloring”, G. Chaitin, M.  
Auslander, A. Chandra, J. Cocke, M. Hopkins and 
P. Markstein, Computer Languages, vol. 6, 47-57, 
1981.

• more…
CS 211

The Classical Approach (Contd.)

• These works introduced the key notion of an 
interference graph for encoding conflicts between 
the live ranges.

• This notion was defined for the global control flow 
graph.

• It also introduced the notion of graph coloring to 
model the idea of register allocation.
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Execution Time and Spill-cost

• Spilling: Moving a variable that is currently 
register resident to memory when no more 
registers are available, and a new live-
range needs to be allocated one spill.

• Minimizing Execution Cost: Given an 
optimistic assignment— i.e., one where all 
the variables are register-resident, 
minimizing spilling.

CS 211

Graph Coloring
• Given an undirected graph G and a set of k

distinct colors, compute a coloring of the nodes 
of the graph i.e., assign a color to each node such 
that no two adjacent nodes get the same color.

Recall that two nodes are adjacent iff they have 
an edge between them.

• A given graph might not be k-colorable.
• In general, it is a computationally hard problem to 

color a given graph using a given number k of 
colors.

• The register allocation problem uses good 
heuristics for coloring.
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Register Interference & Allocation 
• Interference Graph: G = <E,V>

– Nodes (V) = variables, (more specifically, their live ranges)
– Edges (E) = interference between variable live ranges

• Graph Coloring (vertex coloring)
– Given a graph, G=<E,V>, assign colors to nodes (V) so that no

two adjacent (connected by an edge) nodes have the same 
color

– A graph can be “n-colored” if no more than n colors are 
needed to color the graph.

– The chromatic number of a graph is min{n} such that it can be 
n-colored

– n-coloring is an NP-complete problem, therefore optimal 
solution can take a long time to compute

How is graph coloring related to register allocation?
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Register Allocation as Coloring
• Given k registers, interpret each register as a 

color.
• The graph G is the interference graph of the given 

program.
• The nodes of the interference graph are the 

executable live ranges on the target platform.
• A coloring of the interference graph is an 

assignment of registers (colors) to live ranges 
(nodes).

• Running out of colors implies not enough 
registers and hence a need to spill in the above 
model.
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Interference Graph

Nodes: live ranges
Edges: interference

ld r4, 16(r3)
sub r6, r2, r4

add r7, r7, 1
blt   r7, 100

ld r5, 24(r3)

beq  r2, $0

add r2, r1, r5
sw r6, 8(r3)

“Live variable analysis”

r1

r2

r3
r4

r5

r6

r7

r1, r2 & r3 
are live-in

r1& r3 are live-out CS 211

Chaitin’s Graph Coloring Theorem

• Key observation:  If a graph G has a node 
X with degree less than n (i.e. having less 
than n edges connected to it), then G is n-
colorable IFF the reduced graph G’ 
obtained from G by deleting X and all its 
edges is n-colorable.

Proof:

n-1
G’

G
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Graph Coloring Algorithm (Not Optimal)
• Assume the register interference graph is n-colorable     

How do you choose n?
• Simplification

– Remove all nodes with degree less than n
– Repeat until the graph has n nodes left

• Assign each node a different color
• Add removed nodes back one-by-one and pick a legal color 

as each one is added (2 nodes connected by an edge get 
different colors)

Must be possible with less than n colors

• Complications: simplification can block if there are no 
nodes with less than n edges
Choose one node to spill based on spilling heuristic

CS 211

COLOR stack = {}

r1

r2

r3
r4

r5

r6

r7

remove r5

COLOR stack = {r5}
r1

r2

r3
r4

r6

r7

blocks spill r1
Is this a ood choice??

COLOR stack = {r5}

r2

r3
r4

r6

r7

remove r6

COLOR stack = {r5, r6}

r2

r3
r4

r7

Example (N = 4)

CS 211

r1

r2

r3

r7

remove r4

COLOR stack = {r5, r6, r4}

remove r6

COLOR stack = {r5, r6}

r1

r2

r3
r4

r7

r1 r7

r2

r3
r4

r5

r6

COLOR stack = {}

r1

r2

r3
r4

r6

r7

remove r5

COLOR stack = {r5}

Example (N = 5)
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Register Spilling

• When simplification is blocked, pick a node to delete from the 
graph in order to unblock

• Deleting a node implies the variable it represents will not be 
kept in register (i.e. spilled into memory)

– When constructing the interference graph, each node is assigned a value 
indicating the estimated cost to spill it.

– The estimated cost can be a function of the total number of definitions 
and uses of that variable weighted by its estimated execution frequency.

– When the coloring procedure is blocked, the node with the least spilling 
cost is picked for spilling.

