
1

CS 211: Computer ArchitectureCS 211: Computer Architecture

Cache Memory DesignCache Memory Design

CS 135

Course Objectives: Where are we?

CS 135

CS 211: Part 2!

• Discussions thus far
Processor architectures to increase the processing speed

Focused entirely on how instructions can be executed faster
Have not addressed the other components that go into putting it
all together

Other components: Memory, I/O, Compiler
• Next:

Memory design: how is memory organized to facilitate fast
access

Focus on cache design
Compiler optimization: how does compiler generate
‘optimized’ machine code

With a look at techniques for ILP
We have seen some techniques already, and will cover some
more in memory design before getting to formal architecture of
compilers

Quick look at I/O and Virtual Memory

CS 135

CS 211: Part 3

• Multiprocessing concepts
Multi-core processors
Parallel processing

Cluster computing

• Embedded Systems – another dimension
Challenges and what’s different

• Reconfigurable architectures
What are they? And why ?

2

CS 135

Memory

• In our discussions (on MIPS pipeline,
superscalar, EPIC) we’ve constantly
been assuming that we can access our
operand from memory in 1 clock cycle…

This is possible, but its complicated
We’ll now discuss how this happens

• We’ll talk about…
Memory Technology
Memory Hierarchy

Caches
Memory
Virtual Memory

CS 135

Memory Technology

• Memory Comes in Many Flavors
SRAM (Static Random Access Memory)

Like a register file; once data written to SRAM its contents
stay valid – no need to refresh it

DRAM (Dynamic Random Access Memory)
Like leaky capacitors – data stored into DRAM chip charging
memory cells to max values; charge slowly leaks and will
eventually be too low to be valid – therefore refresh circuitry
rewrites data and charges back to max
Static RAM is faster but more expensive

Cache uses static RAM
ROM, EPROM, EEPROM, Flash, etc.

Read only memories – store OS
Disks, Tapes, etc.

• Difference in speed, price and “size”
Fast is small and/or expensive
Large is slow and/or expensive

CS 135

Is there a problem with DRAM?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
grows 50% / year

Pe
rf

or
m
an

ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

CS 135

Why Not Only DRAM?

• Can lose data when no power
Volatile storage

• Not large enough for some things
Backed up by storage (disk)
Virtual memory, paging, etc.

• Not fast enough for processor accesses
Takes hundreds of cycles to return data
OK in very regular applications

Can use SW pipelining, vectors
Not OK in most other applications

3

CS 135

The principle of locality…

• …says that most programs don’t access
all code or data uniformly

e.g. in a loop, small subset of instructions might be
executed over and over again…
…& a block of memory addresses might be accessed
sequentially…

• This has led to “memory hierarchies”
• Some important things to note:

Fast memory is expensive
Levels of memory usually smaller/faster than previous
Levels of memory usually “subset” one another

All the stuff in a higher level is in some level below it

CS 135

Levels in a typical memory hierarchy

CS 135

Memory Hierarchies

• Key Principles
Locality – most programs do not access code or data
uniformly
Smaller hardware is faster

• Goal
Design a memory hierarchy “with cost almost as low
as the cheapest level of the hierarchy and speed
almost as fast as the fastest level”

This implies that we be clever about keeping more likely
used data as “close” to the CPU as possible

• Levels provide subsets
Anything (data) found in a particular level is also found
in the next level below.
Each level maps from a slower, larger memory to a
smaller but faster memory

CS 135

The Full Memory Hierarchy
“always reuse a good idea”

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit

Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min

10-8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Our current
focus

4

CS 135

Propagation delay bounds where
memory can be placed

Double Data Rate (DDR) SDRAM

XDR planned 3 to 6 GHz

CS 135

Cache: Terminology

• Cache is name given to the first level of
the memory hierarchy encountered once
an address leaves the CPU

Takes advantage of the principle of locality

• The term cache is also now applied
whenever buffering is employed to reuse
items

• Cache controller
The HW that controls access to cache or generates
request to memory

• No cache in 1980 PCs to 2-level cache by
1995..!

CS 135

What is a cache?
• Small, fast storage used to improve average access time to

slow memory.
• Exploits spatial and temporal locality
• In computer architecture, almost everything is a cache!

Registers “a cache” on variables – software managed
First-level cache a cache on second-level cache
Second-level cache a cache on memory
Memory a cache on disk (virtual memory)
TLB a cache on page table
Branch-prediction a cache on prediction information?

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

CS 135

Caches: multilevel

CPU cache
Main

Memory

CPU L2
cache

Main
Memory

L3
cacheL1

16~32KB
1~2 pclk latency

~256KB
~10 pclk latency ~50 pclk latency

~4MB

5

CS 135

A brief description of a cache

• Cache = next level of memory hierarchy
up from register file

All values in register file should be in cache

• Cache entries usually referred to as
“blocks”

Block is minimum amount of information that
can be in cache
fixed size collection of data, retrieved from memory
and placed into the cache

• Processor generates request for
data/inst, first look up the cache

• If we’re looking for item in a cache and
find it, have a cache hit; if not then a CS 135

Terminology Summary

• Hit: data appears in block in upper level (i.e. block X in cache)
Hit Rate: fraction of memory access found in upper level
Hit Time: time to access upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the lower level
(i.e. block Y in memory)

Miss Rate = 1 - (Hit Rate)
Miss Penalty: Extra time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on Alpha 21264)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

CS 135

Definitions

• Locating a block requires two attributes:
Size of block
Organization of blocks within the cache

• Block size (also referred to as line size)
Granularity at which cache operates
Each block is contiguous series of bytes in memory and
begins on a naturally aligned boundary
Eg: cache with 16 byte blocks

each contains 16 bytes
First byte aligned to 16 byte boundaries in address space

Low order 4 bits of address of first byte would be 0000

Smallest usable block size is the natural word size of the
processor

Else would require splitting an access across blocks and slows down
translation

CS 135

Cache Basics

• Cache consists of block-sized lines
Line size typically power of two
Typically 16 to 128 bytes in size

• Example
Suppose block size is 128 bytes

Lowest seven bits determine offset within block
Read data at address A=0x7fffa3f4
Address begins to block with base address 0x7fffa380

6

CS 135

Memory Hierarchy

• Placing the fastest memory near the CPU
can result in increases in performance

• Consider the number of cycles the CPU is
stalled waiting for a memory access –
memory stall cycles

CPU execution time =
(CPU clk cycles + Memory stall cycles) * clk cycle time.

