
1

CS 135: Computer Architecture 1CS 135: Computer Architecture 1

Instructor: Prof Bhagi NarahariInstructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~narahari/cs135/

The Memory Hierarchy. . .

 Brief Overview of Memory Design
 What is the memory hierarchy ?

 components

 Focus on Cache design
 How does Cache memory work ?

 How are addresses mapped to Cache

CS 135: Computer Architecture, Bhagi Narahari

pp

 How to rewrite code to get better cache performance ? –code
optimization

 How do disks work ?

 Virtual memory – what is it ?

A Computer

Input
Device

Central
Processing

Unit

Output
Device

Input
Device Auxiliary

Storage

CS 135: Computer Architecture, Bhagi Narahari

The computer is composed of input devices, a central processing
unit, a memory unit and output devices.

Memory

Storage
Device

Computer organization - Recap

 CPU has two components:
 Arithmetic and Logic Unit (ALU)

 Performs arithmetic operations

 Performs logical operations

 Control Unit
 Controls the action of the other computer components so that

CS 135: Computer Architecture, Bhagi Narahari

p p
instructions are executed in the correct sequence

 Memory
 Contains instructions and data

 CPU requests data, data fetched from
memory
 How long does it take to fetch from memory ?

2

CPU + memory

address

200

CS 135: Computer Architecture, Bhagi Narahari

memory
CPU

PCdata

IRADD r5,r1,r3200

200

ADD r5,r1,r3

Memory Unit

 An ordered sequence of storage cells, each
capable of holding a piece of data.

 Address space
 Size of memory: N bit address space = 2N memory

locations

 Addressability
Size of each memory location k bits

CS 135: Computer Architecture, Bhagi Narahari

 Size of each memory location – k bits

 Total memory size = k.2N bits
 Assumption thus far: Processor/CPU gets data

or instruction from some memory address (Inst
fetch or Load/Store instruction)
 But how is memory actually organized ?
 Can everything we need fit into a memory that is close

to the CPU ?

Where does run-time stack fit into this. .

 We looked at how variables in C are
allocated memory addresses
 Each function has activation record

 Compiler takes care of allocation of memory
addresses to variables

CS 135: Computer Architecture, Bhagi Narahari

 Question now is: where are these
memory addresses and how long does it
take to fetch the contents into the
processor register
 LD R0, A

 We know the address of A, but how long will it take to go into
memory and fetch into register R0 ?

Memory Technology

 Random access memory
 Can read from any location by supplying address of

data

 Memory Comes in Many Flavors
 Main RAM memory Key features

 RAM is packaged as a chip.

Basic storage unit is a cell (one bit per cell)

CS 135: Computer Architecture, Bhagi Narahari

 Basic storage unit is a cell (one bit per cell).

 Multiple RAM chips form a memory.

 SRAM (Static Random Access Memory) or DRAM (Dynamic Random
Access Memory)

 ROM, EPROM, EEPROM, Flash, etc.
 Read only memories – store OS

 “Secondary memory” Disks, Tapes, etc.

 Difference in speed, price and “size”
 Fast is small and/or expensive

 Large is slow and/or cheap

3

How is memory really organized ?

 Many types of memory with different speeds

 Processor speed and memory speed
mismatched
 Data transferred between memory and processor

 Instructions or data

 What does processor do while waiting for data

CS 135: Computer Architecture, Bhagi Narahari

p g
to be transferred ?
 Idle – processor is stalled leading to slowdown in

speed and lower performance

 Why can’t we have memory as fast as processor
 Technology, cost, size

 What is the solution then ?

Memory Hierarchies

 Some fundamental and enduring properties of
hardware and software:
 Fast storage technologies cost more per byte and have

less capacity.

 The gap between CPU and main memory speed is
widening.

Well written programs tend to exhibit good locality

CS 135: Computer Architecture, Bhagi Narahari

 Well-written programs tend to exhibit good locality.

 These fundamental properties complement each
other beautifully.

 They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

CS 135: Computer Architecture, Bhagi Narahari

Items on a desktop (register) or in a drawer (cache) are more readily accessible
than those in a file cabinet (main memory) or in a closet in another room

keep more frequently accessed items on desktop, next frequent in drawer, etc.
and things you need a lot less often in the closet in another room!

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

CS 135: Computer Architecture, Bhagi Narahari

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

L3:

L4:

L5:

4

Memory Hierarchies

 Key Principles
 Locality – most programs do not access code or data

uniformly

 Smaller hardware is faster

 Goal
 Design a memory hierarchy “with cost almost as low

CS 135: Computer Architecture, Bhagi Narahari

g y y
as the cheapest level of the hierarchy and speed
almost as fast as the fastest level”
 This implies that we be clever about keeping more likely used data as

“close” to the CPU as possible

 Levels provide subsets
 Anything (data) found in a particular level is also found

in the next level below.

 Each level maps from a slower, larger memory to a
smaller but faster memory

Locality

 Principle of Locality:
 Programs tend to reuse data and instructions near those

they have used recently, or that were recently referenced
themselves.