• When a node is spilled, spill code is added into the original 
code to store a spilled variable at its definition and to reload it 
at each of its use

• After spill code is added, a new interference graph is rebuilt 
from the modified code, and n-coloring of this graph is again 
attempted
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The Alternate Approach:more common

• an alternate approach used widely in most 
compilers
– also uses the Graph Coloring Formulation

• “The Priority Based Coloring Approach to 
Register  Allocation”, F. Chow and J. 
Hennessey, ACM  Transactions on 
Programming Languages and  Systems, 
vol. 12, 501-536, 1990.
– Hennessey, Founder of MIPS, President of Stanford Univ!
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Important Modeling Difference

• The first difference from the classical approach 
is that now we assume that the “home location” 
of a live range is in memory.

– Conceptually, values are always in memory unless promoted 
to a register; this is also referred to as the pessimistic
approach.

– In the classical approach, the dual of this model is used 
where values are always in registers except when spilled; 
recall that this is referred to as the optimistic approach.

more...
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Important Modeling Difference

• A second major difference is the granularity at 
which code is modeled.
– In the classical approach, individual instructions are modeled 

whereas
– Now, basic blocks are the primitive units modeled as nodes 

in live ranges and the interference graph.

• The final major difference is the place of the 
register allocation in the overall compilation 
process.
– In the present approach, the interference graph is considered 

earlier in the compilation process using intermediate level 
statements; compiler generated temporaries are known.

– In contrast, in the previous work the allocation is done at the 
level of the machine code.
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The Main Information to be 
Used by the Register Allocator

• For each live range, we have a bit vector LIVE of 
the basic blocks in it.

• Also we have INTERFERE which gives for the 
live range, the set of all other live ranges that 
interfere with it.

• Recall that two live ranges interfere if they 
intersect in at least one (basic-block).

• If ⏐INTERFERE⏐ is smaller than the number of 
available of registers for a node i, then i is 
unconstrained; it is constrained otherwise.

more...
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The Main Information to be 
Used by the Register Allocator

• An unconstrained node can be safely assigned a 
register since conflicting live ranges do not use 
up the available registers.

• We associate a (possibly empty) set 
FORBIDDEN with each live range that represents 
the set of colors that have already been 
assigned to the members of its INTERFERENCE 
set.

The above representation is essentially a detailed
interference graph representation.
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Prioritizing Live Ranges

In the memory bound approach, given live 
ranges with a choice of assigning 
registers, we do the following:

• Choose a live range that is “likely” to 
yield greater savings in execution time.

• This means that we need to estimate the 
savings of each basic block in a live 
range.
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Estimate the Savings

Given a live range X for variable x, the estimated 
savings in a basic block i is determined as follows:

1. First compute CyclesSaved which is the number of 
loads and stored of x in i scaled by the number 
of cycles taken for each load/store.

2. Compensate the single load and/or store that 
might be needed to bring the variable in and/or 
store the variable at the end and denote it by 
Setup.

Note that Setup is derived from a single load or 
store or a load plus a store.

more...
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Estimate the Savings (Contd.)

3. Savings(X,i) = {CyclesSaved-Setup}

These indicate the actual savings in cycles after 
accounting for the possible loads/stores needed 
to move x at the beginning/end of i.

4. TotalSavings(X) = ΣiεX Savings(X,i) x W( i ).
(a) x is the set of all basic blocks in the live 
range of  

X.
(b) W( i ) is the execution frequency of variable x 
in 

block i.
more...
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Estimate the Savings (Contd.)

5. Note however that live regions might span a few 
blocks but yield a large savings due to frequent 
use of the variable while others might yield the 
same cumulative gain over a larger number of 
basic blocks.  We prioritize the former case and 
define:

{Priority(X) = TotalSavings(X)/Span(X)}

where Span(X) is the number of basic blocks in 
X.
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The Algorithm
For all constrained live ranges, execute the following steps:

1. Compute Priority(X) if it has not already been computed.
2. For the live range X with the highest priority:

(a) If its priority is negative or if no basic block i in X
can be assigned a register—because every 
color has been assigned to a basic block that       
interferes with i — then delete X from the list and   
modify the interference graph.

(b) Else, assign it a color that is not in its forbidden 
set.

(c) Update the forbidden sets of the members of  
INTERFERE for X’.

more...
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The Algorithm (Contd.)

3. For each live range X’ that is in INTERFERE for X 
do:

(a) If the FORBIDDEN of X’ is the set of all colors  

i.e., if no colors are available, SPLIT (X’).
Procedure SPLIT breaks a live range into 

smaller  
live ranges with the intent of reducing the 
interference of X’ it will be described next.

4. Repeat the above steps till all constrained live 
ranges are colored or till there is no color left to 
color any basic block.