Memory stall cycles =
number of misses * miss penalty =
IC*(memory accesses/instruction)*miss rate* miss penalty

CS 135

Unified or Separate I-Cache and D-Cache

• Two types of accesses:
Instruction fetch
Data fetch (load/store instructions)

• Unified Cache
One large cache for both instructions and date

Pros: simpler to manage, less hardware complexity
Cons: how to divide cache between data and
instructions? Confuses the standard harvard architecture
model; optimizations difficult

• Separate Instruction and Data cache
Instruction fetch goes to I-Cache
Data access from Load/Stores goes to D-cache

Pros: easier to optimize each
Cons: more expensive; how to decide on sizes of each

CS 135

Cache Design--Questions

• Q1: Where can a block be placed in
the upper level?

block placement

• Q2: How is a block found if it is in the
upper level?

block identification

• Q3: Which block should be replaced on
a miss?

block replacement

• Q4: What happens on a write?
Write strategy

CS 135

Where can a block be placed in a cache?

• 3 schemes for block placement in a
cache:

Direct mapped cache:
Block (or data to be stored) can go to only 1 place in
cache
Usually: (Block address) MOD (# of blocks in the cache)

Fully associative cache:
Block can be placed anywhere in cache

Set associative cache:
“Set” = a group of blocks in the cache
Block mapped onto a set & then block can be placed
anywhere within that set
Usually: (Block address) MOD (# of sets in the cache)
If n blocks in a set, we call it n-way set associative

7

CS 135

Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fully Associative Direct Mapped Set Associative

Set 0Set 1Set 2Set 3

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9…..

Cache:

Memory: 12

CS 135

Associativity

• If you have associativity > 1 you have
to have a replacement policy

FIFO
LRU
Random

• “Full” or “Full-map” associativity means
you check every tag in parallel and a
memory block can go into any cache
block

Virtual memory is effectively fully associative
(But don’t worry about virtual memory yet)

CS 135

Cache Organizations

• Direct Mapped vs Fully Associate
Direct mapped is not flexible enough; if X(mod K)=Y(mod K)
then X and Y cannot both be located in cache
Fully associative allows any mapping, implies all locations
must be searched to find the right one –expensive hardware

• Set Associative
Compromise between direct mapped and fully associative
Allow many-to-few mappings
On lookup, subset of address bits used to generate an index
BUT index now corresponds to a set of entries which can be
searched in parallel – more efficient hardware
implementation than fully associative, but due to flexible
mapping behaves more like fully associative

CS 135

Associativity

• If total cache size is kept same,
increasing the associativity increases
number of blocks per set

Number of simultaneous compares needed to perform
the search in parallel = number of blocks per set
Increase by factor of 2 in associativity doubles number
of blocks per set and halves number of sets

8

CS 135

Large Blocks and Subblocking

• Large cache blocks can take a long time
to refill

refill cache line critical word first
restart cache access before complete refill

• Large cache blocks can waste bus
bandwidth if block size is larger than
spatial locality

divide a block into subblocks
associate separate valid bits for each subblock.

tagsubblockvsubblockv subblockv

CS 135

Block Identification: How is a block found
in the cache

• Since we have many-to-one mappings,
need tag

• Caches have an address tag on each
block that gives the block address.

Eg: if slot zero in cache contains tag K, the value in
slot zero corresponds to block zero from area of
memory that has tag K
Address consists of <tag t,block b,offset o>

Examine tag in slot b of cache:
if matches t then extract value from slot b in cache
Else use memory address to fetch block from memory, place copy in
slot b of cache, replace tag with t, use o to select appropriate byte

CS 135

How is a block found in the cache?

• Cache’s have address tag on each block
frame that provides block address

Tag of every cache block that might have entry is
examined against CPU address (in parallel! – why?)

• Each entry usually has a valid bit
Tells us if cache data is useful/not garbage
If bit is not set, there can’t be a match…

• How does address provided to CPU
relate to entry in cache?

Entry divided between block address & block offset…
…and further divided between tag field & index field

CS 135

How is a block found in the cache?

• Block offset field selects data from block
(i.e. address of desired data within block)

• Index field selects a specific set
Fully associative caches have no index field

• Tag field is compared against it for a hit

• Could we compare on more of address than the tag?
Not necessary; checking index is redundant

Used to select set to be checked
Ex.: Address stored in set 0 must have 0 in index field

Offset not necessary in comparison –entire block is present or not and
all block offsets must match

Block Address
Tag Index

Block
Offset

9

CS 135

Cache Memory Structures

index key idx key

tag data tag data

de
co

de
r

de
co

de
r

Indexed/Direct mapped
Memory

k-bit index
2k blocks

Associative Memory
(CAM)

no index
unlimited blocks

N-Way
Set-Associative Memory

k-bit index
2k • N blocks

CS 135

Direct Mapped Caches

tag idx b.o.

=
Tag

match
Multiplexor

de
co

de
r

=
Tag

Match

de
co

de
r

tag index

block index

CS 135

• Each cache block or (cache line) has only
one tag but can hold multiple “chunks” of
data

reduce tag storage overhead
In 32-bit addressing, an 1-MB direct-mapped cache has 12
bits of tags
the entire cache block is transferred to and from memory
all at once

good for spatial locality since if you access address i, you
will probably want i+1 as well (prefetching effect)

• Block size = 2b; Direct Mapped Cache
Size = 2B+b

Cache Block Size

tag block index block offset
LSBMSB

B-bits b-bits CS 135

tag blk.offset

Fully Associative Cache

=
=

=

=

Multiplexor
Associative

Search

Tag

10

CS 135

tag index BO

N-Way Set Associative Cache

=
=

Multiplexor

Associative
searchde

co
de

r

Cache Size = N x 2B+b CS 135

N-Way Set Associative Cache

tag idx b.o.