 Temporal locality: Recently referenced items are likely to be
referenced in the near future.

 Spatial locality: Items with nearby addresses tend to be
referenced close together in time

CS 135: Computer Architecture, Bhagi Narahari

referenced close together in time.

Locality

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

CS 135: Computer Architecture, Bhagi Narahari

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:

• Instructions

– Reference instructions in sequence:

– Cycle through loop repeatedly:

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Memory Hierarchy: The Tradeoff

CPU

regs

C
a
c
h
e

Memory disk
16 B 8 B 4 KB

cache virtual memory

C
a
c
h
e

CS 135: Computer Architecture, Bhagi Narahari

size:
speed:
$/Mbyte:
block size:

608 B
1.4 ns

4 B

register
reference

L2-cache
reference

memory
reference

disk memory
reference

512kB -- 4MB
16.8 ns
$90/MB
16 B

128 MB
112 ns
$2-6/MB
4-8 KB

27GB
9 ms
$0.01/MB

larger, slower, cheaper

128k B
4.2 ns

4 B

L1-cache
reference

(Numbers are for a Alpha 21264 at 700MHz)

5

Computer Organization – with
Memory system

Processor

Cache

interrupts

CS 135: Computer Architecture, Bhagi Narahari

diskDiskdiskDisk

Memory-I/O bus

Memory

I/O
controller

I/O
controller

I/O
controller

Display Network

Memory Hierarchy: Key concepts

 We shall return to a detailed discussion
of the various components of the
memory hierarchy
 What is a Cache memory

 How does Memory access and Disk access
k ?

CS 135: Computer Architecture, Bhagi Narahari

work ?

 How should we organize the memory
hierarchy

 How can we rewrite our code to improve
performance
 Based on memory access, type of

instructions, etc.

A Simple Model of Memory . . .

 Sequence of addresses
 How many ?

 CPU generates request for memory
location – i.e., an address
 How long does it take to get this data ?

CS 135: Computer Architecture, Bhagi Narahari

g g
 Depends where it is in the Memory hierarchy

 Simplified Model for memory hierarchy:
 small amount of On-chip Cache memory

 Larger amount of off-chip Main memory

 Huge Disk

Memory Access times

 memory access time
 On-chip Cache takes 1 processor cycle

 Main memory takes a number (10-50) processor cycles

 Disk takes a huge amount

 Simple model we will use for now:
 Memory = Cache + Main memory

CS 135: Computer Architecture, Bhagi Narahari

 Memory = Cache + Main memory

 Small size Cache = not everything fits in it

 Simplified Cache organization:
 Cache consists of a set of blocks each of some

number of bytes

 Only a block can be fetched into and out of cache

 Eg; if block is 16 bytes, then load 16 bytes into cache
 Cannot load a single byte

6

Memory Access times using Simplified Model

 If data is found in Cache then time =1
 Called a cache hit

 Else time is Main memory access time
 Cache miss, means read from next level

 Note: need a ‘control unit’ to determine if

CS 135: Computer Architecture, Bhagi Narahari

 Note: need a control unit to determine if
location is in cache or not
 Cache controller

 Why does concept of caching work ?
 Principle of Locality

 Programs access data nearby, or data/instructions that were
used recently

Summary: Memory Access time optimization

 If each access to memory leads to a cache
hit then time to fetch from memory is one
cycle
 Program performance is good!

 If each access to memory leads to a cache

CS 135: Computer Architecture, Bhagi Narahari

miss then time to fetch from memory is
much larger than 1 cycle
 Program performance is bad!

 Design Goal:

How to arrange data/instructions so that we
have as few cache misses as possible.

Some details of Memory Organization

CS 135: Computer Architecture, Bhagi Narahari

Random-Access Memory (RAM)

 Static RAM (SRAM)
 This is what we saw before in the example of a memory built

from latches (transistors).

 Like a register – once written it keeps its value till next write

 Retains value indefinitely, as long as it is kept powered.

 Relatively insensitive to disturbances such as electrical
noise.

CS 135: Computer Architecture, Bhagi Narahari

 Faster and more expensive than DRAM.

 Dynamic RAM (DRAM)
 Each cell stores a bit with a capacitor and transistor.

 Value must be refreshed every 10-100 ms else we lose data

 Sensitive to disturbances.

 Slower and cheaper than SRAM.

 Many types of DRAMS
 SDRAM, DDR-DRAM, Video DRAM, etc.

7

Nonvolatile Memories

 DRAM and SRAM are volatile memories
 Lose information if powered off.

 Nonvolatile memories retain value even if powered off.
 Generic name is read-only memory (ROM).

 Misleading because some ROMs can be read and modified.

 Types of ROMs
P bl ROM (PROM)

CS 135: Computer Architecture, Bhagi Narahari

 Programmable ROM (PROM)

 Eraseable programmable ROM (EPROM)

 Electrically eraseable PROM (EEPROM)

 Flash memory

 Firmware
 Program stored in a ROM

 Boot time code, BIOS (basic input/ouput system)

 graphics cards, disk controllers.