CS 211

The Idea Behind Splitting

• Splitting ensures that we break a live range up 
into increasingly smaller live ranges.

• The limit is of course when we are down to the 
size of a single basic block.

• The intuition is that we start out with coarse-
grained interference graphs with few nodes.

• This makes the interference node degree 
possibly high.

• We increase the problem size via splitting on a 
need-to basis.

• This strategy lowers the interference.
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The Splitting Strategy

A sketch of an algorithm for splitting:
1. Choose a split point.

Note that we are guaranteed that X has at least 
one basic block i which can be assigned a color 
i.e., its forbidden set does not include all the 
colors. The earliest such in the order of control 
flow can be the split point.

2. Separate the live range X into X1 and X2 around 
the split point.

3. Update the sets INTERFERE for X1 and X2 and 
those for the live ranges that interfered with X

more...
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The Splitting Strategy (Contd.)

4. Recompute priorities and reprioritize the 
list.

Other bookkeeping activities to realize a 
safe 

implementation are also executed.
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Live Range Splitting Example

Live Ranges:
a: BB1, BB2, BB3, BB4, BB5
b: BB1, BB2, BB3, BB4, BB5, BB6
c: BB2, BB3, BB4, BB5
Assume the number of physical registers = 2

a := 
b :=

c :=

:= a 
:= c

:= b

BB1

BB2

BB4

BB5

BB6

BB3

a

b c

interference graph
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Live Range Splitting Example

New live ranges:
a: BB1, BB2, BB3, BB4, BB5
b: BB1
c: BB2, BB3, BB4, BB5
b2: BB6
b and b2 are logically the same program variable
b2 is a renamed equivalent of b.
All nodes are now unconstrained.

a :=
b :=
…

c :=

:= a
:= c

…           
:= b

BB1

BB2

BB4

BB5

BB6

BB3

a

b c

interference graph

b2

spill introduced

split b
T F
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Interaction Between Allocation 
and Scheduling

• The allocator and the scheduler are typically 
patched together heuristically.

• Leads to the “phase ordering problem: Should 
allocation be done before scheduling or vice-
versa?

• Saving on spilling or “good allocation” is only 
indirectly connected to the actual execution 
time.
Contrast with instruction scheduling.

• Factoring in register allocation into scheduling 
and solving the problem “globally” is a research 
issue. CS 211

Next - - Scheduling for ILP Processors

• Basic block does not expose enough 
parallelism due to small num of inst.

• Need to look at more flexible regions
– Trace scheduling, Superblock,….

• Scheduling more flexible regions implies 
using features such as speculation, code 
duplication, predication

CS 211

EPIC and Compiler Optimization

• EPIC requires dependency free 
“scheduled code”

• Burden of extracting parallelism falls on 
compiler

• success of EPIC architectures depends on 
efficiency of Compilers!!

• We provide overview of Compiler 
Optimization techniques (as they apply to 
EPIC/ILP)
– enhanced by examples using Trimaran ILP 

Infrastructure
CS 211

Scheduling for ILP Processors

• Size of basic block limits amount of ILP 
that can be extracted

• More than one basic block = going beyond 
branches
– Loop optimizations also

• Trace scheduling
– Pick a trace in the program graph

• Most frequently executed region of code

• Region based scheduling
– Find a region of code, and send this to the 

scheduler/register allocator
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Getting around basic block 
limitations

• Basic block size limits amount of 
parallelism available for extraction
– Need to consider more “flexible” regions of instructions

• A well known classical approach is to 
consider traces through the (acyclic) 
control flow graph.
– Shall return to this when we cover Compiling for ILP 

processors

CS 211

BB-1

BB-4 BB-5

BB-6

BB-7

BB-2

BB-3

STOP

STAR
T

A trace  BB-1, BB-4, BB-6

Branch Instruction

CS 211

Definitions: The Trace
A

B

C D

E F

G

H

I

0.4 0.6 0.8
0.2

0.9 0.1

0.2 0.8

CS 211

Region Based Scheduling

• Treat a region as input to the scheduler
– How to schedule instructions in a region ?
– Can we move instructions to any “slot” ?
– What do we have to watch out for ?

• Scheduling algorithm 
– Input is the Region (Trace, Superblock, etc.)
– Use List scheduling algorithm

• Treat movement of instructions past branch and join 
points as “special cases”
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The Four Elementary 
but Significant Side-effects

• Consider a single instruction moving past 
a conditional branch:

Branch Instruction Instruction being moved

CS 211

The First Case

• This code movement leads to the instruction 
executing sometimes when the instruction ought 
not to have: speculatively.

more...

A

If A is a DEF Live Off-trace

False Dependence Edge Added

Off-trace Path

CS 211

The Second Case

• Identical to previous case except the pseudo-dependence 
edge is from A to the join instruction whenever A is a 
“write” or a def.

