CS 135: Computer Architecture |
Boolean Algebra

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science
Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

Basic Logic Gates

NOT
A A e
OR NOR
A A o
AND NAND

cs13s

Digital Logic Circuits

e We saw how we can build the simple
logic gates using transistors

» N-type: send 1 to gate to close ‘switch’
> P-type: send 0 to gate to close ‘switch’
e Use these gates as building blocks to

build more complex combinational
circuits

> Decoder: based on value of n-bit input
control signal, select one of 2N outputs

> Multiplexer: based on value of N-bit input
control signal, select one of 2V inputs.

» Adder: add two binary numbers
» ...any boolean function

cs 135

Theory of Combinational Logic Design ?

e Is there awell grounded theory behind
design of boolean logic
circuits/functions ?

e Equivalent circuits ?
o Efficient design ?
> Fewest gates used

cs13s

~ ~ -
: Boolean Algebra : Truth Table to Digital Circuit design..
e To describe behavior of combinational e Look at all rows with a1in the output
circuit > ALL conditions in the input must hold for the
> Truth table output to be 1 = AND of all the input
» Boolean algebraic expressions conditions B
> Digital logic circuit/diagram g ?gr):dri(t)i\gncsan be1=doan OR of all the row
e Algebraic expression written acpprdlng o Whenisx; =17
to laws of boolean algebra specifies not > Look at all h -1
only what a combinational circuit does, - Look atall rows where x,=
but also how it does it! > What are the values of inputs for each of
these rows ?
< =< Boolean Algebra — Definitions..recall from

Canonical Boolean expressions with Minterms

e Each row in atruth table specifies values of all
the input variables

» What is the value of each input variable—0 or 1
» i.e., y=1or y'=1for each input variable y

o For the specific output, what row(s) are we
interested ?

e When is the value of the output =1
» When the value in the row of the truth table =1
» What are the values of the input variables ?

e Canonical boolean expression

» Any boolean expression can be converted to an
equivalent two level AND-OR expression
» an OR of AND terms,
> each AND term corresponds to a 1 in the truth table row,
» each AND term contains all input variables exactly once —i.e., a minterm

» Canonical expression: OR of minterms

cs 135

CS123

e Boolean algebra has three operations
defined over boolean variables:

> OR (+), AND (.) and complement (")
e Recall fundamental properties of
Boolean algebra

» These apply to anything that is a boolean
algebra
» Sets, digital logic circuits, ...

cs13s

Boolean Algebra— Fundamental Properties

¢ Commutative:
> Xty = y+x
e Associative
> (X+Y)+z = x+H(y+2)

Xy =y.X

(xy)z=x.y.2)

e Distributive

> X+(y.z) = (X+y).(x+2) X.(y+2)=(x.y)+(x.2)
¢ Identity

> Xx=0=x x.1=x
e Complement

> X+ (x)=1 x.(x)=0

cs13s

Laws of Boolean algebra

e Duality property: each boolean property
has a dual property

» Exchange + and . Exchange 1 and 0

e Many useful properties/theorems can be
proved from the 10 fundamental
properties

cs13s

Example: Idempotent Property

e Prove: x+X =X

e Proof: use only the 10 fundamental laws
e X+X = (X+x).1; From identity property

o (x+x).1= (x+x).(x+x’) ; complement

o (X+X).(X+x")= (x.x) + (X.x’) ; distributive

e X+ (x.x')=x +0 ; complement

e x+0 =x ; identity property

> QED
e The duality property is: x.x =x

cs 135

Some useful properties. ..

e Zero theorem

> x+1=1 x.0=0
e Absorption property
> X + XYy =X X.(X+y) =X
e De Morgan’s law
> (ab)y=a +b’ (atb) =a . b’

» (a.b.c) =a'+b'+c’
e Complement
> (X)) =x

(atb+c)=a'.b’.c’

>

cs13s

Two Level Circuits

e Every boolean expression can be
transformed to an AND-OR expression

» Resulting in a 2 level circuit
e Advantage of 2 level circuit ?

> Gate delays
» Go through only two levels/layers of gates

cs13s

Why this discussion of Boolean Algebra...

e Every boolean expression has a
corresponding logic circuit diagram; and
every logic circuit diagram has a
corresponding boolean expression

> Oneto one correspondence

e But agiven truth table can have several
corresponding implementations

e How to map from truth table to boolean
expression ?

» How to pick the “best” boolean expression ?

cs13s

Simplification of boolean expressions

e The boolean expression/function
x(a,b,c,d) =a’bd’ + a'c’d’ + a’bc’d’

e Can be simplified using absorption
property to
a'bd’ + (a'c’d’)+(a’c’d’)b =a’bd’+ a'c’'d’

cs 135

= Combinational Circuit Design:
Truth Tables and Boolean expressions

e Given truth table we want to find an “efficient”
implementation (i.e., circuit)
» Efficient in speed
» Efficient in number of gates
» Simplicity of design
e Canonical boolean expression

» Any boolean expression can be converted to an
equivalent two level AND-OR expression
» an OR of AND terms,
» each AND term corresponds to a 1in the truth table row,
» each AND term contains all input variables exactly once —i.e., a minterm