SRAM vs DRAM Summary

Tran. Access
per bit time Persist? Sensitive? Cost Applications

SRAM 6 1X Yes No 100x cache memories

CS 135: Computer Architecture, Bhagi Narahari

SRAM 6 1X Yes No 100x cache memories

DRAM 1 10X No Yes 1X Main memories,
frame buffers

Building the Memory

 Build large memory using several
smaller memory chips
 How to organize a large memory using

several “modules”

 CPU generates an address request

CS 135: Computer Architecture, Bhagi Narahari

 The address can be in any module

 Need to figure out which one

Memory Modules for 64 bit Processor

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

DRAM 7

DRAM 0

CS 135: Computer Architecture, Bhagi Narahari

Memory
controller

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556

64-bit doubleword at main memory address A

8

Typical Bus Structure Connecting
CPU and Memory

 A bus is a collection of parallel wires that
carry address, data, and control signals.

 Buses are typically shared by multiple
devices.

CPU chip

CS 135: Computer Architecture, Bhagi Narahari

main
memory

I/O
bridge

bus interface

ALU

register file

system bus memory bus

Memory Read Transaction (1)

 CPU places address A on the memory
bus.

ALU

register file

R0

Load operation: Load R0, A
or in Intel: movl A, R0

CS 135: Computer Architecture, Bhagi Narahari

bus interface

A
0

Ax

main memory
I/O bridge

Memory Read Transaction (2)

 Main memory reads A from the memory
bus, retreives word x, and places it on
the bus.

ALU

register file

R0

Load operation: Load R0, A
Or in Intel: movl A, R0

CS 135: Computer Architecture, Bhagi Narahari

bus interface

x 0

Ax

main memory
I/O bridge

Memory Read Transaction (3)

 CPU read word x from the bus and
copies it into register %eax.

x
ALU

register file

R0

Load operation: Load R0, A
or in Intel: movl A, R0

CS 135: Computer Architecture, Bhagi Narahari

bus interface x

main memory
0

A

I/O bridge

9

Memory Write Transaction (1)

 CPU places address A on bus. Main
memory reads it and waits for the
corresponding data word to arrive.

y
ALU

register file

R1

Store operation: STORE R1,A
or in Intel movl R1, A

CS 135: Computer Architecture, Bhagi Narahari

bus interface

A

main memory
0

A

I/O bridge

Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

register file

R1

Store operation: STORE R1, A
In Intel: movl R1, A

CS 135: Computer Architecture, Bhagi Narahari

bus interface

y

main memory

0

A

I/O bridge

Memory Write Transaction (3)

 Main memory read data word y from the
bus and stores it at address A.

y
ALU

register file

R1

Store operation: STORE R1, A
In Intel movl R1, A

CS 135: Computer Architecture, Bhagi Narahari

bus interface y

main memory
0

A

I/O bridge

Memory Write Transaction (3)

 Main memory read data word y from the
bus and stores it at address A.

y
ALU

register file

R1

Store operation: STORE R1,A
In Intel movl R1, A

CS 135: Computer Architecture, Bhagi Narahari

bus interface y

main memory
0

A

I/O bridge

10

Memory Access time and Performance ?

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU = IC * CPI * Clk

How does memory access time fit into CPU time equation ?

CS 135: Computer Architecture, Bhagi Narahari

y q

The CPU-Memory Gap

 The increasing gap between DRAM, disk,
and CPU speeds.

100 000

1,000,000

10,000,000

100,000,000

Disk seek time

CS 135: Computer Architecture, Bhagi Narahari

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000

year

n
s DRAM access time

SRAM access time

CPU cycle time

Performance

 Simplified model:

 Processor is (1) in execution or (2) waits for
memory
 “effective”(Real) CPI increases

 execution time = (execution cycles + memory
stall cycles) cycle time

CS 135: Computer Architecture, Bhagi Narahari

stall cycles) cycle time

 Improve performance = decrease stall
cycles
 Decrease time to access memory
 How ?

Memory Hierarchies

 Organize memory as a memory hierarchy.

 Key Principles
 Locality – most programs do not access code or data

uniformly
 Smaller hardware is faster

 Goal

CS 135: Computer Architecture, Bhagi Narahari

 Design a memory hierarchy “with cost almost as low
as the cheapest level of the hierarchy and speed
almost as fast as the fastest level”
 This implies that we be clever about keeping more likely used data as

“close” to the CPU as possible

 Levels provide subsets
 Anything (data) found in a particular level is also found

in the next level below.
 Each level maps from a slower, larger memory to a

smaller but faster memory

11

Memory Hierarchy: The Tradeoff

CPU

regs

C
a
c
h
e

Memory disk
16 B 8 B 4 KB

cache virtual memory

C
a
c
h
e

CS 135: Computer Architecture, Bhagi Narahari

size:
speed:
$/Mbyte:
block size:

608 B
1.4 ns

4 B

register
reference

L2-cache
reference

memory
reference

disk memory
reference

512kB -- 4MB
16.8 ns
$90/MB
16 B

128 MB
112 ns
$2-6/MB
4-8 KB

27GB
9 ms
$0.01/MB

larger, slower, cheaper

128k B
4.2 ns

4 B

L1-cache
reference

(Numbers are for a 21264 at 700MHz)

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

CS 135: Computer Architecture, Bhagi Narahari

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

L3:

L4:

L5:

Recap -- Locality

 Principle of Locality:
 Programs tend to reuse data and instructions near those

they have used recently, or that were recently referenced
themselves.

