
Summary of discussions

ILP processors
- VLIW/EPIC, Superscalar

Superscalar has hardware logic for extracting 
parallelism
- Solutions for stalls etc. must be provided in hardware

Stalls play an even greater role in ILP processors
Software solutions, such as code scheduling through 
code movement, can lead to improved execution 
times
- More sophisticated techniques needed
- Can we provide some H/W support to help the compiler –

leads to EPIC/VLIW

Multiple Issue ILP Processors

In statically scheduled superscalar instructions issue 
in order, and all pipeline hazards checked at issue 
time
- Inst causing hazard will force subsequent inst to be stalled

In statically scheduled VLIW, compiler generates 
multiple issue packets of instructions
During instruction fetch, pipeline receives number of 
inst from IF stage – issue packet
- Examine each inst in packet: if no hazard then issue else 

wait
- Issue unit examines all inst in packet

• Complexity implies further splitting of issue stage 

Getting CPI < 1: 
Issuing Multiple Instructions/Cycle

Vector Processing: Explicit coding of independent loops 
as operations on large vectors of numbers

- Multimedia instructions being added to many processors

Superscalar: varying no. instructions/cycle (1 to 8), 
scheduled by compiler or by HW (Tomasulo)

- IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

(Very) Long Instruction Words (V)LIW: 
fixed number of instructions (4-16) scheduled by the 
compiler; put ops into wide templates (TBD)

- Intel Architecture-64 (IA-64) 64-bit address
• Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

Anticipated success of multiple instructions lead to 
Instructions Per Clock cycle (IPC) vs. CPI

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

1 cycle load delay expands to 3 instructions in SS
- instruction in right half can’t use it, nor instructions in next slot



Multiple Issue Issues

issue packet: group of instructions from fetch unit that 
could potentially issue in 1 clock

- If instruction causes structural hazard or a data hazard either 
due to earlier instruction in execution or to earlier instruction 
in issue packet, then instruction does not issue

- 0 to N instruction issues per clock cycle, for N-issue

Performing issue checks in 1 cycle could limit clock 
cycle time: O(n2-n) comparisons

- => issue stage usually split and pipelined
- 1st stage decides how many instructions from within this 

packet can issue, 2nd stage examines hazards among 
selected instructions and those already been issued

- => higher branch penalties => prediction accuracy important

Multiple Issue Challenges
While Integer/FP split is simple for the HW, get CPI of 0.5 
only for programs with:

- Exactly 50% FP operations AND No hazards
If more instructions issue at same time, greater difficulty of 
decode and issue:

- Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 
1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

- Register file: need 2x reads and 1x writes/cycle
- Rename logic: must be able to rename same register multiple times in 

one cycle!  For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒ sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
- Result buses: Need to complete multiple instructions/cycle

• So, need multiple buses with associated matching logic at every 
reservation station.

• Or, need multiple forwarding paths

Summary of Course Performance and Cost
Amdahl’s Law:

CPI Law:

Designing to Last through Trends

Capacity Speed
Logic 2x  in  3 years 2x  in   3 years
DRAM 4x  in  4 years 2x  in 10 years
Disk 4x  in  3 years 2x  in   5 years
Processor 2x every 1.5 years?

Speedupoverall =
ExTimeold

ExTimenew

=
1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle



Performance and Cost
Thumb rules for performance:

- Common case fast
- Locality
- Parallelism
- Critical path

Cost vs. Price
- Can PC industry support engineering/research investment?

For better or worse, benchmarks shape a field
Interested in learning more on performance? 
CS 238 “Computer Systems Performance”

- Don’t ask me when ☺

Goodbye to 
Performance and Cost

Will sustain 2X every 1.5 years?
- Can integrated circuits improve below 1.8 micron in 

speed as well as capacity?
5-6 yrs to PhD => 
16X CPU speed, 10XDRAM Capacity, 25X Disk 
capacity? 
(20 GHz CPU, 10GB DRAM, 2TB disk?)

Processor Architecture
ISA 

What ISA looks like to pipeline? 
- Cray: load/store machine; registers; simple instr. format

RISC: Making an ISA that supports pipelined execution
80x86: importance of being their first
VLIW/EPIC: compiler controls Instruction Level 
Parallelism (ILP)
Interested in learning more on compilers and ISA? 
CS 246 “Compiler Optimization”

Superscalar Execution (Chapter 3)

Dynamic scheduling with Tomasulo
- Why does it work, and why is it the de-facto method today ?