» Canonical expression: OR of minterms

e Graphical method for designing two level
circuits with 3 or 4 variables using minimum
possible number of gates

» What is this method ????

cs13s

- Canonical Expressions - Example
e Consider boolean expression x, where a b c X
x(a,b,c)=abc + a'bc +ab 0 0 0 0

» First two are minterms since they contain all

three input variables 0 0 1 0
e abc +a’bc +ab = abc + a’bc + ab(c+c’) 0 1 0 0
=abc +a’'bc + abc + abc’ 0 1 1 1
=abc + a'bc + abc’ 1 0 0 0
Truth table? 1 0 1 0
1 1 0 1
1 1 1 1

Transformation of the Boolean expression

e abc +a'bc + abc’
=(a+a’)bc + abc’
=bc + abc’

e a'bc +abc + abc’
=a'bc +ab(c +¢’)
=a'bc +ab

e a'bc +abc + abc’
=a'bc + abc + abc + abc’
= (a’+a)bc + ab (c+c’)
=hbc +ab

cs 135

Truth table in 2-dimensions

bc
b (b=1)
00 01 11 10
0 0 1 0
0
a
0 0 < 1 1
1 I I (@(a=1)
c(c=1)
X, =bc X, =ab

Therefore, x = a’bc + abc + abc’ =bc + ab

cs13s

Distance between minterms

e Concept of “distance” between two
minterms (Hamming distance):

» Number of variables that are different
» Distance(abc, abc’)=1 only c and c’ different
> Distance(abc, a’bc’)=2 both a and c are
different
e Arrange 2-d truth table so that values in
consecutive columns(rows) differ in one
bit position

cs13s

Karnaugh Maps

e Graphical way to represent boolean
functions

» Based on concept of distance
e Recognizing adjacent minterms is key to
minimization of AND-OR expression

e K-map is atool to minimize a two level
circuit that it makes it easy to spot
adjacent minterms

e Karnaugh Map is a truth table arranged
so that adjacent entries represent
minterms that differ by one.

cs13s

Grouping minterms in K-Map

e Group ‘cells’ in K-map that are adjacent
and have a value of 1 in the cell

> Group of 2 cells in 3 variable K-map: is an
AND of two variables

» Group of 4 cells in 3 variable K-map: is single
variable

cs 135

Minimization using K-Maps

e Minimization procedure : determine best
set of groups that will cover all the 1's in
the K-map

» “best” means the set that corresponds to a
two-level circuit with the least number of
gates and the least number of inputs per
gate.

» The number of groups equals number of AND
gates

» We want the smallest number of groups with
each group as large as possible such that the
groups cover all the 1's

cs13s

: Example : Example
bc bc
b (b=1) b (b=1)
00 01 11 10 00 01 11 10
1 1 0 0 1 1 0 0
0 0
a a
0 1 1 0 0 1 1 0
1 (a(a=1) 1 I (a(a=1)
c (c=1) ¢ (c=1)
- Example - Example
bc bc
b (b=1) b (b=1)
00 01 11 10 00 01 11 10
—
1 1y |0 0 1T [1 0 0
0 / \ 0 N
a a
o kI / 1 0 0 CD 0
IS o : =
c (c=1) c(c=1)
a'b’ +ac

a'b’+b'c+ac

cs 135

cs13s

. - 4variable Karnaugh map
cd
00 01 11 10

00 1
01

11

1 1 1
10 1
——
C

Summary of Combinational Logic

e Combinational device/circuit: any circuit
built using the basic gates

e Expressed as
» Truth table
» Digital circuit
» Boolean function

e Any boolean function can be expressed
as two level function

e Minimization procedure: Karnaugh Map
» Try to minimize the number of gates, and

inputs to gates, in a two level circuit

cs 135

Combinational vs. Sequential

eCombinational Circuit

» always gives the same output for a given set of inputs

» ex: adder always generates sum and carry,
regardless of previous inputs

eSequential Circuit
» stores information

» output depends on stored information (state) plus input

» so agiven input might produce different outputs,
depending on the stored information

» example: vending machine
» Current total increases when you insert coins
~ output depends on previous state
» useful for building “memory” elements and “state
machines”

cs13s

. Vending Machine : Next ... Sequential Logic
e Problem: Read input coins, Keep track of e Build a device, using combinational logic
current total. devices, to store a value
> Lfe;ojglsotequal to (or greater than) 75 cents then process » RS Latch (also called SR Latch)
e What do we need to keep track of ? e Implement concept of memory
» Current total (of coins fed into the machine) ° Methodology behind design of sequential
» What is a “state” of the machine Iogic circuits
» Current total! L. i
> Assume only 5¢, 10c, 25cent coins » Finite State Machines
e ‘transition’ between states ?
- Current state 10 goes to o Combine sequential and combinational
» next state 15 if input = 5¢ . . « " .
+ Next state 20 f input =10c logic devices to “assemble” a simple
» Next state 35 if input=25c processor|

Sequential Circuits

e Combinational logic circuits are perfect for
situations when we require the immediate
application of a Boolean function to a set
of inputs.

e There are other times, however, when we
need a circuit to change its value with
consideration to its current state as well as
its inputs.

» These circuits have to “remember” their
current state.

e Sequential logic circuits provide this
functionality for us.

cs 135