 Temporal locality: Recently referenced items are likely to be
referenced in the near future.

 Spatial locality: Items with nearby addresses tend to be
referenced close together in time

CS 135: Computer Architecture, Bhagi Narahari

referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession spatial
locality

– Reference sum each iteration: temporal locality

• Instructions

– Reference instructions in sequence: spatial
locality

– Cycle through loop repeatedly: temporal
locality

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Cache memory

 Why ?

 How does it work ?

 How is the memory organized ?

CS 135: Computer Architecture, Bhagi Narahari

12

Why Cache ?

 Gap between main memory speed and
processor speed
 Reading data/inst from memory will take

more than 1 processor cycle
 Increases time to execute program

 Place a small but fast memory close to

CS 135: Computer Architecture, Bhagi Narahari

 Place a small but fast memory close to
the processor

 Why does this work
 Principle of Locality

Simple Model of Memory Hierarchy. . .

 Sequence of addresses
 How many ?

 CPU generates request for memory
location – i.e., an address
 How long does it take to get this data ?

CS 135: Computer Architecture, Bhagi Narahari

g g
 Depends where it is in the Memory hierarchy

 Simplified Model for memory hierarchy:
 small amount of Fast On-chip Cache memory

 Larger amount of off-chip Main memory

 Huge Disk

How does Cache memory work ?

 Address space = 2N words each of some
size K bits
 N bit address

 Memory addresses go from 0 to 2N-1
 These are the addresses that the processor

CS 135: Computer Architecture, Bhagi Narahari

p
requests in the Load or Store instructions, or
when fetching a new instruction (value in PC)

 Some of these memory locations are
placed in the cache
 If you see it in the cache then don’t need to

go all the way to memory to read them
 Faster time to read/write inst/data!

Memory Access times

 memory access time
 On-chip Cache takes 1 processor cycle

 Main memory takes a number (10-50) processor cycles

 Disk takes a huge amount

 Simple model we will use:
 Memory = Cache + Main memory

CS 135: Computer Architecture, Bhagi Narahari

 Memory = Cache + Main memory

 Small size Cache = not everything fits in it

 Cache organization:
 Cache consists of a set of blocks each of some

number of bytes

 Only a block can be fetched into and out of cache

 Eg; if block is 16 bytes, then load 16 bytes into cache
 Cannot load a single byte

13

Memory Access times using Simplified Model

 If data is found in Cache then time =1
 Called a cache hit

 Else time is Main memory access time
 Cache miss, means read from next level

 Note: need a ‘control unit’ to determine if

CS 135: Computer Architecture, Bhagi Narahari

 Note: need a control unit to determine if
location is in cache or not
 Cache controller

 Why does concept of caching work ?
 Principle of Locality

 Programs access data nearby, or data/instructions that were
used recently

Terminology Summary

 Hit: data appears in block in upper level (i.e. block X in cache)
 Hit Rate: fraction of memory access found in upper level

 Hit Time: time to access upper level which consists of
 RAM access time + Time to determine hit/miss

 Miss: data needs to be retrieved from a block in the lower level (i.e.
block Y in memory)
 Miss Rate = 1 - (Hit Rate)

CS 135: Computer Architecture, Bhagi Narahari

 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Extra time to replace a block in the upper level +
 Time to deliver the block the processor

 Hit Time << Miss Penalty (500 instructions on Alpha 21264)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

Memory Hierarchy--Performance

 Placing the fastest memory near the CPU
can result in increases in performance

 Consider the number of cycles the CPU is
stalled waiting for a memory access:
memory stall cycles

CS 135: Computer Architecture, Bhagi Narahari

 CPU execution time =

(CPU clk cycles + Memory stall cycles) * clk
cycle time.

 Memory stall cycles = number of misses * miss
penalty

 Fewer misses in cache = better performance!

Cache Performance – Simplified Models

 Memory stall cycles =
number of misses * miss penalty =

 = IC*(memory accesses/instruction)*miss rate*
miss penalty

 Hit rate/ratio r = number of requests that are
hits/total number requests

CS 135: Computer Architecture, Bhagi Narahari

hits/total number requests
 Miss rate = 1 – (hit rate)

 Cost of memory access= rCh + (1-r) Cm

 Ch is cost/time from cache, Cm is cost/time when miss –
fetch from memory

 Extend to multiple levels of cache
 Hit ratios for level 1, level 2, etc.

 Access times for level 1, level 2, etc.

 r1 Ch1 + r2Ch2 + (1- r1 -r2)Cm

14

So how well does your memory perform ?

