
1

CS 211

Introduction to
Optimizing Compilers

CS 211

Hardware-Software Interface

Machine Program

Performance = tcyc x CPI x code size

X

Available resources
statically fixed

Designed to support
wide variety of programs

Required resources
dynamically varying

Designed to run well on
a variety of machines

Interested in having
itself run fast

Interested in running
many programs fast

Reflects how well the
machine resources match
the program requirements

CS 211

Compiler Tasks

• Code Translation
– Source language → target language

FORTRAN → C
C → MIPS, PowerPC or Alpha machine code
MIPS binary → Alpha binary

• Code Optimization
– Code runs faster
– Match dynamic code behavior to static machine

structure

CS 211

Compiler Structure

Frond End Optimizer Back End

Machine independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR

2

Structure of Optimizing Compilers

TOOLS

Program
Database Front-end #2Front-end #1

High-level
Optimizer

Lowering of IL

Low-level
Optimizer

Target-1
Code Generator

and Linker

Target-2
Code Generator

and Linker

Target-3
Code Generator

and Linker

Target-1 Executable Target-2 Executable Target-3 Executable
Runtime
Systems

Middle
end

Back
ends

Front
ends

High-level Intermediate Language
HIL

Optimized HIL

Low-level Intermediate Language
LIL

Optimized LIL

…..

…..

Source Program Source Program

CS 211

Front End

• Lexical Analysis
– Misspelling an identifier, keyword, or operator

e.g. lex

• Syntax Analysis
– Grammar errors, such as mismatched parentheses

e.g. yacc

• Semantic Analysis
– Type checking

CS 211

1. Scanner - converts input character
stream into stream of lexical tokens

2. Parser - derives syntactic structure
(parse tree, abstract syntax tree) from
token stream, and reports any syntax
errors encountered

Front-end

CS 211

Front-end

3. Semantic Analysis - generates
intermediate language representation
from input source program and user
options/directives, and reports any
semantic errors encountered

3

CS 211

High-level Optimizer

• Global intra-procedural and inter-
procedural analysis of source
program's control and data flow

• Selection of high-level
optimizations and transformations

• Update of high-level intermediate
language

CS 211

Intermediate Representation
• Achieve retargetability

– Different source languages
– Different target machines

• Example (tree-based IR from CMCC)

d = a * (b+c)

A0 5 78 “a”

int a, b, c, d;

A1 5 78 “b”
A2 5 78 “c”
A3 5 78 “d”

FND1 ADDRL A3
FND2 ADDRL A0
FND3 INDIRI FND2
FND4 ADDRL A1
FND5 INDIRI FND4
FND6 ADDRL A2
FND7 INDIRI FND6
FND8 ADDI FND5 FND7
FND9 MULI FND3 FND8
FND10 ASGI FND1 FND9

Linear form of

ASGI

&a

&b &c

&d MULI

ADDIINDIRI

INDIRI INDIRI

Graphical Representationgraphical representation

CS 211

Lowering of Intermediate Language

• Linearized storage/mapping of variables
– e.g. 2-d array to 1-d array

• Array/structure references → load/store
operations
– e.g. A[I] to load R1,(R0) where R0 contains i

• High-level control structures → low-level
control flow
– e.g. “While” statement to Branch statements

CS 211

Machine-Independent Optimizations

• Dataflow Analysis and Optimizations
– Constant propagation
– Copy propagation
– Value numbering

• Elimination of common subexpression
• Dead code elimination
• Stength reduction
• Function/Procedure inlining

4

CS 211

Code-Optimizing Transformations

• Constant folding
(1 + 2) ⇒ 3
(100 > 0) ⇒ true

• Copy propagation
x = b + c x = b + c
z = y * x z = y * (b + c)

• Common subexpression
x = b * c + 4 t = b * c
z = b * c - 1 x = t + 4

z = t - 1

• Dead code elimination
x = 1
x = b + c or if x is not referred to at all

⇒

⇒

CS 211

Code Optimization Example
x = 1
y = a * b + 3
z = a * b + x + z + 2
x = 3

propagation
x = 1
y = a * b + 3
z = a * b + 1 + z + 2
x = 3

constant
folding

x = 1
y = a * b + 3
z = a * b + 3 + z
x = 3

dead code
elimination

y = a * b + 3
z = a * b + 3 + z
x = 3

common
subexpression

t = a * b + 3
y = t
z = t + z
x = 3

CS 211

Code Motion
• Move code between basic blocks
• E.g. move loop invariant computations

outside of loops

t = x / y
while (i < 100) { while (i < 100) {

*p = x / y + i *p = t + i
i = i + 1 i = i + 1

} }

CS 211

Strength Reduction
• Replace complex (and costly) expressions

with simpler ones
• E.g.

a : = b*17 a: = (b<<4) + b

• E.g.
p = & a[i]
t = i * 100

while (i < 100) { while (i < 100) {
a[i] = i * 100 *p = t
i = i + 1 t = t + 100

} p = p + 4
i = i + 1

}

loop invariant: &a[i]==p, i*100==t

5

CS 211

Induction variable elimination

• Induction variable: loop index.
• Consider loop:

for (i=0; i<N; i++)
for (j=0; j<M; j++)

z[i][j] = b[i][j];

• Rather than recompute i*M+j for each
array in each iteration, share induction
variable between arrays, increment at end
of loop body.

CS 211

Loop Optimizations
• Motivation: restructure program so as to

enable more effective back-end
optimizations and hardware exploitation

• Loop transformations are useful for
enhancing
– register allocation
– instruction-level parallelism
– data-cache locality
– vectorization
– parallelization

CS 211

Importance of Loop Optimizations
Program No. of Static Dynamic % of

Loops B.B. Count B.B. Count Total

nasa7 9 --- 322M 64%

16 --- 362M 72%

83 --- 500M ~100%

matrix300 1 17 217.6M 98%

15 96 221.2M 98+%

tomcatv 1 7 26.1M 50%

5 22 52.4M 99+%

12 96 54.2M ~100%

Study of loop-intensive benchmarks in the SPEC92 suite [C.J. Newburn, 1991] CS 211

Loop optimizations

• Loops are good targets for optimization.
• Basic loop optimizations:

– code motion;
– induction-variable elimination;
– strength reduction (x*2 -> x<<1).