= Tag
match

de
co

de
r

= Tag
match

Multiplexor

de
co

de
r

a seta way (bank)

Cache Size = N x 2B+b

CS 135

Which block should be replaced on a
cache miss?

• If we look something up in cache and entry not
there, generally want to get data from memory and
put it in cache

B/c principle of locality says we’ll probably use it again

• Direct mapped caches have 1 choice of what block
to replace

• Fully associative or set associative offer more
choices

• Usually 2 strategies:
Random – pick any possible block and replace it
LRU – stands for “Least Recently Used”

Why not throw out the block not used for the longest time
Usually approximated, not much better than random – i.e. 5.18% vs.
5.69% for 16KB 2-way set associative CS 135

LRU Example

0

• 4-way set associative
Need 4 values (2 bits) for counter

0x00004000
1 0x00003800
2 0xffff8000
3 0x00cd0800

Access 0xffff8004
0 0x00004000
1 0x00003800
3 0xffff8000
2 0x00cd0800

Access 0x00003840
0 0x00004000
3 0x00003800
2 0xffff8000
1 0x00cd0800

Access 0x00d00008
3 0x00d00000
2 0x00003800
1 0xffff8000
0 0x00cd0800

Replace entry with 0 counter,
then update counters

11

CS 135

Approximating LRU

• LRU is too complicated
Access and possibly update all counters in a set
on every access (not just replacement)

• Need something simpler and faster
But still close to LRU

• NMRU – Not Most Recently Used
The entire set has one MRU pointer
Points to last-accessed line in the set
Replacement:
Randomly select a non-MRU line
Something like a FIFO will also work

CS 135

What happens on a write?

• FYI most accesses to a cache are
reads:

Used to fetch instructions (reads)
Most instructions don’t write to memory

For DLX only about 7% of memory traffic involve writes
Translates to about 25% of cache data traffic

• Make common case fast! Optimize
cache for reads!

Actually pretty easy to do…
Can read block while comparing/reading tag
Block read begins as soon as address available
If a hit, address just passed right on to CPU

• Writes take longer. Any idea why?

CS 135

What happens on a write?

• Generically, there are 2 kinds of write
policies:

Write through (or store through)
With write through, information written to block in cache
and to block in lower-level memory

Write back (or copy back)
With write back, information written only to cache. It will
be written back to lower-level memory when cache block
is replaced

• The dirty bit:
Each cache entry usually has a bit that specifies if a
write has occurred in that block or not…
Helps reduce frequency of writes to lower-level
memory upon block replacement

CS 135

What happens on a write?

• Write back versus write through:
Write back advantageous because:

Writes occur at the speed of cache and don’t incur delay
of lower-level memory
Multiple writes to cache block result in only 1 lower-level
memory access

Write through advantageous because:
Lower-levels of memory have most recent copy of data

• If CPU has to wait for a write, we have
write stall

1 way around this is a write buffer
Ideally, CPU shouldn’t have to stall during a write
Instead, data written to buffer which sends it to lower-
levels of memory hierarchy

12

CS 135

What happens on a write?

• What if we want to write and block we
want to write to isn’t in cache?

• There are 2 common policies:
Write allocate: (or fetch on write)

The block is loaded on a write miss
The idea behind this is that subsequent writes will be
captured by the cache (ideal for a write back cache)

No-write allocate: (or write around)
Block modified in lower-level and not loaded into cache
Usually used for write-through caches

(subsequent writes still have to go to memory)

CS 135

Write Policies: Analysis

• Write-back
Implicit priority order to find most up to date copy
Require much less bandwidth
Careful about dropping updates due to losing track of
dirty bits

• What about multiple levels of cache on
same chip?

Use write through for on-chip levels and write back for
off-chip

SUN UltraSparc, PowerPC

• What about multi-processor caches ?
Write back gives better performance but also leads to
cache coherence problems

Need separate protocols to handle this problem….later

CS 135

Write Policies: Analysis

• Write through
Simple
Correctness easily maintained and no ambiguity about
which copy of a block is current
Drawback is bandwidth required; memory access time
Must also decide on decision to fetch and allocate
space for block to be written

Write allocate: fetch such a block and put in cache
Write-no-allocate: avoid fetch, and install blocks only on
read misses

Good for cases of streaming writes which overwrite data

CS 135

Modeling Cache Performance

• CPU time equation….again!

• CPU execution time =
(CPU clk cycles + Memory stall cycles) *
clk cycle time.

• Memory stall cycles =
number of misses * miss penalty =
IC*(memory accesses/instruction)*miss
rate* miss penalty

13

CS 135

Cache Performance – Simplified Models

• Hit rate/ratio r = number of requests
that are hits/total num requests

• Cost of memory access= rCh + (1-r) Cm
Ch is cost/time from cache, Cm is cost/time when miss –
fetch from memory

• Extend to multiple levels
Hit ratios for level 1, level 2, etc.
Access times for level 1, level 2, etc.
r1 Ch1 + r2Ch2 + (1- r1 -r2)Cm

CS 135

Average Memory Access Time

• Hit time: basic time of every access.
• Hit rate (h): fraction of access that hit
• Miss penalty: extra time to fetch a block
from lower level, including time to replace in
CPU

AMAT = HitTime + (1 - h) x MissPenaltyAMAT = HitTime + (1 - h) x MissPenalty

CS 135

Memory stall cycles

• Memory stall cycles: number of cycles
that processor is stalled waiting for
memory access

• Performance in terms of mem stall
cycles

CPU = (CPU cycles + Mem stall cycles)*Clk cycle time
Mem stall cycles = number of misses * miss penalty
= IC *(Misses/Inst) * Miss Penalty
= IC * (Mem accesses/Inst) * Miss Rate * penalty

Note: Read and Write misses combined into one miss
rate

CS 135

• Miss-oriented Approach to Memory Access:

CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ×+×=

14

CS 135

• Separating out Memory component entirely
AMAT = Average Memory Access Time
CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime AluOps ×⎟
⎠
⎞

⎜
⎝
⎛ ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime
yMissPenaltMissRateHitTime

×+

+×+=

CS 135

When do we get a miss ?