 What is the average time to access
memory ?

 An application program has a miss rate

 The memory design gives us hit time and
miss penalty

CS 135: Computer Architecture, Bhagi Narahari

p y

 So what is the average memory access
time (AMAT) ?
 Hit time : if found in cache

 Hit time + miss penalty : if not in cache

Average Memory Access Time

 Hit time: basic time of every access.

 Hit rate (h): fraction of access that hit
ll b i d b i (1 h)

AMAT = HitTime + (1 - h) x MissPenalty

CS 135: Computer Architecture, Bhagi Narahari

 usually substituted by miss rate m = (1-h)

 Miss penalty: extra time to fetch a block from lower
level, including time to replace in CPU

Example 1. .

 System = Processor, Cache, Main
Memory
 Cache time = 1 processor cycle

 Memory access time = 50 processor cycles

 Suppose out of 1000 memory accesses

CS 135: Computer Architecture, Bhagi Narahari

pp y
(due to Load/Store and Inst fetch)
 40 misses in the cache

 960 hit in the Cache

 Miss ratio = 40/1000 = 4%

 Average memory access time with and
without cache ?

Example. .

 Average memory access time with and
without cache ?

 AMAT-cache = 1 + miss ratio * miss
penalty
 1+ (0.04)*50 = 3

CS 135: Computer Architecture, Bhagi Narahari

 AMAT-without-cache = 50

 What happens if miss ratio increases ?

15

Example 2

 In reality we have an application with a
instruction mix
 CPU time = IC*CPI*Clock

 Effective CPI = CPI + Average Stalls per
instruction

CS 135: Computer Architecture, Bhagi Narahari

 How many memory access per
instruction ?
 When is memory accessed ?

 Example: suppose your program has
20% Load/Store operations

Example 2

 Suppose your program has 20%
Load/Store operations
 Memory is accessed once for each

instruction PLUS again for each Load/Store

 Out of 100 instructions, we will have 120
accesses to memory

CS 135: Computer Architecture, Bhagi Narahari

accesses to memory

 Average memory accesses per instruction =
120/100 = 1.2

 How many stall cycles (waiting for
memory) ?
 1.2 * 0.04*50 = 1.2*2= 2.4

 Processor is stalled 2.4 cycles each inst

Example 2 – complete example

 Assume “ideal” CPI (without memory stalls) is
1.5

 What is the CPU time now ?

 CPU = IC * CPI * Clock
IC*CPI i th b f CPU l

CS 135: Computer Architecture, Bhagi Narahari

 IC*CPI is the number of CPU cycles

 CPI is number of cycles for CPU execution per
instruction

 Each instruction stalls for some number of
cycles

 IC * (CPI + Avg Stall cycles)*Clock
 IC*(1.5+2.4)*clock = IC*3.9 clock cycles

Cache Memory Hardware Design

 Main memory has 2N locations

 Cache has 2k locations
 Smaller than main memory

 How to “organize” these cache locations ?

 Processor generates N bit address

CS 135: Computer Architecture, Bhagi Narahari

 Processor generates N bit address

 How do we look at this N bit address and
decide (a) if it is in cache and (b) where
to place it in cache ?

16

Cache Design--Questions

 Q1: Where can a block be placed in the
upper level?
 block placement

 Q2: How is a block found if it is in the
upper level?
 block identification

CS 135: Computer Architecture, Bhagi Narahari

 block identification
 Use the address bits to identify the block

 Q3: Which block should be replaced on a
miss?
 block replacement

 Q4: What happens on a write?
 Write strategy

Unified or Separate I-Cache and D-Cache

 Two types of accesses:
 Instruction fetch

 Data fetch (load/store instructions)

 Unified Cache
 One large cache for both instructions and date

 Pros: simpler to manage, less hardware complexity

CS 135: Computer Architecture, Bhagi Narahari

g y

 Cons: how to divide cache between data and instructions? Confuses the
standard harvard architecture model; optimizations difficult

 Separate Instruction and Data cache
 Instruction fetch goes to I-Cache

 Data access from Load/Stores goes to D-cache
 Pros: easier to optimize each

 Cons: more expensive; how to decide on sizes of each

Definitions

 Cache has a total size – number of bytes in cache
 Transfers take place in blocks

 A whole block is transferred between memory and cache

 Locating a block requires two attributes:
 Size of block
 Organization of blocks within the cache

 Block size (also referred to as line size)

CS 135: Computer Architecture, Bhagi Narahari

()
 Granularity at which cache operates
 Each block is contiguous series of bytes in memory and

begins on a naturally aligned boundary
 Eg: cache with 16 byte blocks

 each contains 16 bytes
 First byte aligned to 16 byte boundaries in address space

 Low order 4 bits of address of first byte would be 0000

 Smallest usable block size is the natural word size of the
processor
 Else would require splitting an access across blocks and slows down translation

Memory viewed as blocks

 If cache block size = K bytes, then memory can be viewed
as contiguous set of blocks each of size K