Multiple Instruction issue
- Challenges?

Did ILP limits really restrict practical machines to 4-issue, 4-commit?
Did we ever really get CPI below 1.0?
Branch prediction: How accurate did it become? 

- For real programs, how much better than 2 bit table?



Software Scheduling

Instruction Level Parallelism (ILP) found either by compiler or 
hardware.
Loop level parallelism is easiest to see

- SW dependencies/compiler sophistication determine if compiler can 
unroll loops

- Memory dependencies hardest to determine => Memory 
disambiguation

- Very sophisticated transformations available

Trace Sceduling to Parallelize If statements
Superscalar and VLIW: CPI < 1 (IPC > 1)

- Dynamic issue vs. Static issue
- More instructions issue at same time => larger hazard penalty
- Limitation is often number of instructions that you can successfully 

fetch and decode per cycle

EPIC/VLIW

What did  IA-64/EPIC do well besides floating point 
programs?

- Was the only difference the 64-bit address v. 32-bit address?
- What happened to the AMD 64-bit address 80x86 proposal?

What happened on EPIC code size vs. x86?
Did anybody propose anything at ISA to help with 
software quality? availability? Security ?

Hardware versus Software Speculation 
Mechanisms

To speculate extensively, must be able to 
disambiguate memory references

- Much easier in HW than in SW for code with pointers

HW-based speculation works better when control flow 
is unpredictable, and when HW-based branch 
prediction is superior to SW-based branch prediction 
done at compile time

- Mispredictions mean wasted speculation

HW-based speculation maintains precise exception 
model even for speculated instructions
HW-based speculation does not require compensation 
or bookkeeping code

Hardware versus Software Speculation 
Mechanisms cont’d

Compiler-based approaches may benefit from the 
ability to see further in the code sequence, resulting in 
better code scheduling
HW-based speculation with dynamic scheduling does 
not require different code sequences to achieve good 
performance for different implementations of an 
architecture

- may be the most important in the long run?



IA-64  EPIC vs. Classic VLIW
Similarities:
- Compiler generated wide instructions
- Static detection of dependencies 
- ILP encoded in the binary (a group)
- Large number of architected registers

Differences:
- Instructions in a bundle can have dependencies
- Hardware interlock between dependent instructions
- Accommodates varying number of functional units and 

latencies
- Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations 

but software won’t run at top speed until it is recompiled so 
“shrink-wrap binary” might need to include multiple builds

EPIC and Compiler Optimization

EPIC requires dependency free “scheduled code”
Burden of extracting parallelism falls on compiler
success of EPIC architectures depends on efficiency 
of Compilers!!
We provide overview of Compiler Optimization 
techniques (as they apply to EPIC/ILP)

Introduction to 
Compiler Optimization

Hardware-Software Interface

Machine Program

Performance = tcyc x CPI x code size 

X

Available resources
statically fixed

Designed to support
wide variety of programs

Required resources
dynamically varying

Designed to run well on
a variety of machines

Interested in having
itself run fast

Interested in running
many programs fast

Reflects how well the
machine resources match
the program requirements



Compiler Tasks

Code Translation
- Source language → target language

FORTRAN → C
C → MIPS, PowerPC or Alpha machine code
MIPS binary → Alpha binary

Code Optimization
- Code runs faster
- Match dynamic code behavior to static machine structure

Compiler Structure

Frond End Optimizer Back End

Machine  independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR

Midterm Exam

When:  Tuesday, October 28th, 6:15pm
- 2 hours

What ?
- Chapters 1,2,3, Appendix AB,G…(all material upto/including 

EPIC/VLIW), Homeworks 1,2,3.
Looks like ?
- 3 parts: (1) multiple choice, (2) short answers (2 sentence), 

and (3) detailed/analytical questions (like homeworks?)
If you miss exam then makeup IF you have valid 
excuse
- Sickness, your company sent you out on travel, others?

NOT valid excuses:
- You need to get your car serviced at the same time as exam
- You have a party to attend the previous night 