• Instruction
Fetch instruction – not found in cache
How many instructions ?

• Data access
Load and Store instructions

Data not found in cache
How many data accesses ?

CS 135

Impact on Performance

• Suppose a processor executes at
Clock = 200 MHz (5 ns per cycle),
Ideal (no misses) CPI = 1.1
Inst mix: 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50
cycle miss penalty

• Suppose that 1% of instructions get same miss
penalty

• CPI = ideal CPI + average stalls per instruction

CS 135

Impact on Performance..contd

• CPI = ideal CPI + average stalls per instruction =

• 1.1(cycles/ins) +
[0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)

x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

15

CS 135

Cache Performance:
Memory access equations

• Using what we defined previously, we can say:
Memory stall clock cycles =

Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty

• Often, reads and writes are
combined/averaged:

Memory stall cycles =
Memory access x Miss rate x Miss penalty (approximation)

• Also possible to factor in instruction count to
get a “complete” formula:

CPU time = IC x (CPIexec + Mem. Stall Cycles/Instruction) x Clk

CS 135

System Performance

• CPU time = IC * CPI * clock
CPI depends on memory stall cycles

• CPU time = (CPU execution clock cycles +
Memory stall clock cycles)* Clock cycle time

• Average memory access time = hit time + miss
rate * miss penalty

CPU’s with a low CPI and high clock rates will be
significantly impacted by cache rates (details in book)

• Improve performance
= Decrease Memory stall cycles
= Decrease Average memory access time/latency (AMAT)

CS 135

Next: How to Improve Cache
Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

CS 135

Appendix C: Basic Cache Concepts
Chapter 5: Cache Optimizations

Project 2: Study performance of
benchmarks (project 1 benchmarks)
using different cache organizations

16

Cache ExamplesCache Examples

CS 135

A 4-entry direct mapped cache with 4 data words/block

11

Physical Address (10 bits)

Tag
(6 bits)

Index
(2 bits)

Offset
(2 bits)

Assume we want to read the
following data words:

Tag Index Offset Address Holds Data

101010 | 10 | 00 3510

101010 | 10 | 01 2410

101010 | 10 | 10 1710

101010 | 10 | 11 2510

All of these physical addresses map
to the same cache entry

All of these physical addresses
would have the same tag

22 If we read 101010 10 01 we want to bring
data word 2410 into the cache.

Where would this data go? Well, the index
is 10. Therefore, the data word will go
somewhere into the 3rd block of the cache.
(make sure you understand terminology)

More specifically, the data word would go
into the 2nd position within the block –
because the offset is ’01’

33 The principle of spatial locality says that if we
use
one data word, we’ll probably use some data
words
that are close to it – that’s why our block size is
bigger than one data word. So we fill in the data
word entries surrounding 101010 10 01 as well.

Tag 00 01 10 11

00

01

10

11

V D

101010 24103510 1710 2510

CS 135

Tag 00 01 10 11

00

01

10

11

V D

A 4-entry direct mapped cache with 4 data words/block

101010

Physical Address (10 bits)

Tag
(6 bits)

Index
(2 bits)

Offset
(2 bits)

24103510 1710 2510

Therefore, if we get this pattern of
accesses when we start a new program:

1.) 101010 10 00
2.) 101010 10 01
3.) 101010 10 10
4.) 101010 10 11

After we do the read for 101010 10 00
(word #1), we will automatically get the
data for words #2, 3 and 4.

What does this mean? Accesses (2),
(3), and (4) ARE NOT COMPULSORY
MISSES

44 55 What happens if we get an access to location:
100011 | 10 | 11 (holding data: 1210)

Index bits tell us we need to look at cache block 10.

So, we need to compare the tag of this address –
100011 – to the tag that associated with the current
entry in the cache block – 101010

These DO NOT match. Therefore, the data
associated with address 100011 10 11 IS NOT
VALID. What we have here could be:
• A compulsory miss

• (if this is the 1st time the data was accessed)
• A conflict miss:

• (if the data for address 100011 10 11 was
present, but kicked out by 101010 10 00 – for
example)

CS 135

Tag 00 01 10 11

00

01

10

11

V D

This cache can hold 16 data words…

101010

Physical Address (10 bits)

Tag
(6 bits)

Index
(2 bits)

Offset
(2 bits)

24103510 1710 2510

What if we change the way our cache is
laid out – but so that it still has 16 data
words? One way we could do this would
be as follows:

66

Tag 000

0

1

V D 001 010 011 100 101 110 111

All of the following are true:
• This cache still holds 16 words
• Our block size is bigger – therefore this should help with compulsory misses
• Our physical address will now be divided as follows:
• The number of cache blocks has DECREASED

• This will INCREASE the # of conflict misses Tag (6 bits) Index (1 bit) Offset (3 bits)

1 cache
block entry

17

CS 135

What if we get the same pattern of accesses we had before?77

Pattern of accesses:
(note different # of bits for offset and
index now)

1.) 101010 1 000
2.) 101010 1 001
3.) 101010 1 010
4.) 101010 1 011

Note that there is now more data
associated with a given cache block.

However, now we have only 1 bit of index.
Therefore, any address that comes along that has a tag that is
different than ‘101010’ and has 1 in the index position is going to result
in a conflict miss.

Tag 000

0

1

V D 001 010 011 100 101 110 111

24103510 1710 2510 A10 B10 C10 D10101010

CS 135

But, we could also make our cache look like this…77

There are now just 2
words associated
with each cache

block.