16 byte

16 byte memory,

With 4 byte sized

CS 135: Computer Architecture, Bhagi Narahari

memory Cache blocks;

4 blocks of memory

17

Where can a block be placed in a
cache?-Cache Organization

 If each block has only one place it can appear in
the cache, it is said to be “direct mapped”
 and the mapping is usually (Block address) MOD

(Number of blocks in the cache)

 If a block can be placed anywhere in the cache,
it is said to be fully associative

CS 135: Computer Architecture, Bhagi Narahari

 If a block can be placed in a restrictive set of
places in the cache, the cache is set associative.
 A set is a group of blocks in the cache. A block is first

mapped onto a set, and then the block can be placed
anywhere within that set.
(Block address) MOD (Number of sets in the cache)
if there are n blocks in a set, the cache is called n-way
set associative

Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fully Associative Direct Mapped Set Associative

Set 0Set 1Set 2Set 3Cache:

CS 135: Computer Architecture, Bhagi Narahari

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9…..

Memory: 12

Cache Organizations

 Direct Mapped vs Fully Associate
 Direct mapped is not flexible enough:

 if X(mod K)=Y(mod K) then X and Y cannot both be located in cache

 Fully associative allows any mapping, implies all
locations must be searched to find the right one –
expensive hardware

 Set Associative

CS 135: Computer Architecture, Bhagi Narahari

 Set Associative
 Compromise between direct mapped and fully

associative

 Allow many-to-few mappings

 On lookup, subset of address bits used to generate an
index

 BUT index now corresponds to a set of entries which
can be searched in parallel – more efficient hardware
implementation than fully associative, but due to
flexible mapping behaves more like fully associative

 Processor generates address request – some N bit
address

 Two issues:
 How do we know if a data item is in the cache?

 If it is, how do we find it? .. In which cache block do we look

 "direct mapped"

Cache Design: How is data found in
Cache?

CS 135: Computer Architecture, Bhagi Narahari

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

18

Addressing.

 Memory address of N bits
 This is what is requested by processor

 We need mapping from Addresses to Cache
 How to break up these N bits into fields so that

the cache controller can easily determine if the
address requested is already stored in cache ?

CS 135: Computer Architecture, Bhagi Narahari

 Focus on Direct mapped:
 How to implement Mod.P where P=2K

 How to determine which cache block to map the
address -- index

 How to determine which of the words is the one in
memory – tag

 Since we are working with blocks, how to find the
specific word within the block – offset

 N bit address is broken into these 3 fields!

Example

Memory

Cache

Block

Memory block 1

Memory block 2

Memory block 3

Memory block 4

Memory block 5
cache block 0

Cache block 1

CS 135: Computer Architecture, Bhagi Narahari

Cache block 1

Cache block 2

Cache block3

Addressing -- Example

 8 bit address
 Byte addressability

 4 byte cache blocks
 Each cache block has 4 bytes

 Total size of cache = 16 bytes

CS 135: Computer Architecture, Bhagi Narahari

 Which cache block do we place address
01101101

 How do we know which block from
memory is in the cache block ?
 Is it 01101101 or 11001101

Example

Memory

Cache

Block

(0,1,2,3)

(4,5,6,7)

(8,9,10,11)

(12,13,14,15)

(16,17,18,19)
0

1

CS 135: Computer Architecture, Bhagi Narahari

Addresses

In each block

1

2

3
4 bytes in

each block

Addresses:

(0,1,2,3)

19

Addressing -- Example

 8 bit address
 Byte addressability

 4 byte cache blocks
 Each cache block has 4 bytes = need 2 bits to specify

which byte within the block

 Total size of cache = 16 bytes

CS 135: Computer Architecture, Bhagi Narahari

Total size of cache 16 bytes
 4 blocks in cache = apply Modulo 4 mapping

 Which cache block do we place 01101101
 Last two LSB are offset within a block

 Next 2 LSB are modulo 4 and specify cache block

 How do we know which block from memory is in
the cache block ?
 Is it 01101101 or 11001101

So how complex is the hardware required ?

 Given N bit address, the cache controller
needs to determine if the requested word
is in cache or not
 If not, then send the address to the memory

bus

Thi h t b b ilt i t

CS 135: Computer Architecture, Bhagi Narahari

 This process has to be built into
hardware
 Complexity of the circuit determines time

taken to determine if word is in cache
 Hit time is function of complexity of circuit

 For direct mapped, can you think of a
hardware design ?

Direct Mapped Caches

tag idx b.o.

r

tag index

block index

CS 135: Computer Architecture, Bhagi Narahari

=
Tag

match
Multiplexor

d
ec

o
d

e

=
Tag

Match

d
e

co
d

e
r

Cache Block Replacement ?

 When we run out of space on the cache
and need to bring in new block into cache
 Replace a block that is currently in cache to

create space

 Which block to replace ?

CS 135: Computer Architecture, Bhagi Narahari

 Easy in Direct mapped cache – no choice!

 More complex in Associative Caches since
we have a choice

20

What happens on write?