• A more general solution is to permit the code motion but 
undo the effect of the speculated  definition  by adding 
repair code
An expensive proposition in terms of compilation cost.

Edged added

CS 211

The Third Case

• Instruction A will not be executed if the off-trace 
path is taken.

• To avoid mistakes, it is replicated.
more...

Replicate A

Off-trace Path

A
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The Fourth Case

• Similar to Case 3 except for the direction of the 
replication as shown in the figure above.

Replicate A

Off-trace Path

A

CS 211

Super Block

• A trace with a single entry but potentially 
many exits

• Simplifies code motion during scheduling
– upward movements past a side entry within a block are 

pure replication
– downward movements past a side entry within a block 

are pure speculation

• Two step formation
– Trace picking
– Tail duplication

CS 211

Definitions: The Superblock

• The superblock is a scheduling region composed 
of basic blocks with a single entry but potentially 
many exits

• Superblock formation is done in two steps
– Trace selection
– Tail duplication

0         1        2        3        4         5        6       7         8

Very Long Instruction Word Format

A larger scheduling region exposes more instructions that may
be executed in parallel. 

CS 211

Super block formation and
tail duplication

If x=3

y=1
u=v

y=2
u=w

If x=3

x=y*2 z=y*3

A

C

D

B

E F

G

H

If x=3

y=1
u=v

y=2
u=w

x=2 z=6

A

C

D

B

E F

G

H

E’

D’

G’
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Background: Region Formation

BB1

BB2 BB3

BB4

BB5 BB6

A

C

D

B

E F

G

H

BB1

BB2 BB3

BB5 BB6

A

C

D

B

E F

G

H

E’

D’

G’

The SuperBlock

BB7

0.9 0.1

0.8 0.2

BB4 BB8

BB9

BB7 BB10

CS 211

Advantage of Superblock

• We have taken care of the replication 
when we form the region
– Schedule the region independent of other regions!
– Don’t have to worry about code replication each time we 

move an instruction around a branch

• Send superblock to list scheduler and it 
works same as it did with basic blocks !

CS 211

Hyerblock Region Formation

• Single entry/ multiple exit set of predicated basic 
blocks (if-conversion)

• There are no incoming control flow arcs from outside 
basic blocks to the selected blocks other than the 
entry block

• Nested inner loops inside the selected blocks are not 
allowed

• Hyperblock formation procedure:
– Trace selection
– Tail duplication
– Loop peeling
– Node splitting
– If-conversion

CS 211

Background: Region Formation
If-Conversion Example
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Background: Region Formation
The HyperBlock

CS 211

Hyper block formation procedure

• Tail duplication
– remove side entries

• Loop Peeling
– create bigger region for nested loop

• Node Splitting
– Eliminate dependencies created by control path merge
– large code expansion

• After above three transformations, 
perform if conversion

CS 211

Tail Duplication

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u:=v+y

CS 211

Loop Peeling

A

C

B

D

A

C’

B’

D

C

B

D’
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Node Splitting

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

v:=v-1

u:=v+y

l=k+z
u:=v+y

l=k+z
CS 211

Assembly Code

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u:=v+y

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

CS 211

If conversion

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

v:=v*x

u:=v+y

C

ble x,0,C

d := ?(y>0)

f’:= ?(y<=0)

e := ?(x=1) if d

f”:= ?(x≠1) if d

f := ?(f’∨f”)
v := v+1 if e

v := v-1 if f

u := v+y

CS 211

Summary: Region Formation 

• In general, the opportunity to extract more 
parallelism increases as the region size 
increases. There are more instructions 
exposed in the larger region size.

• The compile time increases as the region 
size increases. A trade-off in compile time 
versus run-time must be considered.
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Region Formation in Trimaran

• A research infrastructure used to facilitate the 
creation and evaluation of EPIC/VLIW and 
superscalar compiler optimization techniques.
– Forms 3 types of regions:

• Basic blocks
• Superblocks
• Hyperblocks

– Operates only on the C language as input
– Uses a general machine description language (HMDES)

• This infrastructure uses a parameterized 
processor architecture called HPL-PD (a.k.a. 
PlayDoh)

• All architectures are mapped into and simulated 
in HPL-PD. 

CS 211

CS 211 CS 211
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ILP Scheduling – Summary 

• Send a large region of code into a list scheduler
– What regions?

• Start with a trace of high frequency paths in program

• Modify list scheduler to handle movements past 
branches
– IF you have speculation in the processor then allow 

speculative code motion
– Replication will cause code size growth but do not need 

speculation to support it
– Hyperblock may need predication support

• Key ideas: increase the scope of ILP analysis
– Tradeoff between compile time and execution time

• When do we stop ?