Again, let’s assume we want to read the
following data words:

Tag Index Offset Address Holds Data

101010 | 100 | 0 3510

101010 | 100 | 1 2410

101010 | 101 | 0 1710

101010 | 101 | 1 2510

Assuming that all of these accesses were occurring
for the 1st time (and would occur sequentially),
accesses (1) and (3) would result in compulsory
misses, and accesses would result in hits because
of spatial locality. (The final state of the cache
is shown after all 4 memory accesses).

1.)

2.)

3.)

4.)

Tag 0 1V D

000

001

010

011

100

101

110

111

101010 24103510

101010 25101710

Note that by organizing a cache in this way, conflict misses will be reduced.
There are now more addresses in the cache that the 10-bit physical address can map too.

CS 135

Tag 0 1V D

000

001

010

011

100

101

110

111

101010 24103510

101010 25101710

Tag 00 01 10 11

00

01

10

11

V D

101010 24103510 1710 2510

Tag 000

0

1

V D 001 010 011 100 101 110 111

24103510 1710 2510 A10 B10 C10 D10101010

88All of these caches hold exactly the same amount of
data – 16 different word entries

As a general rule of thumb, “long and skinny” caches help to reduce conflict misses, “short and fat”
caches help to reduce compulsory misses, but a cross between the two is probably what will give you
the best (i.e. lowest) overall miss rate.
But what about capacity misses?

CS 135

88 What’s a capacity miss?
• The cache is only so big. We won’t be able to store every block accessed in a program – must

them swap out!
• Can avoid capacity misses by making cache bigger

Tag 00 01 10 11

00

01

10

11

V D

101010 24103510 1710 2510

Tag 00 01 10 11

000

001

010

011

V D

10101 24103510 1710 2510

100

101

110

111

Thus, to avoid capacity
misses, we’d need to make
our cache physically bigger –
i.e. there are now 32 word
entries for it instead of 16.

FYI, this will change the way
the physical address is
divided. Given our original
pattern of accesses, we’d
have:

Pattern of accesses:

1.) 10101 | 010 | 00 = 3510
2.) 10101 | 010 | 01 = 2410
3.) 10101 | 010 | 10 = 1710
4.) 10101 | 010 | 11 = 2510

(note smaller tag, bigger index)

18

End of Examples End of Examples

CS 135

Next: Cache Optimization

• Techniques for minimizing AMAT
Miss rate
Miss penalty
Hit time

• Role of compiler ?

Improving Cache Performance Improving Cache Performance

CS 135

Memory stall cycles

• Memory stall cycles: number of cycles
that processor is stalled waiting for
memory access

• Performance in terms of mem stall
cycles

CPU = (CPU cycles + Mem stall cycles)*Clk cycle time
Mem stall cycles = number of misses * miss penalty
= IC *(Misses/Inst) * Miss Penalty
= IC * (Mem accesses/Inst) * Miss Rate * penalty

Note: Read and Write misses combined into one miss
rate

19

CS 135

• Miss-oriented Approach to Memory Access:

CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ×+×=

CS 135

• Separating out Memory component entirely
AMAT = Average Memory Access Time
CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime AluOps ×⎟
⎠
⎞

⎜
⎝
⎛ ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime
yMissPenaltMissRateHitTime

×+

+×+=

CS 135

How to Improve Cache Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

•We will look at some basic techniques for 1,2,3 today
•Next class we look at some more advanced techniques

CS 135

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

20

CS 135

Cache Misses

• Latencies at each level determined by
technology

• Miss rates are function of
Organization of cache
Access patterns of the program/application

• Understanding causes of misses enables
designer to realize shortcomings of
design and discover creative cost-
effective solutions

The 3Cs model is a tool for classifying cache misses
based on underlying cause

CS 135

Reducing Miss Rate – 3C’s Model

• Compulsory (or cold) misses
Due to program’s first reference to a block –not in cache so
must be brought to cache (cold start misses)

These are Fundamental misses – cannot do anything

• Capacity
Due to insufficient capacity - if the cache cannot contain all
the blocks needed capacity misses will occur because of
blocks being discarded and later retrieved)

Not fundamental, and by-product of cache organization
Increasing capacity can reduce some misses

• Conflict
Due to imperfect allocation; if the block placement strategy is
set associative or direct mapped, conflict misses will occur
because a block may be discarded and later retrieved if too
many blocks map to its set. Interference or collision misses

Not fundamental; by-product of cache organization; fully
associative can eliminate conflict misses

CS 135

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

CS 135

Miss Rate Reduction Strategies

• Increase block size – reduce compulsory misses
• Larger caches

Larger size can reduce capacity, conflict misses
Larger block size for fixed total size can lead to more
capacity misses
Can reduce conflict misses

• Higher associativity
Can reduce conflict misses
No effect on cold miss

• Compiler controlled pre-fetching (faulting/non-
faulting)

Code reorganization
Merging arrays
Loop interchange (row column order)
Loop fusion (2 loops into 1)
Blocking

21

CS 135

Larger cache block size

• Easiest way to reduce miss rate is to
increase cache block size

This will help eliminate what kind of misses?

• Helps improve miss rate b/c of principle
of locality:

Temporal locality says that if something is accessed
once, it’ll probably be accessed again soon
Spatial locality says that if something is accessed,
something nearby it will probably be accessed

Larger block sizes help with spatial locality

• Be careful though!
Larger block sizes can increase miss penalty!

Generally, larger blocks reduce # of total blocks in
cache

CS 135

(1) Larger cache block size
(graph comparison)

Miss rate vs. block size

0

5

10

15

20

25

16 32 64 128 256

Block Size

M
is

s
R

at
e

1K
4K
16K
64K
256K

(Assuming total cache size stays constant for each curve)

Why this trend?