• Improve performance by unrolling the
loop
– Note impact when using processors that allow parallel

execution of instructions
• Texas Instruments new DSP processors

6

CS 211

Function inlining

• Replace function calls with function body
• Increase compilation scope (increase ILP)

e.g. constant propagation, common subexpression

• Reduce function call overhead
e.g. passing arguments, reg. saves and restores

[W.M. Hwu, 1991 (DEC 3100)]
Program In-line Speedup in-line Code Expansion
cccp 1.06 1.25
compress 1.05 1.00+
equ 1.12 1.21
espresso 1.07 1.09
lex 1.02 1.06
tbl 1.04 1.18
xlisp 1.46 1.32
yacc 1.03 1.17

CS 211

Back End

IR Back End

code
selection

code
scheduling

register
allocation

code
emission

Machine code

Instruction-level IR

• map virtual registers into architect registers
• rearrange code
• target machine specific optimizations

- delayed branch
- conditional move
- instruction combining

auto increment addressing mode
add carrying (PowerPC)
hardware branch (PowerPC)

CS 211

Code Selection
• Map IR to machine instructions (e.g. pattern

matching)

ASGI

&a

&b &c

&d MULI

ADDIINDIRI

INDIRI INDIRI

addi Rt1, Rb, Rc
muli Rt2, Ra, Rt1

Inst *match (IR *n) {
switch (n->opcode) {

case MUL :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F)

inst = mult_fp((n->type == D), l, r);
else

inst = mult_int ((n->type == I), l, r);
break;

case ADD :
l = match (n->left());
r = match (n->right());
if (n->type == D || n->type == F)

inst = add_fp((n->type == D), l, r);
else

inst = add_int ((n->type == I), l, r);
break;

}
return inst;

}

case ……..:

case ……..:

CS 211

Our old friend…CPU Time

• CPU time = CPI * IC * Clock
• What do the various optimizations affect

– Function inlining
– Loop unrolling
– Code optimizing transformations
– Code selection

7

CS 211

Machine Dependent Optimizations

• Register Allocation

• Instruction Scheduling

• Peephole Optimizations

CS 211

Peephole Optimizations

• Replacements of assembly instruction
through template matching

• Eg. Replacing one addressing mode with
another in a CISC

CS 211

Code Scheduling
• Rearrange code sequence to minimize

execution time
– Hide instruction latency
– Utilize all available resources

l.d f4, 8(r8)
fadd f5, f4, f6
 l.d f2, 16(r8)
fsub f7, f2, f6
fmul f7, f7, f5
s.d f7, 24(r8)
l.d f8, 0(r9)
s.d f8, 8(r9)

1 stall

1 stall

3 stalls

1 stall

reorder

l.d f4, 8(r8)
l.d f2, 16(r8)
fadd f5, f4, f6
fsub f7, f2, f6
fmul f7, f7, f5
s.d f7, 24(r8)
l.d f8, 0(r9)
s.d f8, 8(r9)

3 stalls

1 stall

0 stall
0 stall

l.d f4, 8(r8)
l.d f2, 16(r8)
fadd f5, f4, f6
fsub f7, f2, f6
fmul f7, f7, f5
l.d f8, 0(r9)
s.d f8, 8(r9)
s.d f7, 24(r8)

0 stalls
1 stall

0 stall
0 stallreorder

(memory dis-ambiguation)

CS 211

Cost of Instruction Scheduling

• Given a program segment, the goal is to execute
it as quickly as possible

• The completion time is the objective function or
cost to be minimized

• This is referred to as the makespan of the
schedule

• It has to be balanced against the running time
and space needs of the algorithm for finding the
schedule, which translates to compilation cost

8

CS 211

Instruction Scheduling Example

main(int argc, char *argv[])
{

int a, b, c;

a = argc;
b = a * 255;
c = a * 15;
printf("%d\n", b*b - 4*a*c);

}

op 10 MPY vr2 ← param1, 255
op 12 MPY vr3 ← param1, 15
op 14 MPY vr8 ← vr2, vr2
op 15 SHL vr9 ← param1, 2
op 16 MPY vr10 ← vr9, r3
op 17 SUB param2 ← vr8, r10
op 18 MOV param1 ← addr("%d\n“)
op 27 PBRR vb12 ← addr(printf)
op 20 BRL ret_addr ← vb12

CS 211

After Scheduling

(Prior to Register Allocation)

CS 211

Instruction Scheduling

Given a source program P, schedule the
instructions so as to minimize the
overall execution time on the functional
units in the target machine

CS 211

The General Instruction
Scheduling Problem

Feasible Schedule: A specification of a start time
for each instruction such that the following
constraints are obeyed:

1. Resource: Number of instructions of a
given type of any time < corresponding
number of FUs

2. Precedence and Latency: For each
predecessor j of an instruction i in the DAG, i
is the started only δ cycles after j finishes
where δ is the latency labeling the edge (j,i),

Output: A schedule with the minimum overall
completion time

9

CS 211

Instruction Scheduling

Input: A basic block represented as a DAG

• i2 is a load instruction.
• Latency of 1 on (i2,i4) means that i4

cannot start for one cycle after i2
completes.

0

0 0

1

i1

i2

i3

i4

Latency

CS 211

• Two schedules for the above DAG with
S2 as the desired sequence.

i1 i3 i2 i4

i1 i3i2 i4

Idle Cycle Due
to Latency

S1

S2

Instruction Scheduling

CS 211

Why Register Allocation?

• Storing and accessing variables from
registers is much faster than accessing
data from memory.
– Variables ought to be stored in registers

• It is useful to store variables as long as
possible, once they are loaded into
registers

• Registers are bounded in number
– “register-sharing” is needed over time.

CS 211

Register Allocation

• Map virtual registers into physical
registers
– minimize register usage to reduce memory accesses
– but introduces false dependencies

l.d f4, 8(r8)
fadd f5, f4, f6
l.d f2, 16(r8)
fsub f7, f2, f6
fmul f7, f7, f5
s.d f7, 24(r8)
l.d f8, 0(r9)
s.d f8, 8(r9)

l.d $f0, 8(r8)
fadd $f2, $f0, $f3
l.d $f0, 16(r8)
fsub $f0, $f0, $f3
fmul $f0, $f0, $f2
s.d $f0, 24(r8)
l.d $f0, 0(r9)
s.d $f0, 8(r9)

$f0

$f2

$f3

f2
f4
f7
f8

f5

f6

10

CS 211

The Goal

• Primarily to assign registers to
variables

• However, the allocator runs out of
registers quite often

• Decide which variables to “flush” out
of registers to free them up, so that
other variables can be bought in
– Spilling

CS 211

Cost of Register Allocation
(Contd.)

• Therefore, maximizing the duration of operands in registers
or minimizing the amount of spilling, is the goal

• Once again, the running time (complexity) and space used,
of the algorithm for doing this is the compilation cost

CS 211

Register Allocation and Assignment

• Allocation: identifying program values (virtual
registers, live ranges) and program points at
which values should be stored in a physical
register

• Program values that are not allocated to
registers are said to be spilled

• Assignment: identifying which physical register
should hold an allocated value at each program
point.

CS 211

Our old friend…CPU Time

• CPU time = CPI * IC * Clock
• What do the various optimizations affect

– Instruction scheduling
• Stall cycles

– Register Allocation
• Stall cycles due to false dependencies, spill code

11

CS 211

Performance analysis

• Elements of program performance (Shaw):
– execution time = program path + instruction timing

• Path depends on data values. Choose
which case you are interested in.

• Instruction timing depends on pipelining,
cache behavior.

CS 211

Programs and performance analysis

• Best results come from analyzing
optimized instructions, not high-level
language code:
– non-obvious translations of HLL statements into

instructions;
– code may move;
– cache effects are hard to predict.

