
1

CS 135: Computer Architecture ICS 135: Computer Architecture I

Boolean Boolean AlgebraAlgebra

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

CS 135

Basic Logic Gates

CS 135

Digital Logic Circuits

• We saw how we can build the simple
logic gates using transistors

N-type: send 1 to gate to close ‘switch’
P-type: send 0 to gate to close ‘switch’

• Use these gates as building blocks to
build more complex combinational
circuits

Decoder: based on value of n-bit input
control signal, select one of 2N outputs
Multiplexer: based on value of N-bit input
control signal, select one of 2N inputs.
Adder: add two binary numbers
…any boolean function

CS 135

Theory of Combinational Logic Design ?

• Is there a well grounded theory behind
design of boolean logic
circuits/functions ?

• Equivalent circuits ?
• Efficient design ?

Fewest gates used

2

CS 135

Boolean Algebra

• To describe behavior of combinational
circuit

Truth table
Boolean algebraic expressions
Digital logic circuit/diagram

• Algebraic expression written according
to laws of boolean algebra specifies not
only what a combinational circuit does,
but also how it does it!

CS 135

Truth Table to Digital Circuit design…

• Look at all rows with a 1 in the output
ALL conditions in the input must hold for the
output to be 1 = AND of all the input
conditions
Any row can be 1 = do an OR of all the row
conditions

• When is x1 = 1 ?
Look at all rows where x1= 1
What are the values of inputs for each of
these rows ?

CS 135

Canonical Boolean expressions with Minterms

• Each row in a truth table specifies values of all
the input variables

What is the value of each input variable – 0 or 1
i.e., y=1 or y’=1 for each input variable y

• For the specific output, what row(s) are we
interested ?

• When is the value of the output =1
When the value in the row of the truth table =1
What are the values of the input variables ?

• Canonical boolean expression
Any boolean expression can be converted to an
equivalent two level AND-OR expression

an OR of AND terms,
each AND term corresponds to a 1 in the truth table row,
each AND term contains all input variables exactly once – i.e., a minterm

Canonical expression: OR of minterms

CS 135

Boolean Algebra – Definitions..recall from
CS123

• Boolean algebra has three operations
defined over boolean variables:

OR (+), AND (.) and complement (’)
• Recall fundamental properties of

Boolean algebra
These apply to anything that is a boolean
algebra

Sets, digital logic circuits, …

3

CS 135

Boolean Algebra– Fundamental Properties

• Commutative:
x+y = y+x x.y = y.x

• Associative
(x+y)+z = x+(y+z) (x.y).z = x.(y.z)

• Distributive
x+(y.z) = (x+y).(x+z) x.(y+z)=(x.y)+(x.z)

• Identity
x=0 = x x.1 = x

• Complement
x + (x’) = 1 x.(x’) = 0

CS 135

Laws of Boolean algebra

• Duality property: each boolean property
has a dual property

Exchange + and . Exchange 1 and 0
• Many useful properties/theorems can be

proved from the 10 fundamental
properties

CS 135

Example: Idempotent Property

• Prove: x + x = x
• Proof: use only the 10 fundamental laws
• x+x = (x+x).1 ; From identity property
• (x+x).1 = (x+x).(x+x’) ; complement
• (x+x).(x+x’)= (x.x) + (x.x’) ; distributive
• x + (x.x’)= x +0 ; complement
• x+0 = x ; identity property

QED

• The duality property is: x.x =x

CS 135

Some useful properties. . .

• Zero theorem
x+1 =1 x.0 = 0

• Absorption property
x + x.y = x x.(x+y) = x

• De Morgan’s law
(a.b)’ = a’ + b’ (a+b)’ = a’ . b’
(a.b.c)’ = a’+b’+c’ (a+b+c)’= a’.b’.c’

• Complement
(x’)’ = x

4

CS 135

Two Level Circuits

• Every boolean expression can be
transformed to an AND-OR expression

Resulting in a 2 level circuit
• Advantage of 2 level circuit ?

Gate delays
Go through only two levels/layers of gates

CS 135

Why this discussion of Boolean Algebra…

• Every boolean expression has a
corresponding logic circuit diagram; and
every logic circuit diagram has a
corresponding boolean expression

One to one correspondence
• But a given truth table can have several

corresponding implementations
• How to map from truth table to boolean

expression ?
How to pick the “best” boolean expression ?

CS 135

Simplification of boolean expressions

• The boolean expression/function
x(a,b,c,d) = a’bd’ + a’c’d’ + a’bc’d’

• Can be simplified using absorption
property to
a’bd’ + (a’c’d’)+(a’c’d’)b = a’bd’+ a’c’d’

CS 135

Combinational Circuit Design:
Truth Tables and Boolean expressions

• Given truth table we want to find an “efficient”
implementation (i.e., circuit)

Efficient in speed
Efficient in number of gates
Simplicity of design

• Canonical boolean expression
Any boolean expression can be converted to an
equivalent two level AND-OR expression

an OR of AND terms,
each AND term corresponds to a 1 in the truth table row,
each AND term contains all input variables exactly once – i.e., a minterm

Canonical expression: OR of minterms
• Graphical method for designing two level

circuits with 3 or 4 variables using minimum
possible number of gates

What is this method ????