 Write through –
 Propagate each write through cache and on

to next level written to both the block in the
cache and to the block in lower level memory

W it b k

CS 135: Computer Architecture, Bhagi Narahari

 Write back –
 The information is written only to the block in

the cache, memory is written only when
block is replaced

 A dirty bit is kept in the block description area

 Tradeoffs??

Performance

 Simplified model:

execution time = (execution cycles + stall
cycles) cycle time

stall cycles = # of instructions miss ratio
miss penalty

CS 135: Computer Architecture, Bhagi Narahari

miss penalty

 Two ways of improving performance:
 decreasing the miss ratio

 decreasing the miss penalty

What happens if we increase block size?

 Increasing the block size tends to decrease miss rate:

Performance

40%

35%

30%

25%

20%

15%

10%

5%

M
is

s
ra

te

CS 135: Computer Architecture, Bhagi Narahari

 Use split caches because more spatial locality in code:

1 KB�

8 KB�

16 KB�

64 KB�

256 KB

256
0%

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Decreasing miss penalty with multilevel
caches

 Add a second level cache:
 often primary cache is on the same chip as the processor

 use SRAMs to add another cache above primary memory
(DRAM)

 miss penalty goes down if data is in 2nd level cache

CS 135: Computer Architecture, Bhagi Narahari

 Using multilevel caches:
 try and optimize the hit time on the 1st level cache

 try and optimize the miss rate on the 2nd level cache

21

Summary: Memory Access time optimization

 If each access to memory leads to a cache
hit then time to fetch from memory is one
cycle
 Program performance is good!

 If each access to memory leads to a cache

CS 135: Computer Architecture, Bhagi Narahari

miss then time to fetch from memory is
much larger than 1 cycle
 Program performance is bad!

 Design Goal:

How to arrange data/instructions so that we
have as few cache misses as possible.

How about rewriting code to improve cache
rates ?

CS 135: Computer Architecture, Bhagi Narahari

Secondary Memory

 CPU fetches from memory, memory is a
sequence of 2N locations

 What happens if main memory (chip capacity) is
less than 2N

 Data and programs may be stored in a non-
volatile component

CS 135: Computer Architecture, Bhagi Narahari

volatile component
 MS-Word executable is on disk

 Your application data

 What happens if more than one process is
running on the system
 Multiprogramming

 What is the address space available to each user ?

 Need to use Disks!

What is multiprogramming and Why ?

 Processor overlaps execution of two
processes/programs
 When one is waiting for I/O, the other is

“swapped” in to the processor
 Save the “state” of the process being swapped out

 Processes need to share memory

CS 135: Computer Architecture, Bhagi Narahari

 Processes need to share memory
 Each has its own address space

 Leads to better throughput and
utilization

22

The Complete memory hierarchy

 Processor has a set of registers
 Processor instructions operate on contents in the

registers

 Small, fast cache memory placed near the
processor

 Main memory sitting outside the chip

CS 135: Computer Architecture, Bhagi Narahari

y g p
 If data is not in the cache then fetch from main

memory

 Takes longer to access main memory than cache

 Disk sitting outside the motherboard
 If data/program not in main memory then fetch/load

from disk

 Takes much longer to access disk than main memory

Why does memory hierarchy work ?

 Principle of locality!
 Exploit at each level.

CS 135: Computer Architecture, Bhagi Narahari

How do disks work ?

CS 135: Computer Architecture, Bhagi Narahari

Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

surface
tracks

t k k

CS 135: Computer Architecture, Bhagi Narahari

spindle

track k

sectors

gaps

23

Disk Geometry (Muliple-Platter View)

 Aligned tracks form a cylinder.

surface 0

surface 1
surface 2

cylinder k

platter 0

platter 1

CS 135: Computer Architecture, Bhagi Narahari

surface 3
surface 4

surface 5

spindle

platter 1

platter 2

Disk Capacity

 Capacity: maximum number of bits that can be stored.
 Vendors express capacity in units of gigabytes (GB), where

1 GB = 10^9.

 Capacity is determined by these technology factors:
 Recording density (bits/in): number of bits that can be

squeezed into a 1 inch segment of a track.

 Track density (tracks/in): number of tracks that can be

CS 135: Computer Architecture, Bhagi Narahari

squeezed into a 1 inch radial segment.

 Areal density (bits/in2): product of recording and track
density.

 Modern disks partition tracks into disjoint subsets called
recording zones
 Each track in a zone has the same number of sectors,

determined by the circumference of innermost track.

 Each zone has a different number of sectors/track

Disk Operation (Single-Platter View)

The disk
surface
spins at a fixed
rotational rate

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp le

CS 135: Computer Architecture, Bhagi Narahari

spindle

By moving radially, the arm
can position the read/write
head over any track.

p
in

d
le

spindle

sp
in

d
l

spindle

Disk Operation (Single-Platter View)

The disk
surface
spins at a fixed
rotational rate

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp le

CS 135: Computer Architecture, Bhagi Narahari

spindle

By moving radially, the arm
can position the read/write
head over any track.

p
in

d
le

spindle

sp
in

d
l

spindle

24

Disk Access Time

 Average time to access some target sector approximated
by :
 Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
 Time to position heads over cylinder containing target

sector.