• importance of compiler
– Back-end of compiler

CS 211

Instruction timing

• Not all instructions take the same amount
of time.
– Hard to get execution time data for instructions.

• Instruction execution times are not
independent.

• Execution time may depend on operand
values.

CS 211

Trace-driven performance analysis

• Trace: a record of the execution path of a
program.

• Trace gives execution path for
performance analysis.

• A useful trace:
– requires proper input values;
– is large (gigabytes).

• Trace generation in H/W or S/W?

12

Execution Frequencies?Execution Frequencies?

CS 211

What are Execution Frequencies

• Branch probabilities

• Average number of loop iterations

• Average number of procedure calls

CS 211

How are Execution Frequencies
Used?

• Focus optimization on most frequently used regions

– region-based compilation

• Provides quantitative basis for evaluating quality of
optimization heuristics

CS 211

How are Execution Frequencies
Obtained?

• Profiling tools:
– Mechanism: sampling vs. counting
– Granularity = procedure vs. basic block

• Compile-time estimation:
– Default values
– Compiler analysis
– Goal is to select same set of program regions and

optimizations that would be obtained from profiled frequencies

13

CS 211

What are Execution Costs?

Cost of intermediate code operation
parametrized according to target architecture:

• Number of target instructions

• Resource requirement template

• Number of cycles

CS 211

How are Execution Costs Used?

In conjunction with execution frequencies:

• Identify most time-consuming regions of program

• Provides quantitative basis for evaluating quality of
optimization heuristics

CS 211

How are Execution Costs
Obtained?

• Simplistic translation of intermediate code operation to
corresponding instruction template for target machine

CS 211

Cost Functions

• Effectiveness of the Optimizations: How well
can we optimize our objective function?
Impact on running time of the compiled code
determined by the completion time.

• Efficiency of the optimization: How fast can
we optimize?
Impact on the time it takes to compile or cost
for gaining the benefit of code with fast
running time.

14

CS 211 CS 211

Instruction Scheduling:
Program Dependence Graph

CS 211

Basic Graphs

• A graph is made up of a set of nodes (V)
and a set of edges (E)

• Each edge has a source and a sink, both
of which must be members of the nodes
set, i.e. E = V × V

• Edges may be directed or undirected
– A directed graph has only directed edges
– A undirected graph has only undirected edges

CS 211

Examples

Undirected graph Directed graph

15

CS 211

Paths

Undirected graph Directed graph

source

sink

path

CS 211

Cycles

Undirected graph Directed graph Acyclic
Directed
graph

CS 211

Connected Graphs

Unconnected graph Connected
directed graph

CS 211

Connectivity of Directed Graphs

• A strongly connected directed graph is
one which has a path from each vertex to
every other vertex

• Is this graph strongly
connected?

A

B

C

D

E F
G

16

CS 211

Program Dependence Graph

• The Program Dependence Graph (PDG) is
the intermediate (abstract) representation
of a program designed for use in
optimizations

• It consists of two important graphs:
– Control Dependence Graph captures control flow and

control dependence
– Data Dependence Graph captures data dependences

CS 211

Control Flow Graphs

• Motivation: language-independent and machine-
independent representation of control flow in
programs used in high-level and low-level code
optimizers. The flow graph data structure lends
itself to use of several important algorithms from
graph theory.

CS 211

Control Flow Graph: Definition
A control flow graph CFG = (Nc ; Ec ; Tc) consists of

• Nc, a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow
i.e. a basic block.

• Ec ⊆ Nc x Nc x Labels, a set of labeled edges.
• Tc , a node type mapping. Tc(n) identies the type of node n

as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node
and a unique STOP node, and that for any node N in
CFG, there exist directed paths from START to N and
from N to STOP.

CS 211

CFG From Trimaran
main(int argc, char *argv[])

{

if (argc == 1) {

printf("1");

} else {

if (argc == 2) {

printf("2");

} else {

printf("others");

}

}

printf("done");

}

BB1

BB2

BB4BB3

BB6BB5

BB8

BB9

17

CS 211

Data and Control Dependences

Motivation: identify only the essential control and
data

dependences which need to be obeyed by
transformations for code optimization.

Program Dependence Graph (PDG) consists of
1. Set of nodes, as in the CFG
2. Control dependence edges
3. Data dependence edges

Together, the control and data dependence edges
dictate whether or not a proposed code

transformation
is legal.

CS 211

Data Dependence Analysis
If two operations have potentially interfering data
accesses, data dependence analysis is necessary for
determining whether or not an interference actually
exists. If there is no interference, it may be possible to
reorder the operations or execute them concurrently.

The data accesses examined for data dependence
analysis may arise from array variables, scalar
variables, procedure parameters, pointer
dereferences, etc. in the original source program.

Data dependence analysis is conservative, in that it
may state that a data dependence exists between two
statements, when actually none exists.

CS 211

Data Dependence: Definition
A data dependence, S1 → S2, exists between CFG
nodes S1 and S2 with respect to variable X if and

only if

1. there exists a path P: S1 → S2 in CFG, with no
intervening write to X, and

2. at least one of the following is true:

(a) (flow) X is written by S1 and later read by S2, or
(b) (anti) X is read by S1 and later is written by S2
or
(c) (output) X is written by S1 and later written by
S2 CS 211

Def/Use chaining for Data
Dependence Analysis

A def-use chain links a definition D (i.e. a write access
of variable X to each use U (i.e. a read access), such
that there is a path from D to U in CFG that does not
redefine X.

Similarly, a use-def chain links a use U to a definition
D, and a def-def chain links a definition D to a
definition D’ (with no intervening write to X in all
cases).

Def-use, use-def, and def-def chains can be computed
by data flow analysis, and provide a simple but
conservative way of enumerating flow, anti, and output
data dependences.

18

CS 211

Impact of Control Flow

• Acyclic control flow is easier to deal with than
cyclic control flow. Problems in dealing with cyclic
flow:

· A loop implicitly represent a large run-time program space
compactly.

· Not possible to open out the loops fully at compile-time.

· Loop unrolling provides a partial solution.

more...
CS 211

Impact of Control Flow (Contd.)

· Using the loop to optimize its dynamic behavior is a
challenging problem.

· Hard to optimize well without detailed knowledge of the
range of the iteration.

· In practice, profiling can offer limited help in estimating
loop bounds.

CS 211

Control Dependence Analysis

We want to capture two related ideas with control
dependence analysis of a CFG:
1. Node Y should be control dependent on node X if

node X evaluates a predicate (conditional
branch) which can control whether node Y will
subsequently be executed or not. This idea is
useful for determining whether node Y needs to
wait for node X to complete, even though they
have no data dependences.

CS 211

Control Dependence
Analysis (contd.)

2. Two nodes, Y and Z, should be identified as

having identical control conditions if in every run

of the program, node Y is executed if and only if

node Z is executed. This idea is useful for

determining whether nodes Y and Z can be made

adjacent and executed concurrently, even though

they may be far apart in the CFG.