CS 135

Larger cache block size (example)

• Assume that to access lower-level of memory hierarchy
you:

Incur a 40 clock cycle overhead
Get 16 bytes of data every 2 clock cycles

• I.e. get 16 bytes in 42 clock cycles, 32 in 44, etc…
• Using data below, which block size has minimum average

memory access time?

0.49%1.15%3.29%9.51%22.01%256
0.49%1.02%2.77%7.78%16.64%128
0.51%1.06%2.64%7.00%13.76%64
0.70%1.35%2.87%7.24%13.34%32
1.09%2.04%3.94%8.57%15.05%16
256K64K16K4K1KBlock Size

Cache sizes

Miss rates

CS 135

Larger cache block size
(ex. continued…)

• Recall that Average memory access time =
Hit time + Miss rate X Miss penalty

• Assume a cache hit otherwise takes 1 clock
cycle –independent of block size

• So, for a 16-byte block in a 1-KB cache…
Average memory access time =

1 + (15.05% X 42) = 7.321 clock cycles

• And for a 256-byte block in a 256-KB cache…
Average memory access time =

1 + (0.49% X 72) = 1.353 clock cycles

• Rest of the data is included on next slide…

22

CS 135

Larger cache block size
(ex. continued)

1.3531.8283.3697.84716.84772256
1.2741.5712.5515.35710.31856128
1.2451.5092.2674.3607.6054864
1.3081.5942.2634.1866.8704432
1.4851.8572.6554.5997.3214216

256K64K16K4K1KMiss
Penalt

y

Block
Size

Red entries are lowest average time for a particular configuration

Note: All of these block sizes are common in processor’s today
Note: Data for cache sizes in units of “clock cycles”

Cache sizes

CS 135

Larger cache block sizes (wrap-up)

• We want to minimize cache miss rate &
cache miss penalty at same time!

• Selection of block size depends on
latency and bandwidth of lower-level
memory:

High latency, high bandwidth encourage large block
size

Cache gets many more bytes per miss for a small
increase in miss penalty

Low latency, low bandwidth encourage small block
size

Twice the miss penalty of a small block may be close to
the penalty of a block twice the size
Larger # of small blocks may reduce conflict misses

CS 135

Higher associativity

• Higher associativity can improve cache
miss rates…

• Note that an 8-way set associative
cache is…

…essentially a fully-associative cache

• Helps lead to 2:1 cache rule of thumb:
It says:

A direct mapped cache of size N has about the same miss
rate as a 2-way set-associative cache of size N/2

• But, diminishing returns set in sooner or
later…

Greater associativity can cause increased hit time

CS 135

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Associativity

Conflict

23

CS 135

Miss Rate Reduction Strategies

• Increase block size – reduce compulsory misses
• Larger caches

Larger size can reduce capacity, conflict misses
Larger block size for fixed total size can lead to more
capacity misses
Can reduce conflict misses

• Higher associativity
Can reduce conflict misses
No effect on cold miss

• Compiler controlled pre-fetching (faulting/non-
faulting)

Code reorganization
Merging arrays
Loop interchange (row column order)
Loop fusion (2 loops into 1)
Blocking

CS 135

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size
(fixed size&assoc)

Reduced
compulsory

misses Increased
Conflict
Misses

What else drives up block size?

CS 135

Cache Size

• Old rule of thumb: 2x size => 25% cut in miss rate
• What does it reduce?

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

CS 135

How to Improve Cache Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

24

CS 135

Improving Performance: Reducing Cache
Miss Penalty

• Multilevel caches –
second and subsequent level caches can be large enough to capture
many accesses that would have gone to main memory, and are faster
(therefore less penalty)

• Critical word first and early restart –
don’t wait for full block of cache to be loaded, send the critical word
first, restart the CPU and continue the load

• Priority to read misses over write misses
• Merging write buffer –

if the address of a new entry matches that of one in the write buffer,
combine it

• Victim Caches –
cache discarded blocks elsewhere

Remember what was discarded in case it is needed again
Insert small fully associative cache between cache and its refill path

This “victim cache” contains only blocks that were discarded as a result of
a cache miss (replacement policy)
Check victim cache in case of miss before going to next lower level of
memory

CS 135

Early restart and critical word 1st

• With this strategy we’re going to be
impatient

As soon as some of the block is loaded, see if the data
is there and send it to the CPU

(i.e. we don’t wait for the whole block to be loaded)

• There are 2 general strategies:
Early restart:

As soon as the word gets to the cache, send it to the CPU
Critical word first:

Specifically ask for the needed word 1st, make sure it gets
to the CPU, then get the rest of the cache block data

CS 135

Victim caches

• 1st of all, what is a “victim cache”?
A victim cache temporarily stores blocks that have
been discarded from the main cache (usually not that
big) – due to conflict misses

• 2nd of all, how does it help us?
If there’s a cache miss, instead of immediately going
down to the next level of memory hierarchy we check
the victim cache first
If the entry is there, we swap the victim cache block
with the actual cache block

• Research shows:
Victim caches with 1-5 entries help reduce conflict
misses
For a 4KB direct mapped cache victim caches:

Removed 20% - 95% of conflict misses! CS 135

Victim caches

Tag

Data
in

Data
out

CPU Address

Write
Buffer

Lower level memory

=?=?

Data Victim CacheVictim Cache

=?=?