5

CS 135

Canonical Expressions

• Consider boolean expression x, where
x(a,b,c)= abc + a’bc +ab

First two are minterms since they contain all
three input variables

• abc +a’bc +ab = abc + a’bc + ab(c+c’)
= abc +a’bc + abc + abc’
= abc + a’bc + abc’

Truth table?

CS 135

Example

1111

1011

0101

0001

1110

0010

0100

0000

xcba

CS 135

Transformation of the Boolean expression

• abc + a’bc + abc’
= (a +a’)bc + abc’
= bc + abc’

• a’bc + abc + abc’
= a’bc + ab(c + c’)
= a’bc + ab

• a’bc + abc + abc’
= a’bc + abc + abc + abc’
= (a’+a)bc + ab (c+c’)
= bc + ab

CS 135

Truth table in 2-dimensions

1100

0100
00 01 11 10

bc

0

1

a

x1 = bc x2 =ab
Therefore, x = a’bc + abc + abc’ = bc + ab

b (b=1)

c (c=1)

(a (a=1)

6

CS 135

Distance between minterms

• Concept of “distance” between two
minterms (Hamming distance):

Number of variables that are different
Distance(abc, abc’)=1 only c and c’ different
Distance(abc, a’bc’)=2 both a and c are
different

• Arrange 2-d truth table so that values in
consecutive columns(rows) differ in one
bit position

CS 135

Karnaugh Maps

• Graphical way to represent boolean
functions

Based on concept of distance
• Recognizing adjacent minterms is key to

minimization of AND-OR expression
• K-map is a tool to minimize a two level

circuit that it makes it easy to spot
adjacent minterms

• Karnaugh Map is a truth table arranged
so that adjacent entries represent
minterms that differ by one.

CS 135

Grouping minterms in K-Map

• Group ‘cells’ in K-map that are adjacent
and have a value of 1 in the cell

Group of 2 cells in 3 variable K-map: is an
AND of two variables
Group of 4 cells in 3 variable K-map: is single
variable

CS 135

Minimization using K-Maps

• Minimization procedure : determine best
set of groups that will cover all the 1’s in
the K-map

“best” means the set that corresponds to a
two-level circuit with the least number of
gates and the least number of inputs per
gate.
The number of groups equals number of AND
gates
We want the smallest number of groups with
each group as large as possible such that the
groups cover all the 1’s

7

CS 135

Example

0110

0011
00 01 11 10

bc

0

1

a

b (b=1)

c (c=1)

(a (a=1)

CS 135

Example

0110

0011
00 01 11 10

bc

0

1

a

b (b=1)

c (c=1)

(a (a=1)

CS 135

Example

0110

0011
00 01 11 10

bc

0

1

a

b (b=1)

c (c=1)

(a (a=1)

a’b’ + b’c + ac

CS 135

Example

0110

0011
00 01 11 10

bc

0

1

a

b (b=1)

c (c=1)

(a (a=1)

a’b’ + ac

8

CS 135 CS 135

4 variable Karnaugh map

1

111

11

1

ab

cd

10

11 1001

00

01

11

00

d

c

a

b

CS 135

Summary of Combinational Logic

• Combinational device/circuit: any circuit
built using the basic gates

• Expressed as
Truth table
Digital circuit
Boolean function

• Any boolean function can be expressed
as two level function

• Minimization procedure: Karnaugh Map
Try to minimize the number of gates, and
inputs to gates, in a two level circuit

CS 135

Combinational vs. Sequential

•Combinational Circuit
always gives the same output for a given set of inputs

ex: adder always generates sum and carry,
regardless of previous inputs

•Sequential Circuit
stores information
output depends on stored information (state) plus input

so a given input might produce different outputs,
depending on the stored information

example: vending machine
Current total increases when you insert coins
output depends on previous state

useful for building “memory” elements and “state
machines”

9

CS 135

Vending Machine

• Problem: Read input coins, Keep track of
current total.

If total equal to (or greater than) 75 cents then process
request

• What do we need to keep track of ?
Current total (of coins fed into the machine)
What is a “state” of the machine

Current total!

Assume only 5c, 10c, 25cent coins
• ‘transition’ between states ?

Current state 10 goes to
next state 15 if input = 5c
Next state 20 if input =10c
Next state 35 if input=25c

CS 135

Next . . . Sequential Logic

• Build a device, using combinational logic
devices, to store a value

RS Latch (also called SR Latch)
• Implement concept of memory
• Methodology behind design of sequential

logic circuits
Finite State Machines

• Combine sequential and combinational
logic devices to “assemble” a simple
processor!

CS 135

Sequential Circuits

• Combinational logic circuits are perfect for
situations when we require the immediate
application of a Boolean function to a set
of inputs.

• There are other times, however, when we
need a circuit to change its value with
consideration to its current state as well as
its inputs.

These circuits have to “remember” their
current state.

• Sequential logic circuits provide this
functionality for us.