19

CS 211

Instruction Scheduling AlgorithmsInstruction Scheduling Algorithms

CS 211

Acyclic Instruction Scheduling

• We will consider the case of acyclic control
flow first.

• The acyclic case itself has two parts:
– The simpler case that we will consider first has no

branching and corresponds to basic block of code, eg.,
loop bodies.

– The more complicated case of scheduling programs with
acyclic control flow with branching will be considered
next.

CS 211

The Core Case: Scheduling Basic Blocks

• Why are basic blocks easy?

• All instructions specified as part of the
input must be executed.

• Allows deterministic modeling of the input.

• No “branch probabilities” to contend with;
makes problem space easy to optimize
using classical methods.

CS 211

Instruction Scheduling

• Input: A basic block represented as a DAG

• i2 is a load instruction.
• Latency of 1 on (i2,i4) means that i4

cannot start for one cycle after i2
completes.

0

0 0

1

i1

i2

i3

i4

Latency

20

CS 211

• Two schedules for the above DAG with S2
as the desired sequence.

i1 i3 i2 i4

i1 i3i2 i4

Idle Cycle Due
to Latency

S1

S2

Instruction Scheduling (Contd.)

CS 211

The General Instruction
Scheduling Problem

• Input: DAG representing each basic block
where:

• 1. Nodes encode unit execution time
(single cycle) instructions.

• 2. Each node requires a definite class of
FUs.

• 3. Additional pipeline delays encoded as
latencies on the edges.

• 4. Number of FUs of each type in the
target machine.

more...

CS 211

The General Instruction Scheduling
Problem (Contd.)

• Feasible Schedule: A specification of a start time for
each instruction such that the following constraints
are obeyed:

• 1. Resource: Number of instructions of a given
type at any time < corresponding number of FUs.

• 2. Precedence and Latency: For each
predecessor j of an instruction i in the DAG, i is the
started only cycles after j finishes where k is the
latency labeling the edge (j,i),

• Output: A schedule with the minimum overall
completion time (makespan).

CS 211

Drawing on Deterministic Scheduling

• Canonical List Scheduling Algorithm:

• 1. Assign a Rank (priority) to each
instruction (or node).

• 2. Sort and build a priority list of the
instructions in non-decreasing order of
Rank.
– Nodes with smaller ranks occur earlier

21

CS 211

Drawing on Deterministic Scheduling
(Contd.)

• 3. Greedily list-schedule .
– Scan iteratively and on each scan, choose the largest

number of “ready” instructions subject to resource (FU)
constraints in list-order

– An instruction is ready provided
• it has not been chosen earlier and

• all of its predecessors have been chosen and the
appropriate latencies have elapsed.

•

CS 211

Code Scheduling

• Objectives: minimize execution latency of the
program
– Start as early as possible instructions on the critical path
– Help expose more instruction-level parallelism to the hardware
– Help avoid resource conflicts that increase execution time

• Constraints
– Program Precedences
– Machine Resources

• Motivations
– Dynamic/Static Interface (DSI): By employing more software

(static) optimization techniques at compile time, hardware
complexity can be significantly reduced

– Performance Boost: Even with the same complex hardware,
software scheduling can provide additional performance
enhancement over that of unscheduled code

CS 211

Precedence Constraints
• Minimum required ordering and latency

between definition and use
• Precedence graph

– Nodes: instructions
– Edges (a→b): a precedes b
– Edges are annotated with minimum latency

w[i+k].ip = z[i].rp + z[m+i].rp;
w[i+j].rp = e[k+1].rp*

(z[i].rp -z[m+i].rp) -
e[k+1].ip *
(z[i].ip - z[m+i].ip);

FFT code fragment

i1: l.s f2, 4(r2)
i2: l.s f0, 4(r5)
i3: fadd.s f0, f2, f0
i4: s.s f0, 4(r6)
i5: l.s f14, 8(r7)
i6: l.s f6, 0(r2)
i7: l.s f5, 0(r3)
i8: fsub.s f5, f6, f5
i9: fmul.s f4, f14, f5
i10: l.s f15, 12(r7)
i11: l.s f7, 4(r2)
i12: l.s f8, 4(r3)
i13: fsub.s f8, f7, f8
i14: fmul.s f8, f15, f8
i15: fsub.s f8, f4, f8
i16: s.s f8, 0(r8) CS 211

Precedence Graph

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2

22

CS 211

Resource Constraints

• Bookkeeping
– Prevent resources from being oversubscribed

I1 I2 FA FM

cycle

Machine model

add r1, r1, 1

fadd f1, f1, f2

fadd f3, f3, f4

add r2, r2, 4

CS 211

The Value of Greedy List Scheduling

• Example: Consider the DAG shown below:

• Using the list = <i1, i2, i3, i4, i5>

• Greedy scanning produces the steps of
the schedule as follows:

CS 211

The Value of Greedy List Scheduling
(Contd.)

• 1. On the first scan: i1 which is the first
step.

• 2. On the second and third scans and out
of the list order, respectively i4 and i5 to
correspond to steps two and three of the
schedule.

• 3. On the fourth and fifth scans, i2 and i3
respectively scheduled in steps four and five.

CS 211

List Scheduling for Basic Blocks

1. Assign priority to each instruction
2. Initialize ready list that holds all ready

instructions
Ready = data ready and can be scheduled

3. Greedily choose one ready instruction I from
ready list with the highest priority

Possibly using tie-breaking heuristics

4. Insert I into schedule
Making sure resource constraints are satisfied

5. Add those instructions whose precedence
constraints are now satisfied into the ready list

23

CS 211

Rank/Priority Functions/Heuristics

• Number of descendants in precedence
graph

• Maximum latency from root node of
precedence graph

• Length of operation latency
• Ranking of paths based on importance
• Combination of above

CS 211

Orientation of Scheduling

• Instruction Oriented
– Initialization (priority and ready list)
– Choose one ready instruction I and find a slot in schedule

make sure resource constraint is satisfied
– Insert I into schedule
– Update ready list

• Cycle Oriented
– Initialization (priority and ready list)
– Step through schedule cycle by cycle
– For the current cycle C, choose one ready instruction I

be sure latency and resource constraints are satisfied
– Insert I into schedule (cycle C)
– Update ready list

CS 211

List Scheduling Example
(a + b) * (c - d) + e/f

load: 2 cycles
add: 1 cycle

mul: 4 cycles
div: 10 cycles

sub: 1 cycle

orientation: cycle
direction: backward
heuristic: maximum latency to root

ld a ld b ld c ld d ld e ld f

fadd fsub fdiv

fadd

fmul

1 2 3 4 5 6

7 8 9

10

11

CS 211

(a+b)*c

Load: 2 cycles
Add: 1 cycle
Mult: 2 cycles

ld a ld b ld c

add

mul

1 2 3

4

5

24

CS 211

Scalar Scheduling Example

14
13
12
11
10

mult559
mult558
ld c33,57
ld c33,56
a+b44,3,55
ld b22,4,3,54
ld b22,4,3,53
ld a11,2,4,3,52
ld a11,2,4,3,51

CodeScheduleReady listCycle

Ready inst are green
Red indicates not ready
Black indicates under execution

CS 211

ILP Scheduling Example

multX556
multX55 5

ld cX33, 5 4
(a+b)ld cXX4,34,3,53
ld bld aXX1,21,2,4,3,52

ld bld aXX1,21,2,4,3,51

ALUMe
m

Mem Code
Resources

ScheduleReady listCycle

CS 211

Some Intuition

• Greediness helps in making sure that idle
cycles don’t remain if there are available
instructions further “down stream.”