25

CS 135

Multi-Level caches

• Processor/memory performance gap makes us
consider:

If they should make caches faster to keep pace with CPUs
If they should make caches larger to overcome widening gap
between CPU and main memory

• One solution is to do both:
Add another level of cache (L2) between the 1st level cache
(L1) and main memory

Ideally L1 will be fast enough to match the speed of the CPU
while L2 will be large enough to reduce the penalty of going to
main memory

CS 135

Second-level caches

• This will of course introduce a new
definition for average memory access
time:

Hit timeL1 + Miss RateL1 * Miss PenaltyL1
Where, Miss PenaltyL1 =

Hit TimeL2 + Miss RateL2 * Miss PenaltyL2
So 2nd level miss rate measure from 1st level cache
misses…

• A few definitions to avoid confusion:
Local miss rate:

of misses in the cache divided by total # of memory
accesses to the cache – specifically Miss RateL2

Global miss rate:
of misses in the cache divided by total # of memory
accesses generated by the CPU – specifically -- Miss
RateL1 * Miss RateL2

CS 135

Second-level caches

• Example:
In 1000 memory references there are 40 misses in the L1
cache and 20 misses in the L2 cache. What are the various
miss rates?
Miss Rate L1 (local or global): 40/1000 = 4%
Miss Rate L2 (local): 20/40 = 50%
Miss Rate L2 (global): 20/1000 = 2%

• Note that global miss rate is very similar to
single cache miss rate of the L2 cache

(if the L2 size >> L1 size)

• Local cache rate not good measure of
secondary caches – its a function of L1 miss
rate

Which can vary by changing the L1 cache
Use global cache miss rate to evaluating 2nd level caches!

CS 135

Second-level caches
(some “odds and ends” comments)

• The speed of the L1 cache will affect the
clock rate of the CPU while the speed of the
L2 cache will affect only the miss penalty of
the L1 cache

Which of course could affect the CPU in various ways…

• 2 big things to consider when designing the L2
cache are:

Will the L2 cache lower the average memory access time
portion of the CPI?
If so, how much will is cost?

In terms of HW, etc.

• 2nd level caches are usually BIG!
Usually L1 is a subset of L2
Should have few capacity misses in L2 cache

Only worry about compulsory and conflict for optimizations…

26

CS 135

Second-level caches (example)

• Given the following data…
2-way set associativity increases hit time by 10% of a
CPU clock cycle
Hit time for L2 direct mapped cache is: 10 clock
cycles
Local miss rate for L2 direct mapped cache is: 25%
Local miss rate for L2 2-way set associative cache is:
20%
Miss penalty for the L2 cache is: 50 clock cycles

• What is the impact of using a 2-way
set associative cache on our miss
penalty?

CS 135

Second-level caches (example)

• Miss penaltyDirect mapped L2 =
10 + 25% * 50 = 22.5 clock cycles

• Adding the cost of associativity increases the
hit cost by only 0.1 clock cycles

• Thus, Miss penalty2-way set associative L2 =
10.1 + 20% * 50 = 20.1 clock cycles

• However, we can’t have a fraction for a
number of clock cycles (i.e. 10.1 ain’t
possible!)

• We’ll either need to round up to 11 or
optimize some more to get it down to 10. So…

10 + 20% * 50 = 20.0 clock cycles or
11 + 20% * 50 = 21.0 clock cycles (both better than 22.5)

CS 135

(5) Second level caches
(some final random comments)

• We can reduce the miss penalty by reducing
the miss rate of the 2nd level caches using
techniques previously discussed…

I.e. Higher associativity or psuedo-associativity are worth
considering b/c they have a small impact on 2nd level hit
time
And much of the average access time is due to misses in the
L2 cache

• Could also reduce misses by increasing L2
block size

• Need to think about something called the
“multilevel inclusion property”:

In other words, all data in L1 cache is always in L2…
Gets complex for writes, and what not…

CS 135

Hardware prefetching

• This one should intuitively be pretty obvious:
Try and fetch blocks before they’re even requested…
This could work with both instructions and data
Usually, prefetched blocks are placed either:

Directly in the cache (what’s a down side to this?)
Or in some external buffer that’s usually a small, fast cache

• Let’s look at an example: (the Alpha AXP
21064)

On a cache miss, it fetches 2 blocks:
One is the new cache entry that’s needed
The other is the next consecutive block – it goes in a buffer

How well does this buffer perform?
Single entry buffer catches 15-25% of misses
With 4 entry buffer, the hit rate improves about 50%

27

CS 135

Hardware prefetching example

• What is the effective miss rate for the
Alpha using instruction prefetching?

• How much larger of an instruction cache
would we need if the Alpha to match
the average access time if prefetching
was removed?

• Assume:
It takes 1 extra clock cycle if the instruction misses the
cache but is found in the prefetch buffer
The prefetch hit rate is 25%
Miss rate for 8-KB instruction cache is 1.10%
Hit time is 2 clock cycles
Miss penalty is 50 clock cycles

CS 135

Hardware prefetching example

• We need a revised memory access time formula:
Say: Average memory access timeprefetch =

Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 – prefetch hit
rate) * miss penalty

• Plugging in numbers to the above, we get:
2 + (1.10% * 25% * 1) + (1.10% * (1 – 25%) * 50) = 2.415

• To find the miss rate with equivalent performance, we
start with the original formula and solve for miss rate:

Average memory access timeno prefetching =
Hit time + miss rate * miss penalty

Results in: (2.415 – 2) / 50 = 0.83%
• Calculation suggests effective miss rate of prefetching

with 8KB cache is 0.83%
• Actual miss rates for 16KB = 0.64% and 8KB = 1.10%

CS 135

Compiler-controlled prefetching

• It’s also possible for the compiler to tell the
hardware that it should prefetch instructions
or data

It (the compiler) could have values loaded into registers –
called register prefetching
Or, the compiler could just have data loaded into the cache –
called cache prefetching

• getting things from lower levels of memory can
cause faults – if the data is not there…

Ideally, we want prefetching to be “invisible” to the program;
so often, nonbinding/nonfaulting prefetching used

With nonfautling scheme, faulting instructions turned into no-
ops
With “faulting” scheme, data would be fetched (as “normal”)

CS 135

Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in
software

• Instructions
Reorder procedures in memory so as to reduce conflict misses
Profiling to look at conflicts(using tools they developed)

• Data
Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays
Loop Interchange: change nesting of loops to access data in order
stored in memory
Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

28

CS 135

Compiler optimizations – merging arrays

• This works by improving spatial locality
• For example, some programs may reference

multiple arrays of the same size at the same time
Could be bad:

Accesses may interfere with one another in the cache

• A solution: Generate a single, compound array…

/* Before:*/
int tag[SIZE]
int byte1[SIZE]
int byte2[SIZE]
int dirty[size]

/* After */
struct merge {

int tag;
int byte1;
int byte2;
int dirty;

}
struct merge cache_block_entry[SIZE]

CS 135

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

CS 135

Compiler optimizations – loop interchange

• Some programs have nested loops that
access memory in non-sequential order

Simply changing the order of the loops may make them
access the data in sequential order…

• What’s an example of this?