 Typical Tavg seek = 9 ms

CS 135: Computer Architecture, Bhagi Narahari

yp g

 Rotational latency (Tavg rotation)
 Time waiting for first bit of target sector to pass under r/w

head.

 Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

 Transfer time (Tavg transfer)
 Time to read the bits in the target sector.

 Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1
min.

Logical Disk Blocks

 Modern disks present a simpler abstract view of
the complex sector geometry:
 The set of available sectors is modeled as a sequence

of b-sized logical blocks (0, 1, 2, ...)

 Mapping between logical blocks and actual
(physical) sectors

/f

CS 135: Computer Architecture, Bhagi Narahari

 Maintained by hardware/firmware device called disk
controller.

 Converts requests for logical blocks into
(surface,track,sector) triples.

 Allows controller to set aside spare cylinders for
each zone.
 Accounts for the difference in “formatted capacity”

and “maximum capacity”.

I/O Bus

main
memory

I/O
b id

bus interface

ALU

register file

CPU chip

system bus memory bus

CS 135: Computer Architecture, Bhagi Narahari

memorybridge

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

Reading a Disk Sector (1)

main
memory

ALU

register file

CPU chip

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

CS 135: Computer Architecture, Bhagi Narahari

y

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

25

Reading a Disk Sector (2)

main
memory

ALU

register file

CPU chip

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

CS 135: Computer Architecture, Bhagi Narahari

y

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Reading a Disk Sector (3)

main
memory

ALU

register file

CPU chip

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

CS 135: Computer Architecture, Bhagi Narahari

y

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Storage Trends

metric 1980 1985 1990 1995 2000 2000:1980

$/MB 8 000 880 100 30 1 8 000DRAM

metric 1980 1985 1990 1995 2000 2000:1980

$/MB 19,200 2,900 320 256 100 190
access (ns) 300 150 35 15 2 100

SRAM

CS 135: Computer Architecture, Bhagi Narahari

(Culled from back issues of Byte and PC Magazine)

$/MB 8,000 880 100 30 1 8,000
access (ns) 375 200 100 70 60 6
typical size(MB) 0.064 0.256 4 16 64 1,000

DRAM

metric 1980 1985 1990 1995 2000 2000:1980

$/MB 500 100 8 0.30 0.05 10,000
access (ms) 87 75 28 10 8 11
typical size(MB) 1 10 160 1,000 9,000 9,000

Disk

CPU Clock Rates

1980 1985 1990 1995 2000 2000:1980
processor 8080 286 386 Pent P-III
clock rate(MHz) 1 6 20 150 750 750
cycle time(ns) 1,000 166 50 6 1.6 750

CS 135: Computer Architecture, Bhagi Narahari

26

Last step: Virtual Memory

 N bit address space…
 If word is not in main memory then it is on disk

– need a controller to manage this ..analogous
to cache controller
 Virtual memory management system

 Note: transfers take place from disk in “blocks”
of M bytes (sector) page of data

CS 135: Computer Architecture, Bhagi Narahari

of M bytes (sector) – page of data
 Memory consists of a number of pages

 Determine if the page is in main memory or not

 N bit address broken into fields which
determine page number, and whether page is in
the memory or disk

 If page size is 1024 bits…how to organize the N
bit address ??

Virtual Memory

 Main memory can act as a cache for the secondary
storage (disk)

Virtual addresses Physical addresses

Address translation

CS 135: Computer Architecture, Bhagi Narahari

 Advantages:
 illusion of having more physical memory

 program relocation

 protection

Disk addresses

Pages: virtual memory blocks

 Page faults: the data is not in
memory, retrieve it from disk
 huge miss penalty, thus pages

should be fairly large (e.g., 4KB)

 reducing page faults is important
(LRU is worth the price)

 can handle the faults in software
instead of hardware

 using write-through is too
expensive so we use writeback

CS 135: Computer Architecture, Bhagi Narahari

expensive so we use writeback

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

Page Tables

Page table
Physical page or

disk address
Physical memory

Virtual page
number

1
1
1
1
0
1
1

Valid

CS 135: Computer Architecture, Bhagi Narahari

Disk storage1
1

1

0

0

27

Page Tables

Virtual page number Page offset

3 1 3 0 2 9 2 8 2 7 3 2 1 01 5 1 4 1 3 1 2 11 1 0 9 8

Virtual address

Page table register

Physical page numberValid

20 12

CS 135: Computer Architecture, Bhagi Narahari

Physical page number Page offset

2 9 2 8 2 7 3 2 1 01 5 1 4 1 3 1 2 11 1 0 9 8

Physical address

Page table

If 0 then page is not
present in memory

18

More on Virtual memory

 This is part of the Operating system
 CS 156 focus is the OS utilities

CS 135: Computer Architecture, Bhagi Narahari