• Ranks help prioritize nodes such that
choices made early on favor instructions
with greater enabling power, so that there
is no unforced idle cycle.
– Rank/Priority function is critical

CS 211

How Good is Greedy?

• Approximation: For any pipeline depth k 1
and any number m of pipelines,

• Sgreedy/Sopt (2 – 1/mk).
•

25

CS 211

How good is greedy?

• For example, with one pipeline (m=1) and the
latencies k grow as 2,3,4,…, the approximate
schedule is guaranteed to have a completion time
no more 66%, 75%, and 80% over the optimal
completion time.

• This theoretical guarantee shows that greedy
scheduling is not bad, but the bounds are worst-
case; practical experience tends to be much
better.

more...

CS 211

How Good is Greedy? (Contd.)

• Running Time of Greedy List Scheduling:
Linear in the size of the DAG.

• “Scheduling Time-Critical Instructions on
RISC Machines,” K. Palem and B. Simons,
ACM Transactions on Programming
Languages and Systems, 632-658, Vol. 15,
1993.

CS 211

A Critical Choice: The Rank Function A Critical Choice: The Rank Function
for Prioritizing Nodesfor Prioritizing Nodes

CS 211

Rank Functions

• 1. “Postpass Code Optimization of
Pipelined Constraints”, J. Hennessey and
T. Gross, ACM Transactions on
Programming Languages and Systems,
vol. 5, 422-448, 1983.

• 2. “Scheduling Expressions on a Pipelined
Processor with a Maximal Delay of One
Cycle,” D. Bernstein and I. Gertner, ACM
Transactions on Programming Languages
and Systems, vol. 11 no. 1, 57-66, Jan 1989.

26

CS 211

Rank Functions (Contd.)

• 3. “Scheduling Time-Critical Instructions
on RISC Machines,” K. Palem and B.
Simons, ACM Transactions on
Programming Languages and Systems,
632-658, vol. 15, 1993

• Optimality: 2 and 3 produce optimal
schedules for RISC processors such as the
IBM 801, Berkeley RISC and so on.

CS 211

An Example Rank Function

• The example DAG

• 1. Initially label all the nodes by the same value, say
• 2. Compute new labels from old starting with nodes at level

zero (i4) and working towards higher levels:
• (a) All nodes at level zero get a rank of .
•

more...

0

0 0

1

i1

i2

i3

i4

Latency

CS 211

An Example Rank Function (Contd.)

• (b) For a node at level 1, construct a new
label which is the concentration of
all its successors connected by a latency
1 edge.
– Edge i2 to i4 in this case.

• (c) The empty symbol is associated with
latency zero edges.
– Edges i3 to i4 for example.

CS 211

An Example Rank Function (Contd.)

• (d) The result is that i2 and i3 respectively
get new labels and hence ranks ’= > ’’ =
.

• Note that ’= > ’’ = i.e., labels are drawn
from a totally ordered alphabet.

• (e) Rank of i1 is the concentration of the
ranks of its immediate successors i2 and
i3 i.e., it is ’’’= ’| ’’.

• 3. The resulting sorted list is (optimum) i1,
i2, i3, i4.

•

27

CS 211

Limitations of List Scheduling
• Cannot move instructions past conditional

branch instructions in the program (scheduling
limited by basic block boundaries)

• Problem: Many programs have small numbers of
instructions (4-5) in each basic block. Hence, not
much code motion is possible

• Solution: Allow code motion across basic block
boundaries.
– Speculative Code Motion: “jumping the gun”

• execute instructions before we know whether or not we need to
• utilize otherwise idle resources to perform work which we

speculate will need to be done
– Relies on program profiling to make intelligent decisions

about speculation

CS 211

Getting around basic block
limitations

• Basic block size limits amount of
parallelism available for extraction
– Need to consider more “flexible” regions of instructions

• A well known classical approach is to
consider traces through the (acyclic)
control flow graph.
– Shall return to this when we cover Compiling for ILP

processors

CS 211

Traces
• “Trace Scheduling: A Technique for Global

Microcode Compaction,” J.A. Fisher, IEEE
Transactions on Computers, Vol. C-30, 1981.

• Main Ideas:

· Choose a program segment that has no cyclic
dependences.

· Choose one of the paths out of each branch that is
encountered.

more...
CS 211

BB-1

BB-4 BB-5

BB-6

BB-7

BB-2

BB-3

STOP

STAR
T

A trace BB-1, BB-4, BB-6

Branch Instruction

28

CS 211

Register Allocation

CS 211

Revisiting A Typical Optimizing
Compiler

Front End Back EndSource Program

Intermediate Language

Scheduling Register Allocation

CS 211

Rationale for Separating Register
Allocation from Scheduling

• Each of Scheduling and Register Allocation
are hard to solve individually, let alone
solve globally as a combined optimization.

• So, solve each optimization locally and
heuristically “patch up” the two stages.

CS 211

The Goal

• Primarily to assign registers to
variables

• However, the allocator runs out of
registers quite often

• Decide which variables to “flush” out
of registers to free them up, so that
other variables can be bought in
– Spilling

29

CS 211

Register Allocation and Assignment

• Allocation: identifying program values (virtual
registers, live ranges) and program points at
which values should be stored in a physical
register

• Program values that are not allocated to
registers are said to be spilled

• Assignment: identifying which physical register
should hold an allocated value at each program
point.

CS 211

Register Allocation – Key Concepts

• Determine the range of code over which a
variable is used
– Live ranges

• Formulate the problem of assigning
variables to registers as a graph problem
– Graph coloring
– Use application domain (Instruction execution) to define

the priority function

CS 211

Live Ranges

Live range of
virtual register
a = (BB1, BB2,
BB3, BB4,
BB5, BB6,
BB7).

Def-Use chain of
virtual register
a = (BB1, BB3,
BB5, BB7).

a :=...

:= a

:= a

:= a

T F

BB1

BB2

BB4BB3

BB5

BB6

BB7

CS 211

Computing Live Ranges

Using data flow analysis, we compute for each
basic

block:

• In the forward direction, the reaching attribute.

A variable is reaching block i if a definition or
use of the variable reaches the basic block along
the edges of the CFG.

• In the backward direction, the liveness attribute.

A variable is live at block i if there is a direct
reference to the variable at block i or at some
block j that succeeds i in the CFG, provided the
variable in question is not redefined in the
interval between i and j.

30

CS 211

Computing Live Ranges (Contd.)