/* Before:*/
for(j = 0; j < 100; j= j + 1) {

for(k = 0; k < 5000; k = k + 1) {
x[k][j] = 2 * x[k][j];

/* After:*/
for(k = 0; k < 5000; k= k + 1) {

for(j = 0; j < 5000; j = j + 1) {
x[k][j] = 2 * x[k][j];

But who really writes
loops like this???

CS 135

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding
through memory every 100 words;
improved spatial locality

29

CS 135

Compiler optimizations – loop fusion

• This one’s pretty obvious once you hear what it
is…

• Seeks to take advantage of:
Programs that have separate sections of code that access
the same arrays in different loops

Especially when the loops use common data
The idea is to “fuse” the loops into one common loop

• What’s the target of this optimization?
• Example:

/* Before:*/
for(j = 0; j < N; j= j + 1) {

for(k = 0; k < N; k = k + 1) {
a[j][k] = 1/b[j][k] * c[j][k];

for(j = 0; j < N; j= j + 1) {
for(k = 0; k < N; k = k + 1) {

d[j][k] = a[j][k] + c[j][k];

/* After:*/
for(j = 0; j < N; j= j + 1) {

for(k = 0; k < N; k = k + 1) {
a[j][k] = 1/b[j][k] * c[j][k];
d[j][k] = a[j][k] + c[j][k];

}
}

CS 135

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss
per access; improve spatial locality

CS 135

Compiler optimizations – blocking

• This is probably the most “famous” of
compiler optimizations to improve cache
performance

• Tries to reduce misses by improving
temporal locality

• To get a handle on this, you have to
work through code on your own

Homework!

• this is used mainly with arrays!
• Simplest case??

Row-major access

CS 135

Blocking Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
Read all NxN elements of z[]
Read N elements of 1 row of y[] repeatedly
Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

30

CS 135

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to Reduce
Cache Misses (by hand)

CS 135

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS 135

Reducing the hit time

• Again, recall our average memory
access time equation:

Hit time + Miss Rate * Miss Penalty
We’ve talked about reducing the Miss Rate and the
Miss Penalty – Hit time can also be a big
component…

• On many machines cache accesses can
affect the clock cycle time – so making
this small is a good thing!

CS 135

Small and simple caches

• Why is this good?
Generally, smaller hardware is faster – so a small
cache should help the hit time…
If an L1 cache is small enough, it should fit on the
same chip as the actual processing logic…

Processor avoids time going off chip!
Some designs compromise and keep tags on a chip and
data off chip – allows for fast tag check and >> memory
capacity

Direct mapping also falls under the category of
“simple”

Relates to point above as well – you can check tag and
read data at the same time!

31

CS 135

Avoid address translation during cache
indexing

• This problem centers around virtual addresses.
Should we send the virtual address to the
cache?

In other words we have Virtual caches vs. Physical caches
Why is this a problem anyhow?

Well, recall from OS that a processor usually deals with
processes
What if process 1 uses a virtual address xyz and process 2
uses the same virtual address?
The data in the cache would be totally different! – called
aliasing

• Every time a process is switched logically,
we’d have to flush the cache or we’d get false
hits.

Cost = time to flush + compulsory misses from empty cache

• I/O must interact with caches so we need
virtual addressess CS 135

Separate Instruction and Data Cache

• Multilevel cache is one option for design
• Another view:

Separate the instruction and data caches
Instead of a Unified Cache, have separate I-cache and
D-cache

Problem: What size does each have ?

CS 135

Separate I-cache and D-cache example:

• We want to compare the following:
A 16-KB data cache & a 16-KB instruction cache versus a
32-KB unified cache

• Assume a hit takes 1 clock cycle to process
• Miss penalty = 50 clock cycles
• In unified cache, load or store hit takes 1

extra clock cycle b/c having only 1 cache port
= a structural hazard

• 75% of accesses are instruction references
• What’s avg. memory access time in each case?

1.99%4.82%0.15%32 KB
2.87%6.47%0.64%16 KB

Unified CacheData CacheInst. CacheSize
Miss Rates

CS 135

example continued…

• 1st, need to determine overall miss rate for split caches:
(75% x 0.64%) + (25% x 6.47%) = 2.10%
This compares to the unified cache miss rate of 1.99%

• We’ll use average memory access time formula from a few
slides ago but break it up into instruction & data references

• Average memory access time – split cache =
75% x (1 + 0.64% x 50) + 25% x (1 + 6.47% x 50)
(75% x 1.32) + (25% x 4.235) = 2.05 cycles

• Average memory access time – unified cache =
75% x (1 + 1.99% x 50) + 25% x (1 + 1 + 1.99% x 50)
(75% x 1.995) + (25% x 2.995) = 2.24 cycles

• Despite higher miss rate, access time faster for split cache!

32

CS 135

Reducing Time to Hit in Cache:
Trace Cache

• Trace caches
ILP technique
Trace cache finds dynamic sequence of instructions
including taken branches to load into cache block

Branch prediction is folded into the cache

CS 135

The Trace Cache Proposal

A

B

C

D

E F

G

A

B
C

D

E

F
G

A

B
C

D

F
G

I-cache line
boundaries

Trace-
cache line
boundaries

10% static
90% dynamic

static 90%
dynamic 10%

CS 135

Cache Summary

• Cache performance crucial to overall
performance

• Optimize performance
Miss rates
Miss penalty
Hit time

• Software optimizations can lead to
improved performance

• Next . . . Code Optimization in
Compilers