The live range of a variable is the
intersection of basic-blocks in CFG
nodes in which the variable is live, and

the set which it can reach.

CS 211

Global Register Allocation
• Local register allocation does not store data in

registers across basic blocks.
Local allocation has poor register utilization
global register allocation is essential.

• Simple global register allocation: allocate most
“active” values in each inner loop.

• Full global register allocation: identify live ranges
in control flow graph, allocate live ranges, and
split ranges as needed.
Goal: select allocation so as to minimize number of
load/store instructions performed by optimized
program.

CS 211

a =...

b == a

.. = b

T F

B1

B3

B4

B2

Control Flow
Graph

Simple Example of Global Register
Allocation

• Live range of a = {B1, B3}
• Live range of b = {B2, B4}
• No interference! a and b can be assigned

to the same register
CS 211

a =...

b = ... c = c +1

...= a +b

T F

B1

B3

B4

B2

Control Flow
Graph

T

F

Another Example of Global Register
Allocation

• Live range of a = {B1, B2, B3, B4}
• Live range of b = {B2, B4}
• Live range of c = {B3}
• In this example, a and c interfere, and c should be

given priority because it has a higher usage
count.

31

CS 211

Cost and Savings

• Compilation Cost: running time and space
of the global allocation algorithm.

• Execution Savings: cycles saved due to
register residence of variables in
optimized program execution.

• Contrast with memory-residence which
leads to longer execution times.

CS 211

Interference Graph
• Definition: An interference graph G is an undirected

graph with the following properties:

• (a) each node x denotes exactly one distinct live
range X, and

• (b) an edge exists between nodes x and y iff X, Y
interfere (overlap), where X and Y are the live ranges
corresponding to nodes x and y.

CS 211

Interference Graph Example
Live Ranges

a := …
b := …
c := …

:= a
:= b

d := …
:= c
:= d

Interference Graph

a

b c

Live ranges overlap
and hence interfere

Node model
live ranges

CS 211

Interference Graph Example
Live Ranges

a := …
b := …
c := …

:= a
:= b

d := …
:= c
:= d

Interference Graph

a

b c

Live ranges overlap
and hence interfere

Node model
live ranges

32

CS 211

The Classical Approach

• “Register Allocation and Spilling via Graph
Coloring”, G. Chatin, Proceedings SIGPLAN-82
Symposium on Compiler Construction, 98-105,
1982.

• “Register Allocation via Coloring”, G. Chaitin, M.
Auslander, A. Chandra, J. Cocke, M. Hopkins and
P. Markstein, Computer Languages, vol. 6, 47-57,
1981.

• more…
CS 211

The Classical Approach (Contd.)

• These works introduced the key notion of an
interference graph for encoding conflicts between
the live ranges.

• This notion was defined for the global control flow
graph.

• It also introduced the notion of graph coloring to
model the idea of register allocation.

CS 211

Execution Time and Spill-cost

• Spilling: Moving a variable that is currently
register resident to memory when no more
registers are available, and a new live-
range needs to be allocated one spill.

• Minimizing Execution Cost: Given an
optimistic assignment— i.e., one where all
the variables are register-resident,
minimizing spilling.

CS 211

Graph Coloring
• Given an undirected graph G and a set of k

distinct colors, compute a coloring of the nodes
of the graph i.e., assign a color to each node such
that no two adjacent nodes get the same color.

Recall that two nodes are adjacent iff they have
an edge between them.

• A given graph might not be k-colorable.
• In general, it is a computationally hard problem to

color a given graph using a given number k of
colors.

• The register allocation problem uses good
heuristics for coloring.

33

CS 211

Register Interference & Allocation
• Interference Graph: G = <E,V>

– Nodes (V) = variables, (more specifically, their live ranges)
– Edges (E) = interference between variable live ranges

• Graph Coloring (vertex coloring)
– Given a graph, G=<E,V>, assign colors to nodes (V) so that no

two adjacent (connected by an edge) nodes have the same
color

– A graph can be “n-colored” if no more than n colors are
needed to color the graph.

– The chromatic number of a graph is min{n} such that it can be
n-colored

– n-coloring is an NP-complete problem, therefore optimal
solution can take a long time to compute

How is graph coloring related to register allocation?

CS 211

Register Allocation as Coloring
• Given k registers, interpret each register as a

color.
• The graph G is the interference graph of the given

program.
• The nodes of the interference graph are the

executable live ranges on the target platform.
• A coloring of the interference graph is an

assignment of registers (colors) to live ranges
(nodes).

• Running out of colors implies not enough
registers and hence a need to spill in the above
model.

CS 211

Interference Graph

Nodes: live ranges
Edges: interference

ld r4, 16(r3)
sub r6, r2, r4

add r7, r7, 1
blt r7, 100

ld r5, 24(r3)

beq r2, $0

add r2, r1, r5
sw r6, 8(r3)

“Live variable analysis”

r1

r2

r3
r4

r5

r6

r7

r1, r2 & r3
are live-in

r1& r3 are live-out CS 211

Chaitin’s Graph Coloring Theorem

• Key observation: If a graph G has a node
X with degree less than n (i.e. having less
than n edges connected to it), then G is n-
colorable IFF the reduced graph G’
obtained from G by deleting X and all its
edges is n-colorable.

Proof:

n-1
G’

G

34

CS 211

Graph Coloring Algorithm (Not Optimal)
• Assume the register interference graph is n-colorable

How do you choose n?
• Simplification

– Remove all nodes with degree less than n
– Repeat until the graph has n nodes left

• Assign each node a different color
• Add removed nodes back one-by-one and pick a legal color

as each one is added (2 nodes connected by an edge get
different colors)

Must be possible with less than n colors

• Complications: simplification can block if there are no
nodes with less than n edges
Choose one node to spill based on spilling heuristic

CS 211

COLOR stack = {}

r1

r2

r3
r4

r5

r6

r7

remove r5

COLOR stack = {r5}
r1

r2

r3
r4

r6

r7

blocks spill r1
Is this a ood choice??

COLOR stack = {r5}

r2

r3
r4

r6

r7

remove r6

COLOR stack = {r5, r6}

r2

r3
r4

r7

Example (N = 4)

CS 211

r1

r2

r3

r7

remove r4

COLOR stack = {r5, r6, r4}

remove r6

COLOR stack = {r5, r6}

r1

r2

r3
r4

r7

r1 r7

r2

r3
r4

r5

r6

COLOR stack = {}

r1

r2

r3
r4

r6

r7

remove r5

COLOR stack = {r5}

Example (N = 5)

CS 211

Register Spilling

• When simplification is blocked, pick a node to delete from the
graph in order to unblock

• Deleting a node implies the variable it represents will not be
kept in register (i.e. spilled into memory)

– When constructing the interference graph, each node is assigned a value
indicating the estimated cost to spill it.

– The estimated cost can be a function of the total number of definitions
and uses of that variable weighted by its estimated execution frequency.

– When the coloring procedure is blocked, the node with the least spilling
cost is picked for spilling.

• When a node is spilled, spill code is added into the original
code to store a spilled variable at its definition and to reload it
at each of its use

• After spill code is added, a new interference graph is rebuilt
from the modified code, and n-coloring of this graph is again
attempted

35

CS 211

The Alternate Approach:more common

• an alternate approach used widely in most
compilers
– also uses the Graph Coloring Formulation

• “The Priority Based Coloring Approach to
Register Allocation”, F. Chow and J.
Hennessey, ACM Transactions on
Programming Languages and Systems,
vol. 12, 501-536, 1990.
– Hennessey, Founder of MIPS, President of Stanford Univ!

CS 211

Important Modeling Difference

• The first difference from the classical approach
is that now we assume that the “home location”
of a live range is in memory.

– Conceptually, values are always in memory unless promoted
to a register; this is also referred to as the pessimistic
approach.

– In the classical approach, the dual of this model is used
where values are always in registers except when spilled;
recall that this is referred to as the optimistic approach.

more...

CS 211

Important Modeling Difference

• A second major difference is the granularity at
which code is modeled.
– In the classical approach, individual instructions are modeled

whereas
– Now, basic blocks are the primitive units modeled as nodes

in live ranges and the interference graph.

• The final major difference is the place of the
register allocation in the overall compilation
process.
– In the present approach, the interference graph is considered

earlier in the compilation process using intermediate level
statements; compiler generated temporaries are known.

– In contrast, in the previous work the allocation is done at the
level of the machine code.

CS 211

The Main Information to be
Used by the Register Allocator

• For each live range, we have a bit vector LIVE of
the basic blocks in it.

• Also we have INTERFERE which gives for the
live range, the set of all other live ranges that
interfere with it.

• Recall that two live ranges interfere if they
intersect in at least one (basic-block).

• If ⏐INTERFERE⏐ is smaller than the number of
available of registers for a node i, then i is
unconstrained; it is constrained otherwise.

more...

36

CS 211

The Main Information to be
Used by the Register Allocator

• An unconstrained node can be safely assigned a
register since conflicting live ranges do not use
up the available registers.

• We associate a (possibly empty) set
FORBIDDEN with each live range that represents
the set of colors that have already been
assigned to the members of its INTERFERENCE
set.

The above representation is essentially a detailed
interference graph representation.

CS 211

Prioritizing Live Ranges

In the memory bound approach, given live
ranges with a choice of assigning
registers, we do the following:

• Choose a live range that is “likely” to
yield greater savings in execution time.

• This means that we need to estimate the
savings of each basic block in a live
range.

CS 211

Estimate the Savings

Given a live range X for variable x, the estimated
savings in a basic block i is determined as follows:

1. First compute CyclesSaved which is the number of
loads and stored of x in i scaled by the number
of cycles taken for each load/store.

2. Compensate the single load and/or store that
might be needed to bring the variable in and/or
store the variable at the end and denote it by
Setup.

Note that Setup is derived from a single load or
store or a load plus a store.

more...
CS 211

Estimate the Savings (Contd.)

3. Savings(X,i) = {CyclesSaved-Setup}

These indicate the actual savings in cycles after
accounting for the possible loads/stores needed
to move x at the beginning/end of i.

4. TotalSavings(X) = ΣiεX Savings(X,i) x W(i).
(a) x is the set of all basic blocks in the live
range of

X.
(b) W(i) is the execution frequency of variable x
in

block i.
more...

37

CS 211

Estimate the Savings (Contd.)

5. Note however that live regions might span a few
blocks but yield a large savings due to frequent
use of the variable while others might yield the
same cumulative gain over a larger number of
basic blocks. We prioritize the former case and
define:

{Priority(X) = TotalSavings(X)/Span(X)}

where Span(X) is the number of basic blocks in
X.

CS 211

The Algorithm
For all constrained live ranges, execute the following steps:

1. Compute Priority(X) if it has not already been computed.
2. For the live range X with the highest priority:

(a) If its priority is negative or if no basic block i in X
can be assigned a register—because every
color has been assigned to a basic block that
interferes with i — then delete X from the list and
modify the interference graph.

(b) Else, assign it a color that is not in its forbidden
set.

(c) Update the forbidden sets of the members of
INTERFERE for X’.

more...

CS 211

The Algorithm (Contd.)

3. For each live range X’ that is in INTERFERE for X
do:

(a) If the FORBIDDEN of X’ is the set of all colors

i.e., if no colors are available, SPLIT (X’).
Procedure SPLIT breaks a live range into

smaller
live ranges with the intent of reducing the
interference of X’ it will be described next.

4. Repeat the above steps till all constrained live
ranges are colored or till there is no color left to
color any basic block.

CS 211

The Idea Behind Splitting

• Splitting ensures that we break a live range up
into increasingly smaller live ranges.

• The limit is of course when we are down to the
size of a single basic block.

• The intuition is that we start out with coarse-
grained interference graphs with few nodes.

• This makes the interference node degree
possibly high.

• We increase the problem size via splitting on a
need-to basis.

• This strategy lowers the interference.

38

CS 211

The Splitting Strategy

A sketch of an algorithm for splitting:
1. Choose a split point.

Note that we are guaranteed that X has at least
one basic block i which can be assigned a color
i.e., its forbidden set does not include all the
colors. The earliest such in the order of control
flow can be the split point.

2. Separate the live range X into X1 and X2 around
the split point.

3. Update the sets INTERFERE for X1 and X2 and
those for the live ranges that interfered with X

more...
CS 211

The Splitting Strategy (Contd.)

4. Recompute priorities and reprioritize the
list.

Other bookkeeping activities to realize a
safe

implementation are also executed.

CS 211

Live Range Splitting Example

Live Ranges:
a: BB1, BB2, BB3, BB4, BB5
b: BB1, BB2, BB3, BB4, BB5, BB6
c: BB2, BB3, BB4, BB5
Assume the number of physical registers = 2

a :=
b :=

c :=

:= a
:= c

:= b

BB1

BB2

BB4

BB5

BB6

BB3

a

b c

interference graph

CS 211

Live Range Splitting Example

New live ranges:
a: BB1, BB2, BB3, BB4, BB5
b: BB1
c: BB2, BB3, BB4, BB5
b2: BB6
b and b2 are logically the same program variable
b2 is a renamed equivalent of b.
All nodes are now unconstrained.

a :=
b :=
…

c :=

:= a
:= c

…
:= b

BB1

BB2

BB4

BB5

BB6

BB3

a

b c

interference graph

b2

spill introduced

split b
T F

39

CS 211

Interaction Between Allocation
and Scheduling

• The allocator and the scheduler are typically
patched together heuristically.

• Leads to the “phase ordering problem: Should
allocation be done before scheduling or vice-
versa?

• Saving on spilling or “good allocation” is only
indirectly connected to the actual execution
time.
Contrast with instruction scheduling.

• Factoring in register allocation into scheduling
and solving the problem “globally” is a research
issue. CS 211

Next - - Scheduling for ILP Processors

• Basic block does not expose enough
parallelism due to small num of inst.

• Need to look at more flexible regions
– Trace scheduling, Superblock,….

• Scheduling more flexible regions implies
using features such as speculation, code
duplication, predication

CS 211

EPIC and Compiler Optimization

• EPIC requires dependency free
“scheduled code”

• Burden of extracting parallelism falls on
compiler

• success of EPIC architectures depends on
efficiency of Compilers!!

• We provide overview of Compiler
Optimization techniques (as they apply to
EPIC/ILP)
– enhanced by examples using Trimaran ILP

Infrastructure
CS 211

Scheduling for ILP Processors

• Size of basic block limits amount of ILP
that can be extracted

• More than one basic block = going beyond
branches
– Loop optimizations also

• Trace scheduling
– Pick a trace in the program graph

• Most frequently executed region of code

• Region based scheduling
– Find a region of code, and send this to the

scheduler/register allocator

40

CS 211

Getting around basic block
limitations

• Basic block size limits amount of
parallelism available for extraction
– Need to consider more “flexible” regions of instructions

• A well known classical approach is to
consider traces through the (acyclic)
control flow graph.
– Shall return to this when we cover Compiling for ILP

processors

CS 211

BB-1

BB-4 BB-5

BB-6

BB-7

BB-2

BB-3

STOP

STAR
T

A trace BB-1, BB-4, BB-6

Branch Instruction

CS 211

Definitions: The Trace
A

B

C D

E F

G

H

I

0.4 0.6 0.8
0.2

0.9 0.1

0.2 0.8

CS 211

Region Based Scheduling

• Treat a region as input to the scheduler
– How to schedule instructions in a region ?
– Can we move instructions to any “slot” ?
– What do we have to watch out for ?

• Scheduling algorithm
– Input is the Region (Trace, Superblock, etc.)
– Use List scheduling algorithm

• Treat movement of instructions past branch and join
points as “special cases”

41

CS 211

The Four Elementary
but Significant Side-effects

• Consider a single instruction moving past
a conditional branch:

Branch Instruction Instruction being moved

CS 211

The First Case

• This code movement leads to the instruction
executing sometimes when the instruction ought
not to have: speculatively.

more...

A

If A is a DEF Live Off-trace

False Dependence Edge Added

Off-trace Path

CS 211

The Second Case

• Identical to previous case except the pseudo-dependence
edge is from A to the join instruction whenever A is a
“write” or a def.

• A more general solution is to permit the code motion but
undo the effect of the speculated definition by adding
repair code
An expensive proposition in terms of compilation cost.

Edged added

CS 211

The Third Case

• Instruction A will not be executed if the off-trace
path is taken.

• To avoid mistakes, it is replicated.
more...

Replicate A

Off-trace Path

A

42

CS 211

The Fourth Case

• Similar to Case 3 except for the direction of the
replication as shown in the figure above.

Replicate A

Off-trace Path

A

CS 211

Super Block

• A trace with a single entry but potentially
many exits

• Simplifies code motion during scheduling
– upward movements past a side entry within a block are

pure replication
– downward movements past a side entry within a block

are pure speculation

• Two step formation
– Trace picking
– Tail duplication

CS 211

Definitions: The Superblock

• The superblock is a scheduling region composed
of basic blocks with a single entry but potentially
many exits

• Superblock formation is done in two steps
– Trace selection
– Tail duplication

0 1 2 3 4 5 6 7 8

Very Long Instruction Word Format

A larger scheduling region exposes more instructions that may
be executed in parallel.

CS 211

Super block formation and
tail duplication

If x=3

y=1
u=v

y=2
u=w

If x=3

x=y*2 z=y*3

A

C

D

B

E F

G

H

If x=3

y=1
u=v

y=2
u=w

x=2 z=6

A

C

D

B

E F

G

H

E’

D’

G’

43

CS 211

Background: Region Formation

BB1

BB2 BB3

BB4

BB5 BB6

A

C

D

B

E F

G

H

BB1

BB2 BB3

BB5 BB6

A

C

D

B

E F

G

H

E’

D’

G’

The SuperBlock

BB7

0.9 0.1

0.8 0.2

BB4 BB8

BB9

BB7 BB10

CS 211

Advantage of Superblock

• We have taken care of the replication
when we form the region
– Schedule the region independent of other regions!
– Don’t have to worry about code replication each time we

move an instruction around a branch

• Send superblock to list scheduler and it
works same as it did with basic blocks !

CS 211

Hyerblock Region Formation

• Single entry/ multiple exit set of predicated basic
blocks (if-conversion)

• There are no incoming control flow arcs from outside
basic blocks to the selected blocks other than the
entry block

• Nested inner loops inside the selected blocks are not
allowed

• Hyperblock formation procedure:
– Trace selection
– Tail duplication
– Loop peeling
– Node splitting
– If-conversion

CS 211

Background: Region Formation
If-Conversion Example

44

CS 211

Background: Region Formation
The HyperBlock

CS 211

Hyper block formation procedure

• Tail duplication
– remove side entries

• Loop Peeling
– create bigger region for nested loop

• Node Splitting
– Eliminate dependencies created by control path merge
– large code expansion

• After above three transformations,
perform if conversion

CS 211

Tail Duplication

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u:=v+y

CS 211

Loop Peeling

A

C

B

D

A

C’

B’

D

C

B

D’

45

CS 211

Node Splitting

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

v:=v-1

u:=v+y

l=k+z
u:=v+y

l=k+z
CS 211

Assembly Code

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u:=v+y

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

CS 211

If conversion

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

v:=v*x

u:=v+y

C

ble x,0,C

d := ?(y>0)

f’:= ?(y<=0)

e := ?(x=1) if d

f”:= ?(x≠1) if d

f := ?(f’∨f”)
v := v+1 if e

v := v-1 if f

u := v+y

CS 211

Summary: Region Formation

• In general, the opportunity to extract more
parallelism increases as the region size
increases. There are more instructions
exposed in the larger region size.

• The compile time increases as the region
size increases. A trade-off in compile time
versus run-time must be considered.

46

CS 211

Region Formation in Trimaran

• A research infrastructure used to facilitate the
creation and evaluation of EPIC/VLIW and
superscalar compiler optimization techniques.
– Forms 3 types of regions:

• Basic blocks
• Superblocks
• Hyperblocks

– Operates only on the C language as input
– Uses a general machine description language (HMDES)

• This infrastructure uses a parameterized
processor architecture called HPL-PD (a.k.a.
PlayDoh)

• All architectures are mapped into and simulated
in HPL-PD.

CS 211

CS 211 CS 211

47

CS 211 CS 211

ILP Scheduling – Summary

• Send a large region of code into a list scheduler
– What regions?

• Start with a trace of high frequency paths in program

• Modify list scheduler to handle movements past
branches
– IF you have speculation in the processor then allow

speculative code motion
– Replication will cause code size growth but do not need

speculation to support it
– Hyperblock may need predication support

• Key ideas: increase the scope of ILP analysis
– Tradeoff between compile time and execution time

• When do we stop ?

